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Abstract

This paper presents an efficient imple-
mentation of linearised lattice minimum
Bayes-risk decoding using weighted finite
state transducers. We introduce transduc-
ers to efficiently count lattice paths con-
taining n-grams and use these to gather
the required statistics. We show that these
procedures can be implemented exactly
through simple transformations of word
sequences to sequences ofn-grams. This
yields a novel implementation of lattice
minimum Bayes-risk decoding which is
fast and exact even for very large lattices.

1 Introduction

This paper focuses on an exact implementation
of the linearised form of lattice minimum Bayes-
risk (LMBR) decoding using general purpose
weighted finite state transducer (WFST) opera-
tions1. The LMBR decision rule in Tromble et al.
(2008) has the form

Ê = argmax
E′∈E

{

θ0|E
′|+

∑

u∈N

θu#u(E′)p(u|E)

}

(1)
whereE is a lattice of translation hypotheses,N
is the set of alln-grams in the lattice (typically,
n = 1 . . . 4), and the parametersθ are constants
estimated on held-out data. The quantityp(u|E)
we refer to as the path posterior probability of the
n-gramu. This particular posterior is defined as

p(u|E) = p(Eu|E) =
∑

E∈Eu

P (E|F ), (2)

whereEu = {E ∈ E : #u(E) > 0} is the sub-
set of lattice paths containing then-gramu at least

1We omit an introduction to WFSTs for space reasons.
See Mohri et al. (2008) for details of the general purpose
WFST operations used in this paper.

once. It is the efficient computation of these path
posteriorn-gram probabilities that is the primary
focus of this paper. We will show how general
purpose WFST algorithms can be employed to ef-
ficiently computep(u|E) for all u ∈ N .

Tromble et al. (2008) use Equation (1) as an
approximation to the general form of statistical
machine translation MBR decoder (Kumar and
Byrne, 2004):

Ê = argmin
E′∈E

∑

E∈E

L(E,E′)P (E|F ) (3)

The approximation replaces the sum over all paths
in the lattice by a sum over latticen-grams. Even
though a lattice may have manyn-grams, it is
possible to extract and enumerate them exactly
whereas this is often impossible for individual
paths. Therefore, while the Tromble et al. (2008)
linearisation of the gain function in the decision
rule is an approximation, Equation (1) can be com-
puted exactly even over very large lattices. The
challenge is to do so efficiently.

If the quantityp(u|E) had the form of a condi-
tional expected count

c(u|E) =
∑

E∈E

#u(E)P (E|F ), (4)

it could be computed efficiently using counting
transducers (Allauzen et al., 2003). The statis-
tic c(u|E) counts the number of times ann-gram
occurs on each path, accumulating the weighted
count over all paths. By contrast, what is needed
by the approximation in Equation (1) is to iden-
tify all paths containing ann-gram and accumulate
their probabilities. The accumulation of probabil-
ities at the path level, rather than then-gram level,
makes the exact computation ofp(u|E) hard.

Tromble et al. (2008) approach this problem by
building a separate word sequence acceptor for
eachn-gram inN and intersecting this acceptor
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with the lattice to discard all paths that do not con-
tain then-gram; they then sum the probabilities of
all paths in the filtered lattice. We refer to this as
the sequential method, sincep(u|E) is calculated
separately for eachu in sequence.

Allauzen et al. (2010) introduce a transducer
for simultaneous calculation ofp(u|E) for all un-
igramsu ∈ N1 in a lattice. This transducer is
effective for finding path posterior probabilities of
unigrams because there are relatively few unique
unigrams in the lattice. As we will show, however,
it is less efficient for higher-ordern-grams.

Allauzen et al. (2010) use exact statistics for
the unigram path posterior probabilities in Equa-
tion (1), but use the conditional expected counts
of Equation (4) for higher-ordern-grams. Their
hybrid MBR decoder has the form

Ê = argmax
E′∈E

{

θ0|E
′|

+
∑

u∈N :1≤|u|≤k

θu#u(E′)p(u|E)

+
∑

u∈N :k<|u|≤4

θu#u(E′)c(u|E)

}

, (5)

wherek determines the range ofn-gram orders
at which the path posterior probabilitiesp(u|E)
of Equation (2) and conditional expected counts
c(u|E) of Equation (4) are used to compute the
expected gain. Fork < 4, Equation (5) is thus
an approximation to the approximation. In many
cases it will be perfectly fine, depending on how
closelyp(u|E) andc(u|E) agree for higher-order
n-grams. Experimentally, Allauzen et al. (2010)
find this approximation works well atk = 1 for
MBR decoding of statistical machine translation
lattices. However, there may be scenarios in which
p(u|E) andc(u|E) differ so that Equation (5) is no
longer useful in place of the original Tromble et
al. (2008) approximation.

In the following sections, we present an efficient
method for simultaneous calculation ofp(u|E) for
n-grams of a fixed order. While other fast MBR
approximations are possible (Kumar et al., 2009),
we show how the exact path posterior probabilities
can be calculated and applied in the implementa-
tion of Equation (1) for efficient MBR decoding
over lattices.

2 N-gram Mapping Transducer

We make use of a trick to count higher-ordern-
grams. We build transducerΦn to map word se-

quences ton-gram sequences of ordern. Φn has a
similar form to the WFST implementation of ann-
gram language model (Allauzen et al., 2003).Φn

includes for eachn-gramu = wn
1

arcs of the form:

wn-1
1 wn

2

wn:u

Then-gram lattice of ordern is calledEn and is
found by composingE ◦Φn, projecting on the out-
put, removingǫ-arcs, determinizing, and minimis-
ing. The construction ofEn is fast even for large
lattices and is memory efficient.En itself may
have more states thanE due to the association of
distinctn-gram histories with states. However, the
counting transducer for unigrams is simpler than
the corresponding counting transducer for higher-
ordern-grams. As a result, counting unigrams in
En is easier than countingn-grams inE .

3 Efficient Path Counting

Associated with eachEn we have a transducerΨn

which can be used to calculate the path posterior
probabilitiesp(u|E) for all u ∈ Nn. In Figures
1 and 2 we give two possible forms2 of Ψn that
can be used to compute path posterior probabilities
overn-gramsu1,2 ∈ Nn for somen. No modifica-
tion to theρ-arc matching mechanism is required
even in counting higher-ordern-grams since alln-
grams are represented as individual symbols after
application of the mapping transducerΦn.

TransducerΨL
n is used by Allauzen et al. (2010)

to compute the exact unigram contribution to the
conditional expected gain in Equation (5). For ex-
ample, in counting paths that containu1, ΨL

n re-
tains thefirst occurrence ofu1 and maps every
other symbol toǫ. This ensures that in any path
containing a givenu, only the firstu is counted,
avoiding multiple counting of paths.

We introduce an alternative path counting trans-
ducerΨR

n that effectively deletes all symbols ex-
cept thelast occurrence ofu on any path by en-
suring that any paths in composition which count
earlier instances ofu do not end in a final state.
Multiple counting is avoided by counting only the
last occurrence of each symbolu on a path.

We note that initialǫ:ǫ arcs inΨL
n effectively

create |Nn| copies ofEn in composition while
searching for the first occurrence of eachu. Com-

2The special composition symbolσ matches any arc;ρ
matches any arc other than those with an explicit transition.
See the OpenFst documentation: http://openfst.org
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Figure 1: Path counting transducerΨL
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Figure 2: Path counting transducerΨR
n matching

last (right-most) occurrence of eachu ∈ Nn.

posing withΨR
n creates a single copy ofEn while

searching for the last occurrence ofu; we find this
to be much more efficient for largeNn.

Path posterior probabilities are calculated over
eachEn by composing withΨn in the log semir-
ing, projecting on the output, removingǫ-arcs, de-
terminizing, minimising, and pushing weights to
the initial state (Allauzen et al., 2010). Using ei-
therΨL

n orΨR
n , the resulting counts acceptor isXn.

It has a compact form with one arc from the start
state for eachui ∈ Nn:

0 i
ui/- log p(ui|E)

3.1 Efficient Path Posterior Calculation

AlthoughXn has a convenient and elegant form,
it can be difficult to build for largeNn because
the compositionEn ◦ Ψn results in millions of
states and arcs. The log semiringǫ-removal and
determinization required to sum the probabilities
of paths labelled with eachu can be slow.

However, if we use the proposedΨR
n , then each

path in En ◦ ΨR
n has only one non-ǫ output la-

bel u and all paths leading to a given final state
share the sameu. A modified forward algorithm
can be used to calculatep(u|E) without the costly
ǫ-removal and determinization. The modification
simply requires keeping track of which symbol
u is encountered along each path to a final state.

More than one final state may gather probabilities
for the sameu; to computep(u|E) these proba-
bilities are added. The forward algorithm requires
thatEn◦Ψ

R
n be topologically sorted; although sort-

ing can be slow, it is still quicker than log semiring
ǫ-removal and determinization.

The statistics gathered by the forward algo-
rithm could also be gathered under the expectation
semiring (Eisner, 2002) with suitably defined fea-
tures. We take the view that the full complexity of
that approach is not needed here, since only one
symbol is introduced per path and per exit state.

Unlike En ◦ΨR
n , the compositionEn ◦ΨL

n does
not segregate paths byu such that there is a di-
rect association between final states and symbols.
The forward algorithm does not readily yield the
per-symbol probabilities, although an arc weight
vector indexed by symbols could be used to cor-
rectly aggregate the required statistics (Riley et al.,
2009). For largeNn this would be memory in-
tensive. The association between final states and
symbols could also be found by label pushing, but
we find this slow for largeEn ◦Ψn.

4 Efficient Decoder Implementation

In contrast to Equation (5), we use the exact values
of p(u|E) for all u ∈ Nn at ordersn = 1 . . . 4 to
compute

Ê = argmin
E′∈E

{

θ0|E
′|+

4
∑

n=1

gn(E,E′)

}

, (6)

wheregn(E,E′) =
∑

u∈Nn
θu#u(E′)p(u|E) us-

ing the exact path posterior probabilities at each
order. We make acceptorsΩn such thatE ◦ Ωn

assigns ordern partial gaingn(E,E′) to all paths
E ∈ E . Ωn is derived fromΦn directly by assign-
ing arc weightθu×p(u|E) to arcs with output label
u and then projecting on the input labels. For each
n-gramu = wn

1
in Nn arcs ofΩn have the form:

wn-1
1 wn

2

wn/θu × p(u|E)

To apply θ0 we make a copy ofE , calledE0,
with fixed weightθ0 on all arcs. The decoder is
formed as the compositionE0 ◦Ω1 ◦Ω2 ◦Ω3 ◦Ω4

andÊ is extracted as the maximum cost string.

5 Lattice Generation for LMBR

Lattice MBR decoding performance and effi-
ciency is evaluated in the context of the NIST

29



mt0205tune mt0205test mt08nw mt08ng
ML 54.2 53.8 51.4 36.3

k

0 52.6 52.3 49.8 34.5
1 54.8 54.4 52.2 36.6
2 54.9 54.5 52.4 36.8
3 54.9 54.5 52.4 36.8

LMBR 55.0 54.6 52.4 36.8

Table 1: BLEU scores for Arabic→English maximum likelihood translation (ML), MBR decodingusing
the hybrid decision rule of Equation (5) at0 ≤ k ≤ 3, and regular linearised lattice MBR (LMBR).

mt0205tune mt0205test mt08nw mt08ng

Posteriors
sequential 3160 3306 2090 3791

ΨL
n 6880 7387 4201 8796

ΨR
n 1746 1789 1182 2787

Decoding
sequential 4340 4530 2225 4104

Ψn 284 319 118 197

Total
sequential 7711 8065 4437 8085

ΨL
n 7458 8075 4495 9199

ΨR
n 2321 2348 1468 3149

Table 2: Time in seconds required for path posteriorn-gram probability calculation and LMBR decoding
using sequential method and left-most(ΨL

n) or right-most(ΨR
n ) counting transducer implementations.

Arabic→English machine translation task3. The
development set mt0205tune is formed from the
odd numbered sentences of the NIST MT02–
MT05 testsets; the even numbered sentences form
the validation set mt0205test. Performance on
NIST MT08 newswire (mt08nw) and newsgroup
(mt08ng) data is also reported.

First-pass translation is performed using HiFST
(Iglesias et al., 2009), a hierarchical phrase-based
decoder. Word alignments are generated using
MTTK (Deng and Byrne, 2008) over 150M words
of parallel text for the constrained NIST MT08
Arabic→English track. In decoding, a Shallow-
1 grammar with a single level of rule nesting is
used and no pruning is performed in generating
first-pass lattices (Iglesias et al., 2009).

The first-pass language model is a modified
Kneser-Ney (Kneser and Ney, 1995) 4-gram esti-
mated over the English parallel text and an 881M
word subset of the GigaWord Third Edition (Graff
et al., 2007). Prior to LMBR, the lattices are
rescored with large stupid-backoff 5-gram lan-
guage models (Brants et al., 2007) estimated over
more than 6 billion words of English text.

Then-gram factorsθ0, . . . , θ4 are set according
to Tromble et al. (2008) using unigram precision

3http://www.itl.nist.gov/iad/mig/tests/mt

p = 0.85 and average recall ratior = 0.74. Our
translation decoder and MBR procedures are im-
plemented using OpenFst (Allauzen et al., 2007).

6 LMBR Speed and Performance

Lattice MBR decoding performance is shown in
Table 1. Compared to the maximum likelihood
translation hypotheses (row ML), LMBR gives
gains of +0.8 to +1.0 BLEU for newswire data and
+0.5 BLEU for newsgroup data (row LMBR).

The other rows of Table 1 show the performance
of LMBR decoding using the hybrid decision rule
of Equation (5) for0 ≤ k ≤ 3. When the condi-
tional expected countsc(u|E) are used at all orders
(i.e. k = 0), the hybrid decoder BLEU scores are
considerably lower than even the ML scores. This
poor performance is because there are many un-
igramsu for which c(u|E) is much greater than
p(u|E). The consensus translation maximising the
conditional expected gain is then dominated by
unigram matches, significantly degrading LMBR
decoding performance. Table 1 shows that for
these lattices the hybrid decision rule is an ac-
curate approximation to Equation (1) only when
k ≥ 2 and the exact contribution to the gain func-
tion is computed using the path posterior probabil-
ities at ordersn = 1 andn = 2.
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We now analyse the efficiency of lattice MBR
decoding using the exact path posterior probabil-
ities of Equation (2) at all orders. We note that
the sequential method and both simultaneous im-
plementations using path counting transducersΨL

n

andΨR
n yield the same hypotheses (allowing for

numerical accuracy); they differ only in speed and
memory usage.

Posteriors Efficiency Computation times for
the steps in LMBR are given in Table 2. In calcu-
lating path posteriorn-gram probabilitiesp(u|E),
we find that the use ofΨL

n is more than twice
as slow as the sequential method. This is due to
the difficulty of counting higher-ordern-grams in
large lattices. ΨL

n is effective for counting uni-
grams, however, since there are far fewer of them.
UsingΨR

n is almost twice as fast as the sequential
method. This speed difference is due to the sim-
ple forward algorithm. We also observe that for
higher-ordern, the compositionEn ◦ ΨR

n requires
less memory and produces a smaller machine than
En ◦ ΨL

n . It is easier to count paths by the final
occurrence of a symbol than by the first.

Decoding Efficiency Decoding times are signif-
icantly faster usingΩn than the sequential method;
average decoding time is around 0.1 seconds per
sentence. The total time required for lattice MBR
is dominated by the calculation of the path pos-
terior n-gram probabilities, and this is a func-
tion of the number ofn-grams in the lattice|N |.
For each sentence in mt0205tune, Figure 3 plots
the total LMBR time for the sequential method
(marked ‘o’) and for probabilities computed using
ΨR

n (marked ‘+’). This compares the two tech-
niques on a sentence-by-sentence basis. As|N |
grows, the simultaneous path counting transducer
is found to be much more efficient.

7 Conclusion

We have described an efficient and exact imple-
mentation of the linear approximation to LMBR
using general WFST operations. A simple trans-
ducer was used to map words to sequences ofn-
grams in order to simplify the extraction of higher-
order statistics. We presented a counting trans-
ducerΨR

n that extracts the statistics required for
all n-grams of ordern in a single composition and
allows path posterior probabilities to be computed
efficiently using a modified forward procedure.

We take the view that even approximate search
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Figure 3: Total time in seconds versus|N |.

criteria should be implemented exactly where pos-
sible, so that it is clear exactly what the system is
doing. For machine translation lattices, conflat-
ing the values ofp(u|E) and c(u|E) for higher-
ordern-grams might not be a serious problem, but
in other scenarios – especially where symbol se-
quences are repeated multiple times on the same
path – it may be a poor approximation.

We note that since much of the time in calcula-
tion is spent dealing withǫ-arcs that are ultimately
removed, an optimised composition algorithm that
skips over such redundant structure may lead to
further improvements in time efficiency.
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