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Abstract

This paper explores the effect that dif-
ferent corpus configurations have on the
performance of a coreference resolution
system, as measured by MUC, B3, and
CEAF. By varying separately three param-
eters (language, annotation scheme, and
preprocessing information) and applying
the same coreference resolution system,
the strong bonds between system and cor-
pus are demonstrated. The experiments
reveal problems in coreference resolution
evaluation relating to task definition, cod-
ing schemes, and features. They also ex-
pose systematic biases in the coreference
evaluation metrics. We show that system
comparison is only possible when corpus
parameters are in exact agreement.

1 Introduction

The task of coreference resolution, which aims to
automatically identify the expressions in a text that
refer to the same discourse entity, has been an in-
creasing research topic in NLP ever since MUC-6
made available the first coreferentially annotated
corpus in 1995. Most research has centered around
the rules by which mentions are allowed to corefer,
the features characterizing mention pairs, the algo-
rithms for building coreference chains, and coref-
erence evaluation methods. The surprisingly im-
portant role played by different aspects of the cor-
pus, however, is an issue to which little attention
has been paid. We demonstrate the extent to which
a system will be evaluated as performing differ-
ently depending on parameters such as the corpus
language, the way coreference relations are de-
fined in the corresponding coding scheme, and the
nature and source of preprocessing information.

This paper unpacks these issues by running the
same system—a prototype entity-based architec-

ture called CISTELL—on different corpus config-
urations, varying three parameters. First, we show
how much language-specific issues affect perfor-
mance when trained and tested on English and
Spanish. Second, we demonstrate the extent to
which the specific annotation scheme (used on the
same corpus) makes evaluated performance vary.
Third, we compare the performance using gold-
standard preprocessing information with that us-
ing automatic preprocessing tools.

Throughout, we apply the three principal coref-
erence evaluation measures in use today: MUC,
B3, and CEAF. We highlight the systematic prefer-
ences of each measure to reward different config-
urations. This raises the difficult question of why
one should use one or another evaluation mea-
sure, and how one should interpret their differ-
ences in reporting changes of performance score
due to ‘secondary’ factors like preprocessing in-
formation.

To this end, we employ three corpora: ACE
(Doddington et al., 2004), OntoNotes (Pradhan
et al., 2007), and AnCora (Recasens and Martı́,
2009). In order to isolate the three parameters
as far as possible, we benefit from a 100k-word
portion (from the TDT collection) that is common
to both ACE and OntoNotes. We apply the same
coreference resolution system in all cases. The re-
sults show that a system’s score is not informative
by itself, as different corpora or corpus parameters
lead to different scores. Our goal is not to achieve
the best performance to date, but rather to ex-
pose various issues raised by the choices of corpus
preparation and evaluation measure and to shed
light on the definition, methods, evaluation, and
complexities of the coreference resolution task.

The paper is organized as follows. Section 2
sets our work in context and provides the motiva-
tions for undertaking this study. Section 3 presents
the architecture of CISTELL, the system used in
the experimental evaluation. In Sections 4, 5,
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and 6, we describe the experiments on three differ-
ent datasets and discuss the results. We conclude
in Section 7.

2 Background

The bulk of research on automatic coreference res-
olution to date has been done for English and used
two different types of corpus: MUC (Hirschman
and Chinchor, 1997) and ACE (Doddington et al.,
2004). A variety of learning-based systems have
been trained and tested on the former (Soon et al.,
2001; Uryupina, 2006), on the latter (Culotta et
al., 2007; Bengtson and Roth, 2008; Denis and
Baldridge, 2009), or on both (Finkel and Manning,
2008; Haghighi and Klein, 2009). Testing on both
is needed given that the two annotation schemes
differ in some aspects. For example, only ACE
includes singletons (mentions that do not corefer)
and ACE is restricted to seven semantic types.1

Also, despite a critical discussion in the MUC task
definition (van Deemter and Kibble, 2000), the
ACE scheme continues to treat nominal predicates
and appositive phrases as coreferential.

A third coreferentially annotated corpus—the
largest for English—is OntoNotes (Pradhan et al.,
2007; Hovy et al., 2006). Unlike ACE, it is not
application-oriented, so coreference relations be-
tween all types of NPs are annotated. The identity
relation is kept apart from the attributive relation,
and it also contains gold-standard morphological,
syntactic and semantic information.

Since the MUC and ACE corpora are annotated
with only coreference information,2 existing sys-
tems first preprocess the data using automatic tools
(POS taggers, parsers, etc.) to obtain the infor-
mation needed for coreference resolution. How-
ever, given that the output from automatic tools
is far from perfect, it is hard to determine the
level of performance of a coreference module act-
ing on gold-standard preprocessing information.
OntoNotes makes it possible to separate the coref-
erence resolution problem from other tasks.

Our study adds to the previously reported evi-
dence by Stoyanov et al. (2009) that differences in
corpora and in the task definitions need to be taken
into account when comparing coreference resolu-
tion systems. We provide new insights as the cur-
rent analysis differs in four ways. First, Stoyanov

1The ACE-2004/05 semantic types are person, organiza-
tion, geo-political entity, location, facility, vehicle, weapon.

2ACE also specifies entity types and relations.

et al. (2009) report on differences between MUC
and ACE, while we contrast ACE and OntoNotes.
Given that ACE and OntoNotes include some of
the same texts but annotated according to their re-
spective guidelines, we can better isolate the effect
of differences as well as add the additional dimen-
sion of gold preprocessing. Second, we evaluate
not only with the MUC and B3 scoring metrics,
but also with CEAF. Third, all our experiments
use true mentions3 to avoid effects due to spuri-
ous system mentions. Finally, including different
baselines and variations of the resolution model al-
lows us to reveal biases of the metrics.

Coreference resolution systems have been
tested on languages other than English only within
the ACE program (Luo and Zitouni, 2005), prob-
ably due to the fact that coreferentially annotated
corpora for other languages are scarce. Thus there
has been no discussion of the extent to which sys-
tems are portable across languages. This paper
studies the case of English and Spanish.4

Several coreference systems have been devel-
oped in the past (Culotta et al., 2007; Finkel
and Manning, 2008; Poon and Domingos, 2008;
Haghighi and Klein, 2009; Ng, 2009). It is not our
aim to compete with them. Rather, we conduct
three experiments under a specific setup for com-
parison purposes. To this end, we use a different,
neutral, system, and a dataset that is small and dif-
ferent from official ACE test sets despite the fact
that it prevents our results from being compared
directly with other systems.

3 Experimental Setup

3.1 System Description

The system architecture used in our experiments,
CISTELL, is based on the incrementality of dis-
course. As a discourse evolves, it constructs a
model that is updated with the new information
gradually provided. A key element in this model
are the entities the discourse is about, as they form
the discourse backbone, especially those that are
mentioned multiple times. Most entities, however,
are only mentioned once. Consider the growth of
the entity Mount Popocatépetl in (1).5

3The adjective true contrasts with system and refers to the
gold standard.

4Multilinguality is one of the focuses of SemEval-2010
Task 1 (Recasens et al., 2010).

5Following the ACE terminology, we use the term men-
tion for an instance of reference to an object, and entity for a
collection of mentions referring to the same object. Entities
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(1) We have an update tonight on [this, the volcano in
Mexico, they call El Popo]m3 . . . As the sun rises
over [Mt. Popo]m7 tonight, the only hint of the fire
storm inside, whiffs of smoke, but just a few hours
earlier, [the volcano]m11 exploding spewing rock
and red-hot lava. [The fourth largest mountain in
North America, nearly 18,000 feet high]m15, erupt-
ing this week with [its]m20 most violent outburst in
1,200 years.

Mentions can be pronouns (m20), they can be a
(shortened) string repetition using either the name
(m7) or the type (m11), or they can add new infor-
mation about the entity: m15 provides the super-
type and informs the reader about the height of the
volcano and its ranking position.

In CISTELL,6 discourse entities are conceived
as ‘baskets’: they are empty at the beginning of
the discourse, but keep growing as new attributes
(e.g., name, type, location) are predicated about
them. Baskets are filled with this information,
which can appear within a mention or elsewhere
in the sentence. The ever-growing amount of in-
formation in a basket allows richer comparisons to
new mentions encountered in the text.

CISTELL follows the learning-based corefer-
ence architecture in which the task is split into
classification and clustering (Soon et al., 2001;
Bengtson and Roth, 2008) but combines them si-
multaneously. Clustering is identified with basket-
growing, the core process, and a pairwise clas-
sifier is called every time CISTELL considers
whether a basket must be clustered into a (grow-
ing) basket, which might contain one or more
mentions. We use a memory-based learning clas-
sifier trained with TiMBL (Daelemans and Bosch,
2005). Basket-growing is done in four different
ways, explained next.

3.2 Baselines and Models

In each experiment, we compute three baselines
(1, 2, 3), and run CISTELL under four different
models (4, 5, 6, 7).

1. ALL SINGLETONS. No coreference link is
ever created. We include this baseline given
the high number of singletons in the datasets,
since some evaluation measures are affected
by large numbers of singletons.

2. HEAD MATCH. All non-pronominal NPs that
have the same head are clustered into the
same entity.

containing one single mention are referred to as singletons.
6‘Cistell’ is the Catalan word for ‘basket.’

3. HEAD MATCH + PRON. Like HEAD MATCH,
plus allowing personal and possessive pro-
nouns to link to the closest noun with which
they agree in gender and number.

4. STRONG MATCH. Each mention (e.g., m11) is
paired with previous mentions starting from
the beginning of the document (m1–m11, m2–
m11, etc.).7 When a pair (e.g., m3–m11) is
classified as coreferent, additional pairwise
checks are performed with all the mentions
contained in the (growing) entity basket (e.g.,
m7–m11). Only if all the pairs are classified
as coreferent is the mention under consider-
ation attached to the existing growing entity.
Otherwise, the search continues.8

5. SUPER STRONG MATCH. Similar to STRONG

MATCH but with a threshold. Coreference
pairwise classifications are only accepted
when TiMBL distance is smaller than 0.09.9

6. BEST MATCH. Similar to STRONG MATCH

but following Ng and Cardie (2002)’s best
link approach. Thus, the mention under anal-
ysis is linked to the most confident men-
tion among the previous ones, using TiMBL’s
confidence score.

7. WEAK MATCH. A simplified version of
STRONG MATCH: not all mentions in the
growing entity need to be classified as coref-
erent with the mention under analysis. A sin-
gle positive pairwise decision suffices for the
mention to be clustered into that entity.10

3.3 Features
We follow Soon et al. (2001), Ng and Cardie
(2002) and Luo et al. (2004) to generate most
of the 29 features we use for the pairwise
model. These include features that capture in-
formation from different linguistic levels: textual
strings (head match, substring match, distance,
frequency), morphology (mention type, coordi-
nation, possessive phrase, gender match, number
match), syntax (nominal predicate, apposition, rel-
ative clause, grammatical function), and semantic
match (named-entity type, is-a type, supertype).

7The opposite search direction was also tried but gave
worse results.

8Taking the first mention classified as coreferent follows
Soon et al. (2001)’s first-link approach.

9In TiMBL, being a memory-based learner, the closer the
distance to an instance, the more confident the decision. We
chose 0.09 because it appeared to offer the best results.

10STRONG and WEAK MATCH are similar to Luo et al.
(2004)’s entity-mention and mention-pair models.
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For Spanish, we use 34 features as a few varia-
tions are needed for language-specific issues such
as zero subjects (Recasens and Hovy, 2009).

3.4 Evaluation

Since they sometimes provide quite different re-
sults, we evaluate using three coreference mea-
sures, as there is no agreement on a standard.

• MUC (Vilain et al., 1995). It computes the
number of links common between the true
and system partitions. Recall (R) and preci-
sion (P) result from dividing it by the mini-
mum number of links required to specify the
true and the system partitions, respectively.

• B3 (Bagga and Baldwin, 1998). R and P are
computed for each mention and averaged at
the end. For each mention, the number of
common mentions between the true and the
system entity is divided by the number of
mentions in the true entity or in the system
entity to obtain R and P, respectively.

• CEAF (Luo, 2005). It finds the best one-to-
one alignment between true and system en-
tities. Using true mentions and the φ3 sim-
ilarity function, R and P are the same and
correspond to the number of common men-
tions between the aligned entities divided by
the total number of mentions.

4 Parameter 1: Language

The first experiment compared the performance
of a coreference resolution system on a Germanic
and a Romance language—English and Spanish—
to explore to what extent language-specific issues
such as zero subjects11 or grammatical gender
might influence a system.

Although OntoNotes and AnCora are two dif-
ferent corpora, they are very similar in those as-
pects that matter most for the study’s purpose:
they both include a substantial amount of texts
belonging to the same genre (news) and manu-
ally annotated from the morphological to the se-
mantic levels (POS tags, syntactic constituents,
NEs, WordNet synsets, and coreference relations).
More importantly, very similar coreference anno-
tation guidelines make AnCora the ideal Spanish
counterpart to OntoNotes.

11Most Romance languages are pro-drop allowing zero
subject pronouns, which can be inferred from the verb.

Datasets Two datasets of similar size were se-
lected from AnCora and OntoNotes in order to
rule out corpus size as an explanation of any differ-
ence in performance. Corpus statistics about the
distribution of mentions and entities are shown in
Tables 1 and 2. Given that this paper is focused on
coreference between NPs, the number of mentions
only includes NPs. Both AnCora and OntoNotes
annotate only multi-mention entities (i.e., those
containing two or more coreferent mentions), so
singleton entities are assumed to correspond to
NPs with no coreference annotation.

Apart from a larger number of mentions in
Spanish (Table 1), the two datasets look very sim-
ilar in the distribution of singletons and multi-
mention entities: about 85% and 15%, respec-
tively. Multi-mention entities have an average
of 3.9 mentions per entity in AnCora and 3.5 in
OntoNotes. The distribution of mention types (Ta-
ble 2), however, differs in two important respects:
AnCora has a smaller number of personal pro-
nouns as Spanish typically uses zero subjects, and
it has a smaller number of bare NPs as the definite
article accompanies more NPs than in English.

Results and Discussion Table 3 presents CIS-
TELL’s results for each dataset. They make evi-
dent problems with the evaluation metrics, namely
the fact that the generated rankings are contradic-
tory (Denis and Baldridge, 2009). They are con-
sistent across the two corpora though: MUC re-
wards WEAK MATCH the most, B3 rewards HEAD

MATCH the most, and CEAF is divided between
SUPER STRONG MATCH and BEST MATCH.

These preferences seem to reveal weaknesses
of the scoring methods that make them biased to-
wards a type of output. The model preferred by
MUC is one that clusters many mentions together,
thus getting a large number of correct coreference
links (notice the high R for WEAK MATCH), but

AnCora OntoNotes

Pronouns 14.09 17.62
Personal pronouns 2.00 12.10
Zero subject pronouns 6.51 –
Possessive pronouns 3.57 2.96
Demonstrative pronouns 0.39 1.83
Definite NPs 37.69 20.67
Indefinite NPs 7.17 8.44
Demonstrative NPs 1.98 3.41
Bare NPs 33.02 42.92
Misc. 6.05 6.94

Table 2: Mention types (%) in Table 1 datasets.
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#docs #words #mentions #entities (e) #singleton e #multi-mention e

AnCora Training 955 299,014 91,904 64,535 54,991 9,544
Test 30 9,851 2,991 2,189 1,877 312

OntoNotes Training 850 301,311 74,692 55,819 48,199 7,620
Test 33 9,763 2,463 1,790 1,476 314

Table 1: Corpus statistics for the large portion of OntoNotes and AnCora.

MUC B3 CEAF
P R F P R F P / R / F

AnCora - Spanish
1. ALL SINGLETONS – – – 100 73.32 84.61 73.32
2. HEAD MATCH 55.03 37.72 44.76 91.12 79.88 85.13 75.96
3. HEAD MATCH + PRON 48.22 44.24 46.14 86.21 80.66 83.34 76.30
4. STRONG MATCH 45.64 51.88 48.56 80.13 82.28 81.19 75.79
5. SUPER STRONG MATCH 45.68 36.47 40.56 86.10 79.09 82.45 77.20
6. BEST MATCH 43.10 35.59 38.98 85.24 79.67 82.36 75.23
7. WEAK MATCH 45.73 65.16 53.75 68.50 87.71 76.93 69.21

OntoNotes - English
1. ALL SINGLETONS – – – 100 72.68 84.18 72.68
2. HEAD MATCH 55.14 39.08 45.74 90.65 80.87 85.48 76.05
3. HEAD MATCH + PRON 47.10 53.05 49.90 82.28 83.13 82.70 75.15
4. STRONG MATCH 47.94 55.42 51.41 81.13 84.30 82.68 78.03
5. SUPER STRONG MATCH 48.27 47.55 47.90 84.00 82.27 83.13 78.24
6. BEST MATCH 50.97 46.66 48.72 86.19 82.70 84.41 78.44
7. WEAK MATCH 47.46 66.72 55.47 70.36 88.05 78.22 71.21

Table 3: CISTELL results varying the corpus language.

also many spurious links that are not duly penal-
ized. The resulting output is not very desirable.12

In contrast, B3 is more P-oriented and scores con-
servative outputs like HEAD MATCH and BEST

MATCH first, even if R is low. CEAF achieves a
better compromise between P and R, as corrobo-
rated by the quality of the output.

The baselines and the system runs perform very
similarly in the two corpora, but slightly better
for English. It seems that language-specific issues
do not result in significant differences—at least
for English and Spanish—once the feature set has
been appropriately adapted, e.g., including fea-
tures about zero subjects or removing those about
possessive phrases. Comparing the feature ranks,
we find that the features that work best for each
language largely overlap and are language inde-
pendent, like head match, is-a match, and whether
the mentions are pronominal.

5 Parameter 2: Annotation Scheme

In the second experiment, we used the 100k-word
portion (from the TDT collection) shared by the
OntoNotes and ACE corpora (330 OntoNotes doc-

12Due to space constraints, the actual output cannot be
shown here. We are happy to send it to interested requesters.

uments occurred as 22 ACE-2003 documents, 185
ACE-2004 documents, and 123 ACE-2005 docu-
ments). CISTELL was trained on the same texts
in both corpora and applied to the remainder. The
three measures were then applied to each result.

Datasets Since the two annotation schemes dif-
fer significantly, we made the results comparable
by mapping the ACE entities (the simpler scheme)
onto the information contained in OntoNotes.13

The mapping allowed us to focus exclusively on
the differences expressed on both corpora: the
types of mentions that were annotated, the defi-
nition of identity of reference, etc.

Table 4 presents the statistics for the OntoNotes
dataset merged with the ACE entities. The map-
ping was not straightforward due to several prob-
lems: there was no match for some mentions
due to syntactic or spelling reasons (e.g., El Popo
in OntoNotes vs. Ell Popo in ACE). ACE men-
tions for which there was no parse tree node in
the OntoNotes gold-standard tree were omitted, as
creating a new node could have damaged the tree.

Given that only seven entity types are annotated
in ACE, the number of OntoNotes mentions is al-

13Both ACE entities and types were mapped onto the
OntoNotes dataset.
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#docs #words #mentions #entities (e) #singleton e #multi-mention e

OntoNotes Training 297 87,068 22,127 15,983 13,587 2,396
Test 33 9,763 2,463 1,790 1,476 314

ACE Training 297 87,068 12,951 5,873 3,599 2,274
Test 33 9,763 1,464 746 459 287

Table 4: Corpus statistics for the aligned portion of ACE and OntoNotes on gold-standard data.

MUC B3 CEAF
P R F P R F P / R / F

OntoNotes scheme
1. ALL SINGLETONS – – – 100 72.68 84.18 72.68
2. HEAD MATCH 55.14 39.08 45.74 90.65 80.87 85.48 76.05
3. HEAD MATCH + PRON 47.10 53.05 49.90 82.28 83.13 82.70 75.15
4. STRONG MATCH 46.81 53.34 49.86 80.47 83.54 81.97 76.78
5. SUPER STRONG MATCH 46.51 40.56 43.33 84.95 80.16 82.48 76.70
6. BEST MATCH 52.47 47.40 49.80 86.10 82.80 84.42 77.87
7. WEAK MATCH 47.91 64.64 55.03 71.73 87.46 78.82 71.74

ACE scheme
1. ALL SINGLETONS – – – 100 50.96 67.51 50.96
2. HEAD MATCH 82.35 39.00 52.93 95.27 64.05 76.60 66.46
3. HEAD MATCH + PRON 70.11 53.90 60.94 86.49 68.20 76.27 68.44
4. STRONG MATCH 64.21 64.21 64.21 76.92 73.54 75.19 70.01
5. SUPER STRONG MATCH 60.51 56.55 58.46 76.71 69.19 72.76 66.87
6. BEST MATCH 67.50 56.69 61.62 82.18 71.67 76.57 69.88
7. WEAK MATCH 63.52 80.50 71.01 59.76 86.36 70.64 64.21

Table 5: CISTELL results varying the annotation scheme on gold-standard data.

most twice as large as the number of ACE men-
tions. Unlike OntoNotes, ACE mentions include
premodifiers (e.g., state in state lines), national
adjectives (e.g., Iraqi) and relative pronouns (e.g.,
who, that). Also, given that ACE entities corre-
spond to types that are usually coreferred (e.g.,
people, organizations, etc.), singletons only rep-
resent 61% of all entities, while they are 85% in
OntoNotes. The average entity size is 4 in ACE
and 3.5 in OntoNotes.

A second major difference is the definition of
coreference relations, illustrated here:

(2) [This] was [an all-white, all-Christian community
that all the sudden was taken over ... by different
groups].

(3) [ [Mayor] John Hyman] has a simple answer.

(4) [Postville] now has 22 different nationalities ... For
those who prefer [the old Postville], Mayor John
Hyman has a simple answer.

In ACE, nominal predicates corefer with their
subject (2), and appositive phrases corefer with
the noun they are modifying (3). In contrast,
they do not fall under the identity relation in
OntoNotes, which follows the linguistic under-
standing of coreference according to which nom-
inal predicates and appositives express properties

of an entity rather than refer to a second (corefer-
ent) entity (van Deemter and Kibble, 2000). Fi-
nally, the two schemes frequently disagree on bor-
derline cases in which coreference turns out to be
especially complex (4). As a result, some features
will behave differently, e.g., the appositive feature
has the opposite effect in the two datasets.

Results and Discussion From the differences
pointed out above, the results shown in Table 5
might be surprising at first. Given that OntoNotes
is not restricted to any semantic type and is based
on a more sophisticated definition of coreference,
one would not expect a system to perform better
on it than on ACE. The explanation is given by the
ALL SINGLETONS baseline, which is 73–84% for
OntoNotes and only 51–68% for ACE. The fact
that OntoNotes contains a much larger number of
singletons—as Table 4 shows—results in an ini-
tial boost of performance (except with the MUC
score, which ignores singletons). In contrast, the
score improvement achieved by HEAD MATCH is
much more noticeable on ACE than on OntoNotes,
which indicates that many of its coreferent men-
tions share the same head.

The systematic biases of the measures that were
observed in Table 3 appear again in the case of
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MUC and B3. CEAF is divided between BEST

MATCH and STRONG MATCH. The higher value
of the MUC score for ACE is another indication
of its tendency to reward correct links much more
than to penalize spurious ones (ACE has a larger
proportion of multi-mention entities).

The feature rankings obtained for each dataset
generally coincide as to which features are ranked
best (namely NE match, is-a match, and head
match), but differ in their particular ordering.

It is also possible to compare the OntoNotes re-
sults in Tables 3 and 5, the only difference being
that the first training set was three times larger.
Contrary to expectation, the model trained on a
larger dataset performs just slightly better. The
fact that more training data does not necessarily
lead to an increase in performance conforms to
the observation that there appear to be few general
rules (e.g., head match) that systematically gov-
ern coreference relationships; rather, coreference
appeals to individual unique phenomena appear-
ing in each context, and thus after a point adding
more training data does not add much new gener-
alizable information. Pragmatic information (dis-
course structure, world knowledge, etc.) is proba-
bly the key, if ever there is a way to encode it.

6 Parameter 3: Preprocessing

The goal of the third experiment was to determine
how much the source and nature of preprocess-
ing information matters. Since it is often stated
that coreference resolution depends on many lev-
els of analysis, we again compared the two cor-
pora, which differ in the amount and correctness
of such information. However, in this experiment,
entity mapping was applied in the opposite direc-
tion: the OntoNotes entities were mapped onto the
automatically preprocessed ACE dataset. This ex-
poses the shortcomings of automated preprocess-
ing in ACE for identifying all the mentions identi-
fied and linked in OntoNotes.

Datasets The ACE data was morphologically
annotated with a tokenizer based on manual rules
adapted from the one used in CoNLL (Tjong
Kim Sang and De Meulder, 2003), with TnT 2.2,
a trigram POS tagger based on Markov models
(Brants, 2000), and with the built-in WordNet lem-
matizer (Fellbaum, 1998). Syntactic chunks were
obtained from YamCha 1.33, an SVM-based NP-
chunker (Kudoh and Matsumoto, 2000), and parse
trees from Malt Parser 0.4, an SVM-based parser

(Hall et al., 2007).
Although the number of words in Tables 4 and 6

should in principle be the same, the latter con-
tains fewer words as it lacks the null elements
(traces, ellipsed material, etc.) manually anno-
tated in OntoNotes. Missing parse tree nodes in
the automatically parsed data account for the con-
siderably lower number of OntoNotes mentions
(approx. 5,700 fewer mentions).14 However, the
proportions of singleton:multi-mention entities as
well as the average entity size do not vary.

Results and Discussion The ACE scores for the
automatically preprocessed models in Table 7 are
about 3% lower than those based on OntoNotes
gold-standard data in Table 5, providing evidence
for the advantage offered by gold-standard prepro-
cessing information. In contrast, the similar—if
not higher—scores of OntoNotes can be attributed
to the use of the annotated ACE entity types. The
fact that these are annotated not only for proper
nouns (as predicted by an automatic NER) but also
for pronouns and full NPs is a very helpful feature
for a coreference resolution system.

Again, the scoring metrics exhibit similar bi-
ases, but note that CEAF prefers HEAD MATCH

+ PRON in the case of ACE, which is indicative of
the noise brought by automatic preprocessing.

A further insight is offered from comparing the
feature rankings with gold-standard syntax to that
with automatic preprocessing. Since we are evalu-
ating now on the ACE data, the NE match feature
is also ranked first for OntoNotes. Head and is-a
match are still ranked among the best, yet syntac-
tic features are not. Instead, features like NP type
have moved further up. This reranking probably
indicates that if there is noise in the syntactic infor-
mation due to automatic tools, then morphological
and syntactic features switch their positions.

Given that the noise brought by automatic pre-
processing can be harmful, we tried leaving out the
grammatical function feature. Indeed, the results
increased about 2–3%, STRONG MATCH scoring
the highest. This points out that conclusions drawn
from automatically preprocessed data about the
kind of knowledge relevant for coreference reso-
lution might be mistaken. Using the most success-
ful basic features can lead to the best results when
only automatic preprocessing is available.

14In order to make the set of mentions as similar as possible
to the set in Section 5, OntoNotes singletons were mapped
from the ones detected in the gold-standard treebank.
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#docs #words #mentions #entities (e) #singleton e #multi-mention e

OntoNotes Training 297 80,843 16,945 12,127 10,253 1,874
Test 33 9,073 1,931 1,403 1,156 247

ACE Training 297 80,843 13,648 6,041 3,652 2,389
Test 33 9,073 1,537 775 475 300

Table 6: Corpus statistics for the aligned portion of ACE and OntoNotes on automatically parsed data.

MUC B3 CEAF
P R F P R F P / R / F

OntoNotes scheme
1. ALL SINGLETONS – – – 100 72.66 84.16 72.66
2. HEAD MATCH 56.76 35.80 43.90 92.18 80.52 85.95 76.33
3. HEAD MATCH + PRON 47.44 54.36 50.66 82.08 83.61 82.84 74.83
4. STRONG MATCH 52.66 58.14 55.27 83.11 85.05 84.07 78.30
5. SUPER STRONG MATCH 51.67 46.78 49.11 85.74 82.07 83.86 77.67
6. BEST MATCH 54.38 51.70 53.01 86.00 83.60 84.78 78.15
7. WEAK MATCH 49.78 64.58 56.22 75.63 87.79 81.26 74.62

ACE scheme
1. ALL SINGLETONS – – – 100 50.42 67.04 50.42
2. HEAD MATCH 81.25 39.24 52.92 94.73 63.82 76.26 65.97
3. HEAD MATCH + PRON 69.76 53.28 60.42 86.39 67.73 75.93 68.05
4. STRONG MATCH 58.85 58.92 58.89 73.36 70.35 71.82 66.30
5. SUPER STRONG MATCH 56.19 50.66 53.28 75.54 66.47 70.72 63.96
6. BEST MATCH 63.38 49.74 55.74 80.97 68.11 73.99 65.97
7. WEAK MATCH 60.22 78.48 68.15 55.17 84.86 66.87 59.08

Table 7: CISTELL results varying the annotation scheme on automatically preprocessed data.

7 Conclusion

Regarding evaluation, the results clearly expose
the systematic tendencies of the evaluation mea-
sures. The way each measure is computed makes
it biased towards a specific model: MUC is gen-
erally too lenient with spurious links, B3 scores
too high in the presence of a large number of sin-
gletons, and CEAF does not agree with either of
them. It is a cause for concern that they provide
contradictory indications about the core of coref-
erence, namely the resolution models—for exam-
ple, the model ranked highest by B3 in Table 7 is
ranked lowest by MUC. We always assume eval-
uation measures provide a ‘true’ reflection of our
approximation to a gold standard in order to guide
research in system development and tuning.

Further support to our claims comes from the
results of SemEval-2010 Task 1 (Recasens et al.,
2010). The performance of the six participating
systems shows similar problems with the evalua-
tion metrics, and the singleton baseline was hard
to beat even by the highest-performing systems.

Since the measures imply different conclusions
about the nature of the corpora and the preprocess-
ing information applied, should we use them now
to constrain the ways our corpora are created in

the first place, and what preprocessing we include
or omit? Doing so would seem like circular rea-
soning: it invalidates the notion of the existence of
a true and independent gold standard. But if ap-
parently incidental aspects of the corpora can have
such effects—effects rated quite differently by the
various measures—then we have no fixed ground
to stand on.

The worrisome fact that there is currently no
clearly preferred and ‘correct’ evaluation measure
for coreference resolution means that we cannot
draw definite conclusions about coreference reso-
lution systems at this time, unless they are com-
pared on exactly the same corpus, preprocessed
under the same conditions, and all three measures
agree in their rankings.
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Massimo Poesio, and Yannick Versley. 2010.
SemEval-2010 Task 1: Coreference resolution in
multiple languages. In Proceedings of the Fifth In-
ternational Workshop on Semantic Evaluations (Se-
mEval 2010), Uppsala, Sweden.

Wee M. Soon, Hwee T. Ng, and Daniel C. Y. Lim.
2001. A machine learning approach to coreference
resolution of noun phrases. Computational Linguis-
tics, 27(4):521–544.

1431



Veselin Stoyanov, Nathan Gilbert, Claire Cardie, and
Ellen Riloff. 2009. Conundrums in noun phrase
coreference resolution: Making sense of the state-
of-the-art. In Proceedings of ACL-IJCNLP 2009,
pages 656–664, Singapore.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared
Task: Language-independent Named Entity Recog-
nition. In Walter Daelemans and Miles Osborne, ed-
itors, Proceedings of CoNLL 2003, pages 142–147.
Edmonton, Canada.

Olga Uryupina. 2006. Coreference resolution with
and without linguistic knowledge. In Proceedings
of LREC 2006.

Kees van Deemter and Rodger Kibble. 2000. On core-
ferring: Coreference in MUC and related annotation
schemes. Computational Linguistics, 26(4):629–
637.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of MUC-6, pages 45–52, San Francisco.

1432


