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Abstract

We present a novel fully unsupervised al-
gorithm for POS induction from plain text,
motivated by the cognitive notion of proto-
types. The algorithm first identifidand-
mark clusters of words, serving as the
cores of the induced POS categories. The
rest of the words are subsequently mapped
to these clusters. We utilize morpho-
logical and distributional representations
computed in a fully unsupervised manner.
We evaluate our algorithm on English and
German, achieving the best reported re-
sults for this task.

central members. Our algorithm first clusters
words based on a fine morphological representa-
tion. It then clusters the most frequent words,
defining landmark clusters which constitute the
cores of the categories. Finally, it maps the rest
of the words to these categories. The last two
stages utilize a distributional representation that
has been shown to be effective for unsupervised
parsing (Seginer, 2007).

We evaluated the algorithm in both English and
German, using four different mapping-based and
information theoretic clustering evaluation mea-
sures. The results obtained are generally better
than all existing POS induction algorithms.

Section 2 reviews related work. Sections 3 and

4 detail the algorithm. Sections 5, 6 and 7 describe

1 Introduction the evaluation, experimental setup and results.

Part-of-speech (POS) tagging is a fundament
NLP task, used by a wide variety of applications.
However, there is no single standard POS tagUnsupervised and semi-supervised POS tagging
ging scheme, even for English. Schemes varhave been tackled using a variety of methods.
significantly across corpora and even more sd&chitze (1995) applied latent semantic analysis.
across languages, creating difficulties in usingThe best reported results (when taking into ac-
POS tags across domains and for multi-linguaktount all evaluation measures, see Section 5) are
systems (Jiang et al., 2009). Automatic inductiongiven by (Clark, 2003), which combines dis-
of POS tags from plain text can greatly alleviatetributional and morphological information with
this problem, as well as eliminate the efforts in-the likelihood function of the Brown algorithm
curred by manual annotations. Itis also a problen{Brown et al., 1992). Clark’s tagger is very sen-
of great theoretical interest. Consequently, POSitive to its initialization. Reichart et al. (2010b)
induction is a vibrant research area (see Section 2propose a method to identify the high quality runs
In this paper we present an algorithm basedf this algorithm. In this paper, we show that
on the theory of prototypes (Taylor, 2003), which our algorithm outperforms not only Clark’s mean
posits that some members in cognitive categorieperformance, but often its best among 100 runs.
are more central than others. These practically deMost research views the task as a sequential la-
fine the category, while the membership of otherbeling problem, using HMMs (Merialdo, 1994;
elements is based on their association with th&anko and Moore, 2004; Wang and Schuurmans,
T o Abe 2005) and discriminative models (Smith and Eis-
ner, 2005; Haghighi and Klein, 2006). Several

Related Wor k
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techniques were proposed to improve the HMMuse a morphological representation based on sig-
model. A Bayesian approach was employed bynatures, which are sets of affixes that represent a
(Goldwater and Griffiths, 2007; Johnson, 2007;family of words sharing an inflectional or deriva-
Gao and Johnson, 2008). Van Gael et al. (2009jonal morphology (Goldsmith, 2001).

used the infinite HMM with non-parametric pri-

ors. Graca et al. (2009) biased the model to inducé Distributional Algorithm

a small number of possible tags for each word. Our algorithm is given a plain text corpus and op-

The |de<'_:1 of utilizing seeds and exp_andlng then}ionally a desired number of clusteks Its output
to less reliable data has been used in several pa-

o . Ea partitioning of words into clusters. The al-
pers. Haghighi and Klein (2006) use POS Ioro'gorithm utilizes two representations, distributional

:otypes’ Ih atl arc;gngntually ptrO\?lded and ta'loliedand morphological. Although eventually the latter
.,:) a gggfu ar d Bi ag sezo(()DBa_cgrpus. "®is used before the former, for clarity of presenta-
itag (2004) and Biemann (2006) induce an ik~ \ve hegin by detailing the base distributional

Eal clusttermgda'r\wld u;gol;to train atn HMMhm:)de_:l. Igorithm. In the next section we describe the mor-
asgupta and Ng ( ) generate morp Ooglcihological representation and its integration into

clusters and use them to bootstrap a distribution .
model. Goldberg et al. (2008) use linguistic con- e base algorithm.
siderations for choosing a good starting point forOverview. The algorithm consists of two main
the EM algorithm. Zhao and Marcus (2009) ex-stages: landmark clusters discovery, and word
pand a partial dictionary and use it to learn dis-mapping. For the former, we first compute a dis-
ambiguation rules. Their evaluation is only at thetributional representation for each word. We then
type level and only for half of the words. Ravi cluster the coordinates corresponding to high fre-
and Knight (2009) use a dictionary and an MDL-quency words. Finally, we defilandmark clus-
inspired modification to the EM algorithm. ters In the word mapping stage we map each word
Many of these works use a dictionary provid-to the most similar landmark cluster.
ing allowable tags for each or some of the words. The rationale behind using only the high fre-
While this scenario might reduce human annotaguency words in the first stage is twofold. First,
tion efforts, it does not induce a tagging schemeprototypical members of a category are frequent
but remains tied to an existing one. It is further(Taylor, 2003), and therefore we can expect the
criticized in (Goldwater and Griffiths, 2007). salient POS tags to be represented in this small
, _ , subset. Second, higher frequency implies more re-
Morphological representation. Many POS in-  |iape statistics. Since this stage determines the

duction models utilize morphology to some ex-qreq of all resulting clusters, it should be as accu-
tent. Some use simplistic representations of terMiz; e ¢ possible.

nal letter sequences (e.g., (Smith and Eisner, 2005;
Haghighi and Klein, 2006)). Clark (2003) models Distributional representation. We use a sim-
the entire letter sequence as an HMM and uses itlified form of the elegant representation of lexi-
to define a morphological prior. Dasgupta and Ngcal entries used by the Seginer unsupervised parser
(2007) use the output of tHdorfessorsegmenta- (Seginer, 2007). Since a POS tag reflects the
tion algorithm for their morphological representa-grammatical role of the word and since this rep-
tion. Morfessor(Creutz and Lagus, 2005), which resentation is effective to parsing, we were moti-
we use here as well, is an unsupervised algorithreated to apply it to the present task.
that segments words and classifies each segmentLet W be the set of word types in the corpus.
as being a stem or an affix. It has been tested offihe right context entry of a word € T is a pair
several languages with strong results. of mappingsr_int, : W — [0,1] andr_adj, :
Our work has several unique aspects. Firstif’ — [0, 1]. For eachw € W, r_adj;(w) is an
our clustering method discovers prototypes in aadjacency score ab to z, reflectingw’s tendency
fully unsupervised manner, mapping the rest oto appear on the right hand sideaaf
the words according to their association with the For eachw € W, r_int,(w) is an interchange-
prototypes. Second, we use a distributional repreability score ofz with w, reflecting the tendency
sentation which has been shown to be effective foof w to appear to the left of words that tend to ap-
unsupervised parsing (Seginer, 2007). Third, wepear to the right ofz. This can be viewed as a
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similarity measure between words with respect taepresentation vectors.
their right context. The higher the scores the more

the words tend to be adjacent/interchangeable. Coordinate clustering. Each of our landmark
Left context parameterkint, andl_adj, are clusters will correspond to a set of high frequency
defined analogously. words (HFWs). The number of HFWs is much

There are important subtleties in these defini{arger than the number of expected POS tags.
tions. First, for two words:, w € W, r_adj, (w) Hence we should cluster HFWs. Our algorithm

is generally different froni_adj,,(z). For exam- does that by unifying some of the non-zero coordi-
ple, if w is a high frequency word andis a low  Nates corresponding to HFWs in the distributional
frequency word, it is likely thats appears many 'ePresentation defined above.
times to the right ofz, yielding a highr_adj,(w), We extract 'the words that appear more thén
but thatz: appears only a few times to the leftof ~UMEeS per m|II|o_r3r and apply the following proce-
yielding a lowl_adj, (z). Second, from the defi- durel times (5 in our experiments).
nition of r_int, (w) andr_int, (), it is clear that We run average link clustering with a threshold
they need not be equal. a (AVGLINK 4, (Jain et al., 1999)) on these words,
These functions are computed incrementally by €ach iteration initializing every HFW to have
a bootstrapping process. We initialize all map-tS OWN CluSterAvGLINK . means running the av-
pings to be identically 0. We iterate over the wordserage link algorithm until the two closest clusters
in the training corpus. For every word instange have a distance larger than We then use the in-
we take the word immediately to its rightand duced clustering to update the distributional rep-

updater’s right context using/’s left context: resentation, by collapsing all coordinates corre-
' I_adj,(w) sponding to words appearing in the same cluster
Vwe W riant,(w) += W into a single coordinate whose value is the sum
1 Y w=y of the collapsed coordinates’ values. In order to
Yw e W : r.adj,(w) += {lmty(w) produce a conservative (fine) clustering, we used a
N YFY relatively lowa value 0f0.25.
The division by N(y) (the number of timeg Note that theAVGLINK ,, initialization in each

appears in the corpus before the update) is done iof the I iterations assigns each HFW to a sepa-
order not to give a disproportional weight to highrate cluster. The iterations differ in the distribu-
frequency words. Also;_int,(w) andr_adj,(w)  tional representation of the HFWs, resulting from
might become larger than 1. We therefore northe previous iterations.

malize them after all updates are performed by the In our English experiments, this process re-
number of occurrences afin the corpus. duced the dimension of the HFWs set (the num-

We updatd _int, andi_adj, analogously using ber of coordinates that are non-zero in at least one
the wordz immediately to the left ofc. The up- of the HFWSs) from 14365 to 10722. The aver-
dates of the left and right functions are done inage number of non-zero coordinates per word de-
parallel. creased from 102 to 55.

We define the distributional representation of a Since all eventual POS categories correspond to
word typez to be a4|W| + 2 dimensional vector clusters produced at this stage, to reduce noise we
v;. Each wordw yields four coordinates, one for delete clusters of less than five elements.
each direction (left/right) and one for each map- _ _
ping type (int/adj). Two additional coordinates Landmark detection. We define landmark clus-

represent the frequency in which the word appeargers using the clustering obtained in the final iter-
to the left and to the right of a stopping punc- ation of the coordinate clustering stage. However,

tuation. Of the4|WW| coordinates corresponding the _number of cIuste_rs might be greater than the
to words, we allow only2n to be non-zero: the desired numbek, which is an optional parame-

n top scoring among the right side coordinateder of the algorithm. In this case we select a sub-
(those ofr_int, andr_adj,), and then top scoring set ofk clusters that best covers the HFW space.

among the left side coordinates (thoselaft, We use the following heuristic. We start from the
andl_adj,). We usedh = 50. most frequent cluster, and greedily select the clus-

The dls_tance betwgen two words is defined to_ 'We usedV = 100, yielding 1242 words for English and
be one minus the cosine of the angle between the#13 words for German.

1300



ter farthest from the clusters already selected. The Types | join _joins _joined joining

. . . Stem join  join join join
distance b_etween two clusters_ls defined to be the Affixes % < —~d g
average distance between their members. A clus- Signature {4, ed,s,ing}

ter's distance from a set of clusters is defined to__ 1

; s ; ; Igure 1:An example for a morphological representation,
be its mlr.llmal distance from the clusters m_thedefined to be the conjunction of its affix(es) with the stem’s
set. The final set of clustefd.1, ..., L} and their  signature.
members are referred to Bxdmark clusterand

rototypesrespectively. . . T
P ypesresp 4 In addition, we incorporate capitalization infor-

Mapping all words. Each wordw € W is as- mation into the model, by constraining all words
signed the clustek,; that contains its nearest pro- that appear capitalized in more than half of their

totype: instances to belong to a separate cluster, regard-
d(w, L;) = minger, {1 — cos(vw, vz)} less of their morphological representation. The
Map(w) = argming, {d(w, L;)} motivation for doing so is practical: capitalization

is used in many languages to mark grammatical

Words that appear less than 5 times are consi¢saegories. For instance, in English capitalization
ered asinknown wordsWe consider two schemes marks the category of proper names and in Ger-

for handling unknown words. One randomly mapsy,an it marks the noun category . We report En-

each such word to a cluster, using a probabilyjish results both with and without this modifica-

ity proportional to the number of unique known 4,
words already assigned to that cluster. However, \yor4s that contain non-alphanumeric charac-

when the numbek of landmark clusters is rela- o1 are represented as the sequence of the non-
tively large, it is beneficial to assign all unknown alphanumeric characters they include, e.g., &is-
words to a separate new cluster (after running th%is’ is represented a&-", “") . We d,o no‘£ as-
algorithm withk —1). In our experiments, we use g5 3 morphological representation to words in-
the first option whenk is below some threshold cluding more than one stem (likeeathermaly to
(we used 15), otherwise we use the second. words that have a null affix (i.e., where the word
4 Morphological Model Is identical to its stem) and to wor_ds whose stgm
is not shared by any other word (signature of size
The morphological model generates another word). Words that were not assigned a morphologi-
clustering, based on the notion of a signaturecal representation are included as singletons in the
This clustering is integrated with the distributional morphological clustering.

model as described below.
4.2 Distributional-Morphological Algorithm

We detail the modifications made to our base
We use theMorfessor(Creutz and Lagus, 2005) gistributional algorithm given the morphological
word segmentation algorithm. First, all words in ¢ystering defined above.

the corpus are segmented. Then, for each stem, _ _
the set of all affixes with which it appears (itig- Coordinate clustering and landmarks. We
nature (Goldsmith, 2001)) is collected. The mor- CONStrAINAVGLINK ,, to begin by forming links be-
phological representation of a word type is thenfW€€n words appearing in the same morphologi-
defined to be its stem’s signature in conjunctionc@ cluster. Only when the distance between the
with its specific affixe$ (See Figure 1). two closest clusters gets abowewve remove this .
We now collect all words having the same rep-constraint and proceed as before. This is equiv-
resentation. For instance, if the worginedand ~ &lent to performingavGLINK , separately within
paintedare found to have the same signature, thef?@ch morphological cluster and then using the re-
would share the same cluster since both have theHlt @s an initial condition for aRVGLINK , coor-

affix*_ed’. The wordoinsdoes not share the same dinate clustering. The modified algorithm in this
cluster with them since it has a different affixs*. ~ Stage is otherwise identical to the distributional al-

4.1 Morphological Representation

This results in coarse-grained clusters exclusivel@orthm.

defined according to morphology. Word mapping. In this stage words that are not

2A word may contain more than a single affix. prototypes are mapped to one of the landmark
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clusters. A reasonable strategy would be to mag007) andNVI (Reichart and Rappoport, 2009),
all words sharing a morphological cluster as a sinVI's (Meila, 2007) normalized version.

gle unit. However, these clusters are too coarse-

grained. We therefore begin by partitioning the6 Experimental Setup

morphological clusters into sub-clusters accordin%, ) o
to their distributional behavior. We do so by apply->nc€ & goal of unsupervised POS tagging is in-
ducing an annotation scheme, comparison to an

iNg AVGLINK g (the same agvGLINK , but with a o _ _ i
different parameter) to each morphological clus-£Xisting scheme is problematic. To address this

ter. Since our goal is clusteefinementwe use a !oroblem we compare to three different schemes
3 that is considerably higher than(0.9). in two languages. In addition, the two English

We then find the closest prototype to each sucﬁChemeS we compare with were designed to tag
sub-cluster (averaging the distance across all gforpora contained in our training sgt, and have
the latter's members) and map it as a single uniPeen widely and successfully u_seo_l with these cor-
to the cluster containing that prototype. pora by a Iarge number of a.lppl|cat|ons.

Our algorithm was run with the exact same pa-
5 Clustering Evaluation rameters on both languaged: = 100 (high fre-

qguency threshold)p, = 50 (the parameter that

We evaluate the clustering produced by our algogetermines the effective number of coordinates),
rithm using an external quality measure: we takey, — (.25 (cluster separation during landmark
a corpus tagged by gold standard tags, tag it usingluster generation)d = 0.9 (cluster separation
the induced tags, and compare the two taggingsiuring refinement of morphological clusters).
There is no single accepted measure quantifying The algorithm we compare with in most detail
the similarity between two taggings. In order t0js (Clark, 2003), which reports the best current
be as thorough as possible, we report results usingsylts for this problem (see Section 7). Since
four known measures, two mapping-based meac|ark’s algorithm is sensitive to its initialization,
sures and two information theoretic ones. we ran |t a 100 times and report |tS average and

Mapping-based measures. The induced clus- standard deviation in each of the four measures.
' In addition, we report the percentile in which our

ters have arbitrary names. We define two map; it falls with r 1o th 100 run
ping schemes between them and the gold clug eyt falis i especttothese u S
Punctuation marks are very frequent in corpora

ters. After the induced clusters are mapped, we ) ,
can compute a derived accuracy. TMeny-to-1 and are easy to cluster. As a result, including them
measure finds the mapping between the gold staﬁr-'_the evaluation greatly ipflates the scores. For
dard clusters and the induced clusters which ma>$—,hIS reasli)n Wz do not assign ? clugter tﬁ_ punlc_tua-
imizes accuracy, allowing several induced clusteré'ohr_] rr?ar S andwe reg(;rt rfesu s usmkg tH'S policy,
to be mapped to the same gold standard clustef/NIC We recommend for uture_ work. Fowever,
The 1-to-1 measure finds the mapping betweent® be able to directly compare with previous work,

the induced and gold standard clusters which max- also report results for the full POS tag set.

imizes accuracy such that no two induced clus-We do so by assigning a singleton cluster to each

ters are mapped to the same gold cluster. Conpunctuation ma”_( (in additipn_to _thk requireo_l
puting this mapping is equivalent to finding the clusters). This simple heuristic yields very high

maximal weighted matching in a bipartite graloh,performance on punctuation, scoring _(when all
whose weights are given by the intersection size ther words are assumed perfect tagging) 99'_6%
between matched classes/clusters. As in (Reicha@?g'l%) ,1't0,'1 accuracy when evaluated against
and Rappoport, 2008), we use the Kuhn—Munkreéhe English fine (coa_rse) POS tag sets, and 97.2%
algorithm (Kuhn, 1955; Munkres, 1957) to Solvewhen evalugted agalnst.the German POS tag set.
this problem. For English, we trained our model on the
39832 sentences which constitute sections 2-21 of
Information theoretic measures. These are the PTB-WSJ and on the 500K sentences from
based on the observation that a good clustering reahe NYT section of the NANC newswire corpus
duces the uncertainty of the gold tag given the in{Graff, 1995). We report results on the WSJ part
duced cluster, and vice-versa. Several such mea&f our data, which includes 950028 words tokens
sures exist; we us¢ (Rosenberg and Hirschberg, in 44389 types. Of the tokens, 832629 (87.6%)
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English Finek=13 Coarsek=13 Finek=34

Prototype Clark Prototype Clark Prototype Clark

Tagger I o % Tagger o o % Tagger m o %

Many—to—1 61.0 556.1 1.6 | 100 70.0 66.9 21 94 71.6 69.8 15 90
55.5 48.8 1.8 | 100 66.1 62.6 23 94 67.5 65.5 1.7 90
1-to-1 60.0 52.2 1.9 | 100 58.1 49.4 29 | 100 63.5 54.5 1.6 | 100
54.9 46.0 2.2 | 100 53.7 43.8 3.3 | 100 58.8 48.5 1.8 | 100
NVI 0.652 0.773 ] 0.027 | 100 0.841 0.972] 0.036 | 100 0.663 0.725] 0.018 | 100
0.795 0.943 | 0.033| 100 1.052 1.221| 0.046 | 100 0.809 0.885 | 0.022 | 100
V 0.636 0.581 | 0.015| 100 0.590 0.543 | 0.018 | 100 0.677 0.659 | 0.008 | 100
0.542 0.478 | 0.019| 100 0.484 0.429 | 0.023| 100 0.608 0.588 | 0.010| 98

German k=17 k=26
Prototype Clark Prototype Clark

Tagger w o % Tagger n o %
Many—to-1 64.6 64.7 12 | 41 68.2 67.8 1.0 60
58.9 59.1 1.4 | 40 63.2 62.8 1.2 60

1-to-1 53.7 52.0 1.8 | 77 56.0 52.0 2.1 99
48.0 46.0 23 | 78 50.7 45.9 2.6 99

NVI 0.667 0.675| 0.019 | 66 0.640 0.682 | 0.019| 100
0.819 0.829 | 0.025| 66 0.785 0.839 | 0.025| 100

\% 0.646 0.645| 0.010 | 50 0.675 0.657 | 0.008 | 100

0.552 0.553 | 0.013 | 48 0.596 0.574 | 0.010| 100

Table 1:Top: English. Bottom: German. Results are reported for our modetd®pe Tagger), Clark’s average scoé, (
Clark’s standard deviatiorr and the fraction of Clark’s results that scored worse than our méglelFor the mapping based
measures, results are accuracy percentageVFer0, 1], higher is better. For high quality outpu¥;V' I € [0, 1] as well, and
lower is better. In each entry, the top number indicates the score whedimglpunctuation and the bottom number the score
when excluding it. In English, our results are always better than Cldrk&erman, they are almost always better.

are not punctuation. The percentage of unknowrmorpus (Baroni et al., 2009). DeWAC is a cor-
words (those appearing less than five times) ipus extracted by web crawling and is therefore
1.6%. There are 45 clusters in this annotatiorout of domain. We report results on the NEGRA
scheme, 34 of which are not punctuation. part, which includes 346320 word tokens of 49402
We ran each algorithm both witk=13 and types. Of the tokens, 289268 (83.5%) are not
k=34 (the number of desired clusters). We compunctuation. The percentage of unknown words
pare the output to two annotation schemes: the finghose appearing less than five times) is 8.1%.
grained PTB WSJ scheme, and the coarse grainethere are 62 clusters in this annotation scheme,
tags defined in (Smith and Eisner, 2005). Thed1 of which are not punctuation.
output of thek=13 run is evaluated both against We ran the algorithms withk=17 and k=26.
the coarse POS tag annotation (f@earsek=13' k=26 was chosen since it is the number of clus-
scenario) and against the full PTB-WSJ annotatiorters that cover each more than 0.5% of the NE-
scheme (thé&Fine k=13’ scenario). Th&=34 run GRA tokens, and in total cover 96% of the (non-
is evaluated against the full PTB-WSJ annotatiompunctuation) tokens. In order to test our algo-
scheme (th&Fine k=34" scenario). rithm in another scenario, we conducted experi-
The POS cluster frequency distribution tends toments withk=17 as well, which covers 89.9% of
be skewed: each of the 13 most frequent clusterte tokens. All outputs are compared against NE-
in the PTB-WSJ cover more than 2.5% of the to-GRA's gold standard scheme.
kens (excluding punctuation) and together 86.3% We do not report results fok=51 (where the
of them. We therefore choge=13, since itis both number of gold clusters is the same as the number
the number of coarse POS tags (excluding punctusf induced clusters), since our algorithm produced
ation) as well as the number of frequent POS tagenly 42 clusters in the landmark detection stage.
in the PTB-WSJ annotation scheme. We chos&Ve could of course have modified the parame-
k=34 in order to evaluate against the full 34 tagsters to allow our algorithm to produce 51 clusters.
PTB-WSJ annotation scheme (excluding punctuaHowever, we wanted to use the exact same param-
tion) using the same number of clusters. eters as those used for the English experiments to

For German, we trained our model on the 2029@ninimize the issue of parameter tuning.
sentences of the NEGRA corpus (Brants, 1997) In addition to the comparisons described above,
and on the first 450K sentences of the DeWACwe present results of experiments (in the ‘Fine
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B [ B+M | B+C | F(=1) | F .
Mto-1 | 53.3 | 54.8 | 58.2 | 57.3 | 610
Ito-1 | 50.2 | 51.7 | 55.1 | 54.8 | 600
NVI | 0.782] 0.720| 0.710| 0.742 | 0.652

V | 0569 0598 0.615| 0.597 | 0.636

=@= Gold Standard

= &= Induced

Table 2: A comparison of partial versions of the model in
the ‘Finek=13" WSJ scenario. M-to-1 and 1-to-1 results are o5 10 15 20 25 30 3B 40 4
reported in accuracy percentage. Lower NVI is befds the

strictly distributional algorithmB+M adds the morphologi- .

cal model,B+C adds capitalization t8, F(I=1) consists of Figure 2: POS class frequency distribution for our model
all components, where only one iteration of coordinate clus2nd the gold standard, in the ‘Fie-34’ scenario. The dis-

tering is performed, anB is the full model. tributions are similar.
M-to-1 | 1-to-1 Y Vi o )

Prototype | 71.6 635 0.677 200 by maximizing a non-convex function. These
Clark 69.8 54.5 0.659 218 functions have many local maxima and the specific

HK — 413 - — solution to which algorithms that maximize them

J 43-62 | 37-47 - 423574 ) .
GG - - - 538 converge strongly depends on their (random) ini-

GJ - 40-49.9 - 4.03-4.47| tialization. Therefore, their output’s quality often
VG 0.54-0.59] 2.5-29 | gjgnificantly diverges from the average. This issue

GGTP-45| 654 | 445 - C o . . .
GGTP17| 702 295 - - is discussed in depth in (Reichart et al., 2010b).

Our algorithm is deterministc

Table 4:Comparison of our algorithms with the recentfully  For German, in th&=26 scenario our algorithm
unsupervised POS taggers for which results are reported. The f lark’ f f . .
models differ in the annotation scheme, the corpus size an@u'[p_er Orm_s Clark’s, often outper ormlng_even Its
the number of induced clusterg)(that they used. HK: maximum in 100 runs. In th&=17 scenario, our

(Haghighi and Klein, 2006), 193K tokens, fine tags45. i i i i
GG: (Goldwater and Griffiths, 2007), 24K tokens, coarsealgomhm obtains a hlgher score than Clark with

tags, k=17. J : (Johnson, 2007), 1.17M tokens, fine tags,Probability 0.4 to 0.78, depending on the measure

k=25-50. GJ: (Gao and Johnson, 2008), 1.17M tokens, fin@nd scenario. Clark’s average score is slightly bet-
tags,k=50. VG: (Van Gael et al., 2009), 1.17M tokens, fine ; AL ; ;
tags.k=47-192. GGTP-45: (Graga et al., 2009), 1.17M to- (& N the Many-to-1 measure, while our algorithm
kens, fine tagsk=45. GGTP-17: (Graga et al., 2009), 1.17M Performs somewhat better than Clark’s average in

tokens, coarse tagé=17. Lower VI values indicate better the 1-to-1 and NVI measures.
clustering. VI is computed using as the base of the loga- .
rithm. Our algorithm gives the best results. The_ DeWAC corpus from Wh'Ch We_ extracted
statistics for the German experiments is out of do-
_ _ - main with respect to NEGRA. The correspond-
k=13’ ScenanO) that quantlf)( the contribution of |ng corpus in Eng"sh, NANC, iS a newswire cor-
each component of the algorithm. We ran the basgys and therefore clearly in-domain with respect
distributional algorithm, a variant which uses Onlyto WSJ. This is reflected by the percentage of un-
capitalization information (i.e., has only one non-known words, which was much higher in German
singleton morphological class, that of words ap-than in English (8.1% and 1.6%), lowering results.
pearing capitalized in most of their instances) and Taple 2 shows the effect of each of our algo-
a variant which uses no capitalization information,ithm's components. Each component provides
defining the morphological clusters according 0z improvement over the base distributional algo-

the morphological representation alone. rithm. The full coordinate clustering stage (sev-
eral iterations, F) considerably improves the score
7 Results over a single iteration (F(I=1)). Capitalization in-

Table 1 presents results for the English and Ger[ohrrr;atl_onllr_]c;easesf the S(;](_)rﬁ m(_)rﬁ than thfe mor-
man experiments. For English, our algorithm op-Phological information, which might stem from

tains better results than Clark’s in all measures anEPe granuTIﬁ_rlty of Ith? P_OS tag setdwl;th rgs_rl)ect to
scenarios. It is without exception better than thet@mes. This analysis is supported by similar ex-

average score of Clark’s and in most cases bettef}e”memS we made in the ‘Coarke13’ scenario

than the maximal Clark score obtained in 100 runs(not shown in tables here). There, the decrease in

A significant difference between our algorithm performance was only of 1%-2% in the mapping

a”‘?' Clark's is that the Iatter'_ like most algonthm_s 3The fluctuations inflicted on our algorithm by the random
which addressed the task, induces the clusteringiapping of unknown words are of less than 0.1% .
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Excluding Punctuation Including Punctuation Perfect Punctuation
M-to-1 | 1-to-1 | NVI \Y M-to-1 | 1-to-1 | NVI \Y M-to-1 | 1-to-1 | NVI \
Van Gael | 59.1 48.4 | 0.999| 0.530| 62.3 51.3 |1 0.861| 0.591| 64.0 54.6 | 0.820| 0.610
Prototype| 675 58.8 | 0.809 | 0.608 | 71.6 635 | 0663 | 0.677 | 716 639 | 0.659 | 0.679

Table 3:Comparison between theMM: PY-fixedmodel (Van Gael et al., 2009) and ours with various punctuation assign
ment schemes. Left section: punctuation tokens are excluded. Migictiers: punctuation tokens are included. Right section:
perfect assignment of punctuation is assumed.

based measures and 3.5% in the V measure. We have also performed a manual error anal-

Finally, Table 4 presents reported results for allysis, which showed that our algorithm performs
recent algorithms we are aware of that tackled thenuch better on closed classes than on open
task of unsupervised POS induction from plainclasses. In order to asses this quantitatively, let
text. Results for our algorithm’s and Clark’s are us define a random variable for each of the gold
reported for the ‘Finek=34" scenario. The set- clusters, which receives a value corresponding to
tings of the various experiments vary in terms ofeach induced cluster with probability proportional
the exact annotation scheme used (coarse or firte their intersection size. For each gold cluster,
grained) and the size of the test set. However, theve compute the entropy of this variable. In ad-
score differences are sufficiently large to justifydition, we greedily map each induced cluster to a
the claim that our algorithm is currently the bestgold cluster and compute the ratio between their
performing algorithm on the PTB-WSJ corpus forintersection size and the size of the gold cluster
POS induction from plain tekt (mapping accuracy).

Since previous works provided results only for We experimented in the ‘Fing=34" scenario.
the scenario in which punctuation is included, theThe clusters that obtained the best scores were
reported results are not directly comparable. Ir(brackets indicate mapping accuracy and entropy
order to quantify the effect various punctuationfor each of these clusters) coordinating conjunc-
schemes have on the results, we evaluated tH&®ns (95%, 0.32), prepositions (94%, 0.32), de-
iHMM: PY-fixed’ model (Van Gael et al., 2009) terminers (94%, 0.44) and modals (93%, 0.45).
and ours when punctuation is excluded, included hese are all closed classes.
or perfectly tagget! The results (Table 3) indi-  The classes on which our algorithm performed
cate that most probably even after an appropriatevorst consist of open classes, mostly verb types:
correction for punctuation, our model remains thepast tense verbs (47%, 2.2), past participle verbs

best performing one. (44%, 2.32) and the morphologically unmarked
non-3rd person singular present verbs (32%, 2.86).
8 Discussion Another class with low performance is the proper

nouns (37%, 2.9). The errors there are mostly

In tTﬁ W]?rk;\'g Sp regent_ed ? novell u_nsuper¥|hsed Ialbf three types: confusions between common and
gorthm or Induction from plain text. The al- proper nouns (sometimes due to ambiguity), un-

gorithm first generates relatively accurate cIuster]s(nOWn words which were put in the unknown

of high frequency words, which are subsequentlxNords cluster, and abbreviations which were given

used to bootstrap the entire clustering. The dis; separate class by our algorithm. Finally, the al-

tributional and morphological representations thaborithm’s performance on the heterogeneous ad-

We use are rlovel for this task. _ verbs class (19%, 3.73) is the lowest.
We experimented on two languages with map- Clark's algorithm exhibit$ a similar pattern

ping and information theoretic clustering evalua—With respect to open and closed classes. While

tion n;easurles. Olrj]r aégorll_thhm obtains the best repjg 419orithm performs considerably better on ad-

portg_ results on the English PTB-WS.) corpus. IrQ/erbs (15% mapping accuracy difference and 0.71

addition, our results are almost always better tha'%ntropy difference), our algorithm scores consid-

Clark's on the German NEGRA corpus. erably better on prepositions (17%, 0.77), su-
“Graga et al. (2009) report very good results for 17 tags inP€rlative adjectives (38%, 1.37) and plural proper

the M-1 measure. However, their 1-1 results are quite poornames (45%, 1.26).

and results for the common IT measures were not reported.

Their results for 45 tags are considerably lower. ®Using average mapping accuracy and entropy over the
We thank the authors for sending us their data. 100 runs.
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Naturally, this analysis might reflect the arbi- monosemous algorithms in the future in both type
trary nature of a manually design POS tag setevel and token level evaluations.
rather than deficiencies in automatic POS induc- The skewed (Zipfian) distribution of POS class
tion algorithms. In future work we intend to ana- frequencies in corpora is a problem for many POS
lyze the output of such algorithms in order to im-induction algorithms, which by default tend to in-
prove POS tag sets. duce a clustering having a balanced distribution.
Our algorithm and Clark's are monosemousExplicit modifications to these algorithms were in-

. . . troduced in order to bias their model to produce
.e., th h d tl tag), whil S
(1.e., they assign each word exactly one tag), w Ieuch a distribution (see (Clark, 2003; Johnson,

most other algorithms are polysemous. In ordert&
gor poly " 007; Reichart et al., 2010b)). An appealing prop-

assess the performance loss caused by the monogef ¢ del is its ability o ind kewed
mous nature of our algorithm, we took the M-1 erty ot our modetis 1ts ability 10 Induce a skewe

greedy mapping computed for the entire dataseqiStribUtion yvithput being explicitly tuned to do
and used it to compute accuracy over the monose: &5 Seenin Figure 2.
mous and polysemous words separately. Resul®scknowledgements. We would like to thank
are reported for the English ‘Finfe=34’ scenario Yoav Seginer for his help with his parser.
(without punctuation). We define a word to be

monosemous if more than 95% of its tokens are

assigned the same gold standard tag. For Enmislﬁ?eferences

there are approximately 255K polysemous token#lichele Banko and Robert C. Moore, 200Rart of
and 578K monosemous ones. As expected, our SPeech Tagging in ContextOLING '04.

algorithm is much more accurate on the monosemarco Baroni, Silvia Bernardini, Adriano Ferraresi and
mous tokens, achieving 76.6% accuracy, com- Eros Zanchetta, 2009The WaCky Wide Web: A

pared to 47.1% on the polysemous tokens. Collection of Very Large Linguistically Processed
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rithm’s ability to detect the set of possible POS  speech Tagging Employing Efficient Graph Cluster-
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could be expected that a monosemous algorithm Shop-

such as ours would perform poorly in a type levelThorsten Brants, 1997The NEGRA Export Format.
evaluation. In (Reichart et al., 2010a) we discuss CLAUS Report, Saarland University.

type level eyaluation at depth gnd Propose tyPggter Brown, Vincent J. Della Pietra, Peter V. de
level evaluation measures applicable to the POS souze, Jenifer C. Lai and Robert Mercer, 1992.
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ing unsupervised POS tagging algorithms (Clarkalexander Clark, 2003Combining Distributional and
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mous algorithm was better than good polysemougayne Freitag, 2004.Toward Unsupervised Whole-
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plained by the prototypical nature of the POS phe'Jianfeng Gao and Mark Johnson, 2008.Compar-

nomenon (alonger discussion is given in (Reichart json of Bayesian Estimators for Unsupervised Hid-
et al., 2010a)). However, the quality upper bound den Markov Model POS Tagge®MNLP '08.
for monosemous algorithms is obviously mUChYoav Goldberg, Meni Adler and Michael Elhadad,
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we expect polysemous algorithms to outperform Taggers (When Given a Good StasyCL '08.
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