
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 1179–1188,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

The Influence of Discourse on Syntax
A Psycholinguistic Model of Sentence Processing

Amit Dubey

Abstract
Probabilistic models of sentence com-
prehension are increasingly relevant to
questions concerning human language
processing. However, such models are of-
ten limited to syntactic factors. This paper
introduces a novel sentence processing
model that consists of a parser augmented
with a probabilistic logic-based model
of coreference resolution, which allows
us to simulate how context interacts with
syntax in a reading task. Our simulations
show that a Weakly Interactive cognitive
architecture can explain data which had
been provided as evidence for the Strongly
Interactive hypothesis.

1 Introduction

Probabilistic grammars have been found to be
useful for investigating the architecture of the
human sentence processing mechanism (Jurafsky,
1996; Crocker and Brants, 2000; Hale, 2003;
Boston et al., 2008; Levy, 2008; Demberg and
Keller, 2009). For example, probabilistic models
shed light on so-called locality effects: contrast
the non-probabilistic hypothesis that dependants
which are far away from their head always cause
processing difficulty for readers due to the cost
of storing the intervening material in memory
(Gibson, 1998), compared to the probabilistic
prediction that there are cases when faraway
dependants facilitate processing, because readers
have more time to predict the head (Levy, 2008).
Using a computational model to address funda-
mental questions about sentence comprehension
motivates the work in this paper.

So far, probabilistic models of sentence pro-
cessing have been largely limited to syntactic
factors. This is unfortunate because many out-
standing questions in psycholinguistics concern
interactions between different levels of process-
ing. This paper addresses this gap by building
a computational model which simulates the
influence of discourse on syntax.

Going beyond the confines of syntax alone is a
sufficiently important problem that it has attracted

attention from other authors. In the literature on
probabilistic modeling, though, the bulk of this
work is focused on lexical semantics (e.g. Padó
et al., 2006; Narayanan and Jurafsky, 1998) or
only considers syntactic decisions in the preceed-
ing text (e.g. Dubey et al., 2009; Levy and Jaeger,
2007). This is the first model we know of which
introduces a broad-coverage sentence processing
model which takes the effect of coreference and
discourse into account.

A major question concerning discourse-syntax
interactions involves the strength of communica-
tion between discourse and syntactic information.
The Weakly Interactive (Altmann and Steed-
man, 1988) hypothesis states that a discourse
context can reactively prune syntactic choices
that have been proposed by the parser, whereas
the Strongly Interactive hypothesis posits that
context can proactively suggest choices to the
syntactic processor.

Support for Weak Interaction comes from
experiments in which there are temporary ambi-
guities, or garden paths, which cause processing
difficulty. The general finding is that supportive
contexts can reduce the effect of the garden path.
However, Grodner et al. (2005) found that sup-
portive contexts even facilitate the processing of
unambiguous sentences. As there are no incorrect
analyses to prune in unambiguous structures, the
authors claimed their results were not consistent
with the Weakly Interactive hypothesis, and
suggested that their results were best explained by
a Strongly Interactive processor.

The model we present here implements the
Weakly Interactive hypothesis, but we will show
that it can nonetheless successfully simulate the
results of Grodner et al. (2005). There are three
main parts of the model: a syntactic processor,
a coreference resolution system, and a simple
pragmatics processor which computes certain
limited forms of discourse coherence. Following
Hale (2001) and Levy (2008), among others, the
syntactic processor uses an incremental proba-
bilistic Earley parser to compute a metric which
correlates with increased reading difficulty. The
coreference resolution system is implemented
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in a probabilistic logic known as Markov Logic
(Richardson and Domingos, 2006). Finally, the
pragmatics processing system contains a small set
of probabilistic constraints which convey some
intuitive facts about discourse processing. The
three components form a pipeline, where each part
is probabilistically dependent on the previous one.
This allows us to combine all three into a single
probability for each reading of an input sentence.

The rest of the paper is structured as follows. In
Section 2, we discuss the details two experiments
showing support of the Weakly and Strongly In-
teractive hypotheses: we discuss Grodner et al.’s
result on unambiguous syntactic structures and we
present a new experiment on involving a garden
path which was designed to be similar to the Grod-
ner et al. experiment. Section 3 introduces techni-
cal details of model, and Section 4 shows the pre-
dictions of the model on the experiments discussed
in Section 2. Finally, we discuss the theoretical
consequences of these predictions in Section 5.

2 Cognitive Experiments

2.1 Discourse and Ambiguity Resolution

There is a fairly large literature on garden path
experiments involving context (Crain and Steed-
man, 1985; Mitchell et al., 1992, ibid). The
experiments by Altmann and Steedman (1988)
involved PP attachment ambiguity. Other authors
(e.g. Spivey and Tanenhaus, 1998) have used
reduced relative clause attachment ambiguity. In
order to be more consistent with the design of the
experiment in Section 2.2, however, we performed
our own reading-time experiment which partially
replicated previous results.1

The experimental items all had a target sen-
tence containing a relative clause, and one of two
possible context sentences, one of which supports
the relative clause reading and the other which
does not.

The context sentence was one of:

(1) a. There were two postmen, one of
whom was injured and carried by
paramedics, and another who was
unhurt.

b. Although there was a medical emer-
gency at the post office earlier today,
regular mail delivery was unaffected.

1This experiment was previously reported by Dubey et al.
(2010).

The target sentences, which were drawn from the
experiment of McRae et al. (1998), were either
the reduced or unreduced sentences similar to:

(2) The postman who was carried by the
paramedics was having trouble breathing.

The reduced version of the sentence is produced
by removing the words who was. We measured
reading times in the underlined region, which is
the first point at which there is evidence for the
relative clause interpretation. The key evidence is
given by the word ‘by’, but the previous word is in-
cluded as readers often do not fixate on short func-
tion words, but rather process them while overtly
fixating on the previous word (Rayner, 1998).

The relative clauses in the target sentence act as
restrictive relative clauses, selecting one referent
from a larger set. The target sentences are there-
fore more coherent in a context where a restricted
set and a contrast set are easily available, than one
in which these sets are absent. This makes the
context in Example (1-a) supportive of a reduced
relative reading, and the context in Example (1-b)
unsupportive of a reduced relative clause. Other
experiments, for instance Spivey and Tanenhaus
(1998), used an unsupportive context where only
one postman was mentioned. Our experiments
used a neutral context, where no postmen are
mentioned, to be more similar to the Grodner et
al. experiment, as described below.

Overall, there were 28 items, and 28 partici-
pants read these sentences using an EyeLink II
eyetracker. Each participant read items one at a
time, with fillers between subsequent items so as
to obfuscate the nature of the experiment.

Results An ANOVA revealed that all conditions
with a supportive context were read faster than one
with a neutral context (i.e. a main effect of con-
text), and all conditions with unambiguous syntax
were read faster than those with a garden path
(i.e. a main effect of ambiguity). Finally, there
was a statisically significant interaction between
syntax and discourse whereby context decreases
reading times much more when a garden path is
present compared to an unambiguous structure. In
other words, a supportive context helped reduce
the effect of a garden path. This is the prediction
made by both the Weakly Interactive and Strongly
Interactive hypothesis. The pattern of results are
shown in Figure 2a in Section 4, where they are
directly compared to the model results.
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2.2 Discourse and Unambiguous Syntax

As mentioned in the Introduction, Grodner et al.
(2005) proposed an experiment with a supportive
or unsupportive discourse followed by an unam-
biguous target sentence. In their experiment, the
target sentence was one of the following:

(3) a. The director that the critics praised
at a banquet announced that he was
retiring to make room for young
talent in the industry.

b. The director, who the critics praised
at a banquet, announced that he was
retiring to make room for young
talent in the industry.

They also manipulated the context, which was
either supportive of the target, or a null context.
The two supportive contexts are:

(4) a. A group of film critics praised a
director at a banquet and another
director at a film premiere.

b. A group of film critics praised a
director and a producer for lifetime
achievement.

The target sentence in (3-a) is a restrictive
relative clause, as in the garden path exper-
iments. However, the sentence in (3-b) is a
non-restrictive relative clause, which does not
assume the presence of a constrast set. Therefore,
the context (4-a) is only used with the restrictive
relative clause, and the context (4-b), where only
one director is mentioned, is used as the context
for the non-restrictive relative clause. In the
conditions with a null context, the target sentence
was not preceded by any contextual sentence.

Results Grodner et al. measured residual
reading times, i.e. reading times compared to
a baseline in the embedded subject NP (‘the
critics’). They found that the supportive contexts
decreased reading time, and that this effect was
stronger for restrictive relatives compared to non-
restricted relatives. As there was no garden path,
and hence no incorrect structure for the discourse
processor to prune, the authors conclude that this
must be evidence for the Strongly Interactive
hypothesis. Unlike the garden path experiment
above, these results do not appear to be consistent
with a Weakly Interactive model. We plot their
results in Figure 3a in Section 4, where they are
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Figure 1: A schematic representation of the smallest set of
grammar transformations which we found were required to
accurately parse the experimental items.

directly compared to the model results. Because
these results are computed as regressions against a
baseline, a reading time of 0ms indicates average
difficulty, with negative numbers showing some
facilitation has occured, and positive number
indicating reading difficulty.

3 Model

The model comprises three parts: a parser, a
coreference resolution system, and a pragmatics
subsystem. Let us look at each individually.

3.1 Parser

The parser is an incremental unlexicalized proba-
bilistic Earley parser, which is capable of comput-
ing prefix probabilities. A PCFG parser outputs
the generative probability Pparser(w, t), where w is
the text and t is a parse tree. A probabilistic Earley
parser can retrieve all possible derivations at word
i (Stolcke, 1995), allowing us to compute the prob-
ability P (wi . . . w0) =

∑
t Pparser(wi . . . w0, t).

Using the prefix probability, we can compute
the word-by-word Surprisal (Hale, 2001), by
taking the log ratio of the previous word’s prefix
probability against this word’s prefix probability:

log
(

P (wi−1 . . . w0)
P (wi . . . w0)

)
(1)

Higher Surprisal scores are interpreted as
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being correlated with more reading difficulty, and
likewise lower scores with greater reading ease.
For most of the remainder of the paper we will
simply refer to the prefix probability at word i as
P (w). While the prefix probability as presented
here is suitable for syntax-based computations, a
main technical contribution of our model, detailed
in Sections 3.2 and 3.3 below, is that we include
non-syntactic probabilities in the computation of
Surprisal.

As per Hale’s original suggestion, our parser
can compute Surprisal using an exhaustive search,
which entails summing over each licensed deriva-
tion. This can be done efficiently using the packed
representation of an Earley chart. However, as
the coreference processor takes trees as input, we
must therefore unpack parses before resolving
referential ambiguity. Given the ambiguity of our
grammar, this is not tractable. Therefore, we only
consider an n-best list when computing Surprisal.
As other authors have found that a relatively small
set of analyses can give meaningful predictions
(Brants and Crocker, 2000; Boston et al., 2008),
we set n = 10.

The parser is trained on the Wall Street Journal
(WSJ) section of the Penn treebank. Unfortu-
nately, the standard WSJ grammar is not able to
give correct incremental parses to our experimen-
tal items. We found we could resolve this problem
by using four simple transformations, which are
shown in Figure 1: (i) adding valency information
to verb POS tags (e.g. VBD1 represents a tran-
sitive verb); (ii) we lexicalize ‘by’ prepositions;
(iii) VPs containing a logical subject (i.e. the
agent), get the -LGS label; (iv) non-recursive
NPs are renamed NPbase (the coreference system
treats each NPbase as a markable).

3.2 Discourse Processor

The primary function of the discourse processing
module is to perform coreference resolution for
each mention in an incrementally processed text.
Because each mention in a coreference chains is
transitive, we cannot use a simple classifier, as
they cannot enforce global transitivity constraints.
Therefore, this system is implemented in Markov
Logic (Richardson and Domingos, 2006), a
probabilistic logic, which does allow us to include
such constraints.

Markov Logic attempts to combine logic
with probabilities by using a Markov random
field where logical formulas are features. The

Expression Meaning
Coref (x , y) x is coreferent with y.
First(x ) x is a first mention.
Order(x , y) x occurs before y.

SameHead(x , y)
Do x and y share the
same syntactic head?

ExactMatch(x , y) x and y are same string.
SameNumber(x , y) x and y match in number.
SameGender(x , y) x and y match in gender.
SamePerson(x , y) x and y match in person.

Distance(x , y , d)
The distance between
x and y, in sentences.

Pronoun(x ) x is a pronoun.

EntityType(x , e)
x has entity type e
(person, organization, etc.)

Table 1: Predicates used in the Markov Logic Network

Markov Logic Network (MLN) we used for our
system uses similar predicates as the MLN-based
corference resolution system of Huang et al.
(2009).2 Our MLN uses the predicates listed
in Table 1. Two of these predicates, Coref and
First , are the output of the MLN – they provide
a labelling of coreference mentions into entity
classes. Note that, unlike Huang et al., we assume
an ordering on x and y if Coref (x , y) is true: y
must occur earlier in the document than x. The
remaining predicates in Table 1 are a subset of
features used by other coreference resolution
systems (cf. Soon et al., 2001). The predicates
we use involve matching strings (checking if two
mentions share a head word or if they are exactly
the same string), matching argreement features (if
the gender, number or person of pairs of NPs are
the same; especially important for pronouns), the
distance between mentions, and if mentions have
the same entity type (i.e. do they refer to a person,
organization, etc.) As our main focus is not to
produce a state-of-the-art coreference system, we
do not include predicates which are irrevelant for
our simulations even if they have been shown to be
effective for coreference resolution. For example,
we do not have predicates if two mentions are in
an apposition relationship, or if two mentions are
synonyms for each other.

Table 2 lists the actual logical formulae which
are used as features in the MLN. It should be

2As we are not interested in unsupervised inference, the
system of Poon and Domingos (2008) was unsuitable for our
needs.
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Description Rule

Transitivity
Coref (x , z ) ∧ Coref (y , z ) ∧Order(x , y)⇒ Coref (x , y)

Coref (x , y) ∧ Coref (y , z )⇒ Coref (x , z )

Coref (x , y) ∧ Coref (x , z ) ∧Order(y , z )⇒ Coref (y , z )

First Mentions
Coref (x , y)⇒ ¬First(x )

First(x )⇒ ¬Coref (x , y)

String Match
ExactMatch(x , y)⇒ Coref (x , y)

SameHead(x , y)⇒ Coref (x , y)

Pronoun
Pronoun(x ) ∧ Pronoun(y) ∧ SameGender(x , y)⇒ Coref (x , y)

Pronoun(x ) ∧ Pronoun(y) ∧ SameNumber(x , y)⇒ Coref (x , y)

Pronoun(x ) ∧ Pronoun(y) ∧ SamePerson(x , y)⇒ Coref (x , y)

Other
EntityType(x , e) ∧ EntityType(y , e)⇒ Coref (x , y)

Distance(x , y , +d)⇒ Coref (x , y)

Table 2: Rules used in the Markov Logic Network

noted that, because we are assuming an order
on the arguments of Coref (x , y), we need three
formulae to capture transivity relationships. To
test that the coreference resolution system was
producing meaningful results, we evaluated our
system on the test section of the ACE-2 dataset.
Using b3 scoring (Bagga and Baldwin, 1998),
which computes the overlap of a proposed set with
the gold set, the system achieves an F -score of
65.4%. While our results are not state-of-the-art,
they are reasonable considering the brevity of our
feature list.

The discourse model is run iteratively at each
word. This allows us to find a globally best
assignment at each word, which can be reanalyzed
at a later point in time. It assumes there is a
mention for each base NP outputted by the parser,
and for all ordered pairs of mentions x, y, it
outputs all the ‘observed’ predicates (i.e. ev-
erything but First and Coref ), and feeds them
to the Markov Logic system. At each step, we
compute both the maximum a posteriori (MAP)
assignment of coreference relationships as well
as the probability that each individual coreference
assignment is true. Taken together, they allow
us to calculate, for a coreference assignment c,
Pcoref(c|w, t) where w is the text input (of the
entire document until this point), and t is the parse
of each tree in the document up to and including
the current incremental parse. As we have previ-
ously calculated Pparser(w, t), it is then possible
to compute the joint probability P (c, w, t) at each
word, and therefore the prefix probability P (w)
due to syntax and coreference. Overall, we have:

P (w) =
∑

c

∑
t

P (c, w, t)

=
∑

c

∑
t

Pcoref(c|w, t)Pparser(w, t)

Note that we only consider one possible as-
signment of NPs to coreference entities per parse,
as we only retrieve the probabilities of the MAP
solution.

3.3 Pragmatics Processor

The effect of context in the experiments described
in Section 2 cannot be fully explained using a
coreference resolution system alone. In the case
of restrictive relative clauses, the referential ‘mis-
match’ in the unsupported conditions is caused
by an expectation elicited by a restrictive relative
clause which is inconsistent with the previous
discourse when there is no salient restricted subset
of a larger set. When the larger set is not found
in the discourse, the relative clause becomes
incoherent given the context, causing reading
difficulty. Modeling this coherence constraint is
essentially a pragmatics problem, and is under the
purview of the pragmatics processor in our sys-
tem. The pragmatics processor is quite specialised
and, although the information it encapsulates is
quite intuitive, it nonetheless relies on hand-coded
expert knowledge.

The pragmatics processor takes as input an
incremental pragmatics configuration p and
computes the probability Pprag(p|w, t, c). The
pragmatics configuration we consider is quite
simple. It is a 3-tuple where one element is true
if the current noun phrase being processed is a
discourse new definite noun phrase, the second

1183



element is true if the current NP is a discourse
new indefinite noun phrase, and the final element
is true if we encounter an unsupported restrictive
relative clause. We simply conjecture that there
is little processing cost (and hence a high proba-
bility) if the entire vector is false; there is a small
processing cost for discourse new indefinites,
a slightly larger processing cost for discourse
new definites and a large processing cost for an
incoherent reduced relative clause.

The first two elements of the 3-tuple depend
on the identity of the determiner as recovered by
the parser, and on whether the coreference system
adduces the predicate First for the current NP.
As the coreference system wasn’t designed to
find anaphoric contrast sets, these sets were found
using a simple post-processing check. This post-
processing approach worked well for our experi-
mental items, but finding such sets is, in general,
quite a difficult problem (Modjeska et al., 2003).

The distribution Pprag(p|w, t, c) applies a
processing penalty for an unsupported restrictive
relative clause whenever a restrictive relative
clause is in the n best list. Because Surprisal
computes a ratio of probabilities, this in ef-
fect means we only pay this penality when
an unsupported restrictive relative clause first
appears in the n best list (otherwise the effect is
cancelled out). The penalty for discourse new
entities is applied on the first word (ignoring
punctuation) following the end of the NP. This
spillover processing effect is simply a matter of
modeling convenience: without it, we would have
to compute Surprisal probabilities over regions
rather than individual words. Thus, the overall
prefix probability can be computed as: P (w) =∑

p,c,t Pprag(p|w, t, c)Pcoref(c|w, t)Pparser(w, t),
which is then substituted in Equation (1) to get a
Surprisal prediction for the current word.

4 Evaluation

4.1 Method

When modeling the garden path experiment we
presented in Section 2.1, we compute Surprisal
values on the word ‘by’, which is the earliest point
at which there is evidence for a relative clause
interpretation. For the Grodner et al. experiment,
we compute Surprisal values on the relativiser
‘who’ or ‘that’. Again, this is the earliest point at
which there is evidence for a relative clause, and
depending upon the presence or absence of a pre-

ceding comma, it will be known to be restrictive
or nonrestrictive clause. In addition to the overall
Surprisal values, we also compute syntactic
Surprisal scores, to test if there is any benefit from
the discourse and pragmatics subsystems. As we
are outputting n best lists for each parse, it is
also straightforward to compute other measures
which predict reading difficulty, including pruning
(Jurafsky, 1996), whereby processing difficulty
is predicted when a parse is removed from the n
best list, and attention shift (Crocker and Brants,
2000), which predicts parsing difficulty at words
where the most highly ranked parse flips from one
interpretation to another.

For the garden path experiment, the simulation
was run on each of the 28 experimental items in
each of the 4 conditions, resulting in a total of 112
runs. For the Grodner et al. experiment, the sim-
ulation was run on each of the 20 items in each
of the 4 conditions, resulting in a total of 80 runs.
For each run, the model was reset, purging all dis-
course information gained while reading earlier
items. As the system is not stochastic, two runs us-
ing the exact same items in the same condition will
produce the same result. Therefore, we made no
attempt to model by-subject variability, but we did
perform by-item ANOVAs on the system output.

4.2 Results

Garden Path Experiment The simulated
results of our experiment are shown in Figure 2.
Comparing the full simulated results in Figure 2b
to the experimental results in Figure 2a, we find
that the simulation, like the actual experiment,
finds both main effects and an interaction: there
is a main effect of context whereby a supportive
context facilitates reading, a main effect of syntax
whereby the garden path slows down reading,
and an interaction in that the effect of context is
strongest in the garden path condition. All these
effects were highly significant at p < 0.01. The
pattern of results between the full simulation and
the experiment differed in two ways. First, the
simulated results suggested a much larger reading
difficulty due to ambiguity than the experimental
results. Also, in the unambiguous case, the model
predicted a null cost of an unsupportive context on
the word ‘by’, because the model bears the cost
of an unsupportive context earlier in the sentence,
and assumes no spillover to the word ‘by’. Finally,
we note that the syntax-only simulation, shown in
Figure 2c, only produced a main effect of ambigu-
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(a) Results from our garden path
experiment

(b) Simulation of our garden path
experiment

(c) Syntax-only simulation

Figure 2: The simulated results predict the same interaction as the garden path experiment, but show a stronger main effect of
ambiguity, and no influence of discourse in the unambiguous condition on the word ‘by’.

(a) Results from the Grodner et al.
experiment

(b) Simulation of the Grodner et al.
experiment

(c) Syntax-only simulation

Figure 3: The simulated results predict the outcome of the Grodner et al. experiment.

ity, and was not able to model the effect of context.

Grodner et al. Experiment The simulated
results of the Grodner et al. experiment are shown
in Figure 3. In this experiment, the pattern of
simulated results in Figure 3b showed a much
closer resemblance to the experimental results in
Figure 3a than the garden path experiment. There
is a main effect of context, which is much stronger
in the restrictive relative case compared to non-
restrictive relatives. As with the garden path
experiment, the ANOVA reported that all effects
were significant at the p < 0.01 level. Again, as
we can see from Figure 3c, there was no effect
of context in the syntax-only simulation. The nu-
merical trend did show a slight facilitation in the
unrestricted supported condition, with a Surprisal
of 4.39 compared to 4.41 in the supported case,
but this difference was not significant.

4.3 Discussion

We have shown that our incremental sentence pro-
cessor augmented with discourse processing can

successfully simulate syntax-discourse interaction
effects which have been shown in the literature.
The difference between a Weakly Interactive
and Strongly Interactive model can be thought of
computationally in terms of a pipeline architecture
versus joint inference. In a weaker sense, even
a pipeline architecture where the discourse can
influence syntactic probabilities could be claimed
to be a Strongly Interactive model. However,
as our model uses a pipeline where syntactic
probabilities are independent of the discourse,
we claim that our model is Weakly Interactive.
Unlike Altmann and Steedman, who posited that
the discourse processor actually removes parsing
hypotheses, we were able to simulate this pruning
behaviour by simply re-weighting parses in our
coreference and pragmatics modules.

The fact that a Weakly Interactive system can
simulate the result of an experiment proposed in
support of the Strongly Interactive hypothesis is
initially counter-intuitive. However, this naturally
falls out from our decision to use a probabilistic
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clause, expecting more dependents

S

NP

NPbase

The postman

VP-LGS

VBD1

carried

PP:by

IN:by

by

. . .
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(c) 3rd parse: p = 7.69×−10 relative
clause

Figure 4: The top three parses on the word ‘by’ in the our
first experimental item.

model: a lower probability, even in an unambigu-
ous structure, is associated with increased reading
difficulty. As an aside, we note that when using
realistic computational grammars, even the struc-
tures used in the Grodner et al. experiment are
not unambiguous. In the restrictive relative clause
condition, even though there was not any compe-
tition between a relative and main clause reading,
our n best list was at all times filled with analyses.
For example, on the word ‘who’ in the restricted
relative clause condition, the parser is already
predicting both the subject-relative (‘the postman
who was bit by the dog’) and object-relative (‘the
postman who the dog bit’) readings.

Overall, these results are supportive of the
growing importance of probabilistic reasoning as
a model of human cognitive behaviour. Therefore,
especially with respect to sentence processing,
it is necessary to have a proper understanding
of how probabilities are linked to real-world
behaviours. We note that Surprisal does indeed

show processing difficulty on the word ‘by’ in
the garden path experiment. However, Figure 4
(which shows the top three parses on the word
‘by’) indicates that not only are there still main
clause interpretations present, but in fact, the
top two parses are main clause interpretations.
This is also true if we limit ourselves to syntactic
probabilities (which are the probabilities listed
in Figure 4). This suggests that neither Jurafsky
(1996)’s notion of pruning as processing difficulty
nor Crocker and Brants (2000) notion of attention
shifts would correctly predict higher reading times
on a region containing the word ‘by’. In fact, the
main clause interpretation remains the highest-
ranked interpretation until it is finally pruned at an
auxiliary of the main verb of the sentence (‘The
postman carried by the paramedics was having’).

This result is curious as our experimental items
closely match some of those simulated by Crocker
and Brants (2000). We conjecture that the differ-
ence between our attention shift prediction and
theirs is due to differences in the grammar. It is
possible that using a more highly tuned grammar
would result in attention shift making the correct
prediction, but this possibly shows one benefit of
using Surprisal as a linking hypothesis. Because
Surprisal sums over several derivations, it is not
as reliant upon the grammar as the attention shift
or pruning linking hypotheses.

5 Conclusions

The main result of this paper is that it is possible
to produce a Surprisal-based sentence process-
ing model which can simulate the influence of
discourse on syntax in both garden path and
unambiguous sentences. Computationally, the
inclusion of Markov Logic allowed the discourse
module to compute well-formed coreference
chains, and opens two avenues of future re-
search. First, it ought to be possible to make the
probabilistic logic more naturally incremental,
rather than re-running from scratch at each word.
Second, we would like to make greater use of the
logical elements by applying it to problems where
inference is necessary, such as resolving bridging
anaphora (Haviland and Clark, 1974).

Our primary cognitive finding that our model,
which assumes the Weakly Interactive hypothesis
(whereby discourse is influenced by syntax in a
reactive manner), is nonetheless able to simulate
the experimental results of Grodner et al. (2005),
which were claimed by the authors to be in

1186



support of the Strongly Interactive hypothesis.
This suggests that the evidence is in favour of the
Strongly Interactive hypothesis may be weaker
than thought.

Finally, we found that the attention shift
(Crocker and Brants, 2000) and pruning (Jurafsky,
1996) linking theories are unable to correctly
simulate the results of the garden path experiment.
Although our main results above underscore the
usefulness of probabilistic modeling, this obser-
vation emphasizes the importance of finding a
tenable link between probabilities and behaviours.
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