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Abstract

Incremental parsing techniques such as
shift-reduce have gained popularity thanks
to their efficiency, but there remains a
major problem: the search isgreedyand
only explores a tiny fraction of the whole
space (even with beam search) as op-
posed to dynamic programming. We show
that, surprisingly, dynamic programming
is in fact possible for many shift-reduce
parsers, by merging “equivalent” stacks
based on feature values. Empirically, our
algorithm yields up to a five-fold speedup
over a state-of-the-art shift-reduce depen-
dency parser with no loss in accuracy. Bet-
ter search also leads to better learning, and
our final parser outperforms all previously
reported dependency parsers for English
and Chinese, yet is much faster.

1 Introduction

In terms of search strategy, most parsing al-
gorithms in current use for data-driven parsing
can be divided into two broad categories:dy-
namic programmingwhich includes the domi-
nant CKY algorithm, andgreedy searchwhich in-
cludes most incremental parsing methods such as
shift-reduce.1 Both have pros and cons: the for-
mer performs anexactsearch (in cubic time) over
an exponentially large space, while the latter is
much faster (in linear-time) and is psycholinguis-
tically motivated (Frazier and Rayner, 1982), but
its greedy nature may suffer from severe search er-
rors, as it only explores a tiny fraction of the whole
space even with a beam.

Can we combine the advantages of both ap-
proaches, that is, construct an incremental parser

1McDonald et al. (2005b) is a notable exception: the MST
algorithm is exact search but not dynamic programming.

that runs in (almost) linear-time, yet searches over
a huge space with dynamic programming?

Theoretically, the answer is negative, as Lee
(2002) shows that context-free parsing can be used
to compute matrix multiplication, where sub-cubic
algorithms are largely impractical.

We instead propose a dynamic programming al-
ogorithm for shift-reduce parsing which runs in
polynomial time in theory, but linear-time (with
beam search) in practice. The key idea is to merge
equivalent stacks according to feature functions,
inspired by Earley parsing (Earley, 1970; Stolcke,
1995) and generalized LR parsing (Tomita, 1991).
However, our formalism is more flexible and our
algorithm more practical. Specifically, we make
the following contributions:

• theoretically, we show that for a large class
of modern shift-reduce parsers, dynamic pro-
gramming is in fact possible and runs in poly-
nomial time as long as the feature functions
areboundedandmonotonic(which almost al-
ways holds in practice);

• practically, dynamic programming is up to
five times faster (with the same accuracy) as
conventional beam-search on top of a state-
of-the-art shift-reduce dependency parser;

• as a by-product, dynamic programming can
output aforestencoding exponentially many
trees, out of which we can draw better and
longerk-best lists than beam search can;

• finally, better and faster search also leads to
better and faster learning. Our final parser
achieves the best (unlabeled) accuracies that
we are aware of in both English and Chi-
nese among dependency parsers trained on
the Penn Treebanks. Being linear-time, it is
also much faster than most other parsers,
even with a pure Python implementation.

1077



input: w0 . . . wn−1

axiom 0 : 〈0, ǫ〉: 0

sh
ℓ : 〈j, S〉 : c

ℓ + 1 : 〈j + 1, S|wj〉 : c + ξ
j < n

rex

ℓ : 〈j, S|s1|s0〉 : c

ℓ + 1 : 〈j, S|s1
xs0〉 : c + λ

rey

ℓ : 〈j, S|s1|s0〉 : c

ℓ + 1 : 〈j, S|s1
ys0〉 : c + ρ

goal 2n− 1 : 〈n, s0〉: c

whereℓ is the step,c is the cost, and the shift costξ

and reduce costsλ andρ are:

ξ = w · fsh(j, S) (1)

λ = w · frex
(j, S|s1|s0) (2)

ρ = w · frey
(j, S|s1|s0) (3)

Figure 1: Deductive system of vanilla shift-reduce.

For convenience of presentation and experimen-
tation, we will focus on shift-reduce parsing for
dependency structures in the remainder of this pa-
per, though our formalism and algorithm can also
be applied to phrase-structure parsing.

2 Shift-Reduce Parsing

2.1 Vanilla Shift-Reduce

Shift-reduce parsing performs a left-to-right scan
of the input sentence, and at each step, choose one
of the two actions: eithershift the current word
onto the stack, orreducethe top two (or more)
items at the end of the stack (Aho and Ullman,
1972). To adapt it to dependency parsing, we split
the reduce action into two cases,rex andrey, de-
pending on which one of the two items becomes
the head after reduction. This procedure is known
as “arc-standard” (Nivre, 2004), and has been en-
gineered to achieve state-of-the-art parsing accu-
racy in Huang et al. (2009), which is also the ref-
erence parser in our experiments.2

More formally, we describe a parser configura-
tion by astate〈j, S〉 whereS is a stack of trees
s0, s1, ... where s0 is the top tree, andj is the

2There is another popular variant, “arc-eager” (Nivre,
2004; Zhang and Clark, 2008), which is more complicated
and less similar to the classical shift-reduce algorithm.

input: “I saw Al with Joe”

step action stack queue

0 - I ...
1 sh I saw ...
2 sh I saw Al ...
3 rex Ixsaw Al ...
4 sh Ixsaw Al with ...

5a rey IxsawyAl with ...

5b sh Ixsaw Al with Joe

Figure 2: A trace of vanilla shift-reduce. After
step (4), the parser branches off into (5a) or (5b).

queue head position (current wordq0 is wj). At
each step, we choose one of the three actions:

1. sh: move the head of queue,wj , onto stackS
as a singleton tree;

2. rex: combine the top two trees on the stack,
s0 ands1, and replace them with trees1

xs0.

3. rey: combine the top two trees on the stack,
s0 ands1, and replace them with trees1

ys0.

Note that the shorthand notationtxt′ denotes a
new tree by “attaching treet′ as the leftmost child
of the root of treet”. This procedure can be sum-
marized as a deductive system in Figure 1. States
are organized according to stepℓ, which denotes
the number of actions accumulated. The parser
runs in linear-time as there are exactly2n−1 steps
for a sentence ofn words.

As an example, consider the sentence“I saw Al
with Joe” in Figure 2. At step (4), we face a shift-
reduce conflict: either combine “saw” and “Al” in
a rey action (5a), or shift “with” (5b). To resolve
this conflict, there is acostc associated with each
state so that we can pick the best one (or few, with
a beam) at each step. Costs are accumulated in
each step: as shown in Figure 1, actionssh, rex,
and rey have their respective costsξ, λ, and ρ,
which are dot-products of the weightsw andfea-
turesextracted from the state and the action.

2.2 Features

We view features as “abstractions” or (partial) ob-
servations of the current state, which is an im-
portant intuition for the development of dynamic
programming in Section 3.Feature templates
are functions that draw information from thefea-
ture window (see Tab. 1(b)), consisting of the
top few trees on the stack and the first few
words on the queue. For example, one such fea-
ture templatef100 = s0.w ◦ q0.t is a conjunction
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of two atomic featuress0.w andq0.t, capturing
the root word of the top trees0 on the stack, and
the part-of-speech tag of the current head wordq0

on the queue. See Tab. 1(a) for the list of feature
templates used in the full model. Feature templates
are instantiated for a specific state. For example, at
step (4) in Fig. 2, the above templatef100 will gen-
erate a feature instance

(s0.w = Al) ◦ (q0.t = IN).

More formally, we denotef to be thefeature func-
tion, such thatf(j, S) returns a vector of feature
instances for state〈j, S〉. To decide which action
is the best for the current state, we perform a three-
way classification based onf(j, S), and to do so,
we further conjoin these feature instances with the
action, producing action-conjoined instances like

(s0.w = Al) ◦ (q0.t = IN) ◦ (action = sh).

We denotefsh(j, S), frex
(j, S), andfrey

(j, S) to
be the conjoined feature instances, whose dot-
products with the weight vector decide the best ac-
tion (see Eqs. (1-3) in Fig. 1).

2.3 Beam Search and Early Update

To improve on strictly greedy search, shift-reduce
parsing is often enhanced with beam search
(Zhang and Clark, 2008), whereb states develop
in parallel. At each step we extend the states in
the current beam by applying one of the three ac-
tions, and then choose the bestb resulting states
for the next step. Our dynamic programming algo-
rithm also runs on top of beam search in practice.

To train the model, we use the averaged percep-
tron algorithm (Collins, 2002). Following Collins
and Roark (2004) we also use the “early-update”
strategy, where an update happens whenever the
gold-standard action-sequence falls off the beam,
with the rest of the sequence neglected.3 The intu-
ition behind this strategy is that later mistakes are
often caused by previous ones, and are irrelevant
when the parser is on the wrong track. Dynamic
programming turns out to be a great fit for early
updating (see Section 4.3 for details).

3 Dynamic Programming (DP)

3.1 Merging Equivalent States

The key observation for dynamic programming
is to merge “equivalent states” in the same beam

3As a special case, for the deterministic mode (b=1), up-
dates always co-occur with the first mistake made.

(a) Features Templatesf(j, S) qi = wj+i

(1) s0.w s0.t s0.w ◦ s0.t
s1.w s1.t s1.w ◦ s1.t
q0.w q0.t q0.w ◦ q0.t

(2) s0.w ◦ s1.w s0.t ◦ s1.t
s0.t ◦ q0.t s0.w ◦ s0.t ◦ s1.t
s0.t ◦ s1.w ◦ s1.t s0.w ◦ s1.w ◦ s1.t
s0.w ◦ s0.t ◦ s1.w s0.w ◦ s0.t ◦ s1 ◦ s1.t

(3) s0.t ◦ q0.t ◦ q1.t s1.t ◦ s0.t ◦ q0.t
s0.w ◦ q0.t ◦ q1.t s1.t ◦ s0.w ◦ q0.t

(4) s1.t ◦ s1.lc.t ◦ s0.t s1.t ◦ s1.rc.t ◦ s0.t
s1.t ◦ s0.t ◦ s0.rc.t s1.t ◦ s1.lc.t ◦ s0

s1.t ◦ s1.rc.t ◦ s0.w s1.t ◦ s0.w ◦ s0.lc.t

(5) s2.t ◦ s1.t ◦ s0.t

(b) ← stack queue→
... s2

...

s1

s1.lc

...

... s1.rc

...

s0

s0.lc

...

... s0.rc

...

q0 q1 ...

(c) Kernel features for DP
ef(j, S) = (j, f2(s2), f1(s1), f0(s0))

f2(s2) s2.t
f1(s1) s1.w s1.t s1.lc.t s1.rc.t
f0(s0) s0.w s0.t s0.lc.t s0.rc.t

j q0.w q0.t q1.t

Table 1:(a) feature templates used in this work,
adapted from Huang et al. (2009).x.w andx.t de-
notes the root word and POS tag of tree (or word)
x. andx.lc andx.rc denotex’s left- and rightmost
child. (b) feature window.(c) kernel features.

(i.e., same step) if they have the same feature
values, because they will have the same costs as
shown in the deductive system in Figure 1. Thus
we can define two states〈j, S〉 and〈j′, S′〉 to be
equivalent, notated〈j, S〉 ∼ 〈j′, S′〉, iff.

j = j′ and f(j, S) = f(j′, S′). (4)

Note that j = j′ is also needed because the
queue head positionj determines which word to
shift next. In practice, however, a small subset of
atomic features will be enough to determine the
whole feature vector, which we callkernel fea-
tures f̃(j, S), defined as thesmallest setof atomic
templates such that

f̃(j, S) = f̃(j′, S′) ⇒ 〈j, S〉 ∼ 〈j′, S′〉.

For example, the full list of 28 feature templates
in Table 1(a) can be determined by just 12 atomic
features in Table 1(c), which just look at the root
words and tags of the top two trees on stack, as
well as the tags of their left- and rightmost chil-
dren, plus the root tag of the third trees2, and fi-
nally the word and tag of the queue headq0 and the
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state form ℓ : 〈i, j, sd...s0〉: (c, v, π) ℓ: step;c, v: prefix and inside costs;π: predictor states

equivalence ℓ : 〈i, j, sd...s0〉 ∼ ℓ : 〈i, j, s′d...s
′
0〉 iff. f̃(j, sd...s0) = f̃(j, s′d...s

′
0)

ordering ℓ : : (c, v, ) ≺ ℓ : : (c′, v′, ) iff. c < c′ or (c = c′ andv < v′).

axiom (p0) 0 : 〈0, 0, ǫ〉: (0, 0, ∅)

sh

statep:

ℓ : 〈 , j, sd...s0〉: (c, , )

ℓ + 1 : 〈j, j + 1, sd−1...s0, wj〉 : (c + ξ, 0, {p})
j < n

rex

statep:

: 〈k, i, s′d...s
′
0〉: (c′, v′, π′)

stateq:
ℓ : 〈i, j, sd...s0〉: ( , v, π)

ℓ + 1 : 〈k, j, s′d...s
′
1, s

′
0

x

s0〉 : (c′ + v + δ, v′ + v + δ, π′)
p ∈ π

goal 2n− 1 : 〈0, n, sd...s0〉: (c, c, {p0})

whereξ = w · fsh(j, sd...s0), andδ = ξ′ + λ, with ξ′ = w · fsh(i, s
′
d...s

′
0) andλ = w · frex

(j, sd...s0).

Figure 3: Deductive system for shift-reduce parsing with dynamic programming. The predictor state setπ

is an implicit graph-structured stack (Tomita, 1988) while the prefix costc is inspired by Stolcke (1995).
The rey case is similar, replacings′0

x

s0 with s′0
y

s0, andλ with ρ = w · frey
(j, sd...s0). Irrelevant

information in a deduction step is marked as an underscore () which means “can match anything”.

tag of the next wordq1. Since the queue isstatic
informationto the parser (unlike the stack, which
changes dynamically), we can usej to replace fea-
tures from the queue. So in general we write

f̃(j, S) = (j, fd(sd), . . . , f0(s0))

if the feature window looks at topd + 1 trees
on stack, and wherefi(si) extracts kernel features
from treesi (0 ≤ i ≤ d). For example, for the full
model in Table 1(a) we have

f̃(j, S) = (j, f2(s2), f1(s1), f0(s0)), (5)

whered = 2, f2(x) = x.t, andf1(x) = f0(x) =
(x.w, x.t, x.lc.t, x.rc.t) (see Table 1(c)).

3.2 Graph-Structured Stack and Deduction

Now that we have the kernel feature functions, it
is intuitive that we might only need to remember
the relevant bits of information from only thelast
(d + 1) treeson stack instead of the whole stack,
because they provide all the relevant information
for the features, and thus determine the costs. For
shift, this suffices as the stack grows on the right;
but for reduce actions the stack shrinks, and in or-
der still to maintaind + 1 trees, we have to know
something about the history. This is exactly why
we needed the full stack for vanilla shift-reduce

parsing in the first place, and why dynamic pro-
gramming seems hard here.

To solve this problem we borrow the idea
of “graph-structured stack” (GSS) from Tomita
(1991). Basically, each statep carries with it a set
π(p) of predictor states, each of which can be
combined withp in a reduction step. In a shift step,
if statep generates stateq (we say “p predictsq”
in Earley (1970) terms), thenp is added ontoπ(q).
When two equivalent shifted states get merged,
their predictor states get combined. In a reduction
step, stateq tries to combine with every predictor
statep ∈ π(q), and the resulting stater inherits
the predictor states set fromp, i.e.,π(r) = π(p).
Interestingly, when two equivalent reduced states
get merged, we can prove (by induction) that their
predictor states are identical (proof omitted).

Figure 3 shows the new deductive system with
dynamic programming and GSS. A new state has
the form

ℓ : 〈i, j, sd...s0〉

where [i..j] is the span of the top trees0, and
sd..s1 are merely “left-contexts”. It can be com-
bined with some predictor statep spanning[k..i]

ℓ′ : 〈k, i, s′d...s
′
0〉

to form a larger state spanning[k..j], with the
resulting top tree being eithers1

xs0 or s1
ys0.
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This style resembles CKY and Earley parsers. In
fact, thechart in Earley and other agenda-based
parsers is indeed a GSS when viewed left-to-right.
In these parsers, when a state is popped up from
the agenda, it looks for possible sibling states
that can combine with it; GSS, however,explicitly
maintains these predictor states so that the newly-
popped state does not need to look them up.4

3.3 Correctness and Polynomial Complexity

We state the main theoretical result with the proof
omitted due to space constraints:

Theorem 1. The deductive system is optimal and
runs in worst-case polynomial time as long as the
kernel feature function satisfies two properties:

• bounded: f̃(j, S) = (j, fd(sd), . . . , f0(s0))
for some constantd, and each|ft(x)| also
bounded by a constant for all possible treex.

• monotonic: ft(x) = ft(y) ⇒ ft+1(x) =
ft+1(y), for all t and all possible treesx, y.

Intuitively, boundedness means features can
only look at a local window and can only extract
bounded information on each tree, which is always
the case in practice since we can not have infinite
models. Monotonicity, on the other hand, says that
features drawn from trees farther away from the
top shouldnot be more refined than from those
closer to the top. This is also natural, since the in-
formation most relevant to the current decision is
always around the stack top. For example, the ker-
nel feature function in Eq. 5 is bounded and mono-
tonic, sincef2 is less refined thanf1 andf0.

These two requirements are related to grammar
refinement by annotation (Johnson, 1998), where
annotations must be bounded and monotonic: for
example, one cannot refine a grammar by only
remembering the grandparent but not the parent
symbol. The difference here is that the annotations
are not vertical ((grand-)parent), but ratherhori-
zontal (left context). For instance, a context-free
rule A → B C would becomeDA → DB BC

for someD if there exists a ruleE → αDAβ.
This resembles the reduce step in Fig. 3.

The very high-level idea of the proof is that
boundedness is crucial for polynomial-time, while
monotonicity is used for the optimal substructure
property required by the correctness of DP.

4In this sense, GSS (Tomita, 1988) is really not a new in-
vention: an efficient implementation of Earley (1970) should
already have it implicitly, similar to what we have in Fig. 3.

3.4 Beam Search based on Prefix Cost

Though the DP algorithm runs in polynomial-
time, in practice the complexity is still too high,
esp. with a rich feature set like the one in Ta-
ble 1. So we apply the same beam search idea
from Sec. 2.3, where each step can accommodate
only the bestb states. To decide the ordering of
states in each beam we borrow the concept ofpre-
fix cost from Stolcke (1995), originally developed
for weighted Earley parsing. As shown in Fig. 3,
the prefix costc is the total cost of the best action
sequence from the initial state to the end of statep,
i.e., it includes both theinside costv (for Viterbi
inside derivation), and the cost of the (best) path
leading towards the beginning of statep. We say
that a statep with prefix costc is better than a state
p′ with prefix costc′, notatedp ≺ p′ in Fig. 3, if
c < c′. We can also prove (by contradiction) that
optimizing for prefix cost implies optimal inside
cost (Nederhof, 2003, Sec. 4).5

As shown in Fig. 3, when a stateq with costs
(c, v) is combined with a predictor statep with
costs(c′, v′), the resulting stater will have costs

(c′ + v + δ, v′ + v + δ),

where the inside cost is intuitively the combined
inside costs plus an additional combo costδ from
the combination, while the resulting prefix cost
c′ + v + δ is the sum of the prefix cost of the pre-
dictor stateq, the inside cost of the current statep,
and the combo cost. Note the prefix cost ofq is ir-
relevant. The combo costδ = ξ′ + λ consists of
shift costξ′ of p and reduction costλ of q.

The cost in the non-DP shift-reduce algorithm
(Fig. 1) is indeed a prefix cost, and the DP algo-
rithm subsumes the non-DP one as a special case
where no two states are equivalent.

3.5 Example: Edge-Factored Model

As a concrete example, Figure 4 simulates an
edge-factored model (Eisner, 1996; McDonald et
al., 2005a) using shift-reduce with dynamic pro-
gramming, which is similar to bilexical PCFG
parsing using CKY (Eisner and Satta, 1999). Here
the kernel feature function is

f̃(j, S) = (j, h(s1), h(s0))

5Note that using inside costv for ordering would be a
bad idea, as it will always prefer shorter derivations like in
best-first parsing. As in A* search, we need some estimate
of “outside cost” to predict which states are more promising,
and the prefix cost includes an exact cost for the left outside
context, but no right outside context.
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sh

ℓ : 〈 , h

...j

〉 : (c, )

ℓ + 1 : 〈h, j〉 : (c, 0)
j < n

rex

: 〈h′′

, h
′

k...i

〉 : (c′

, v
′) ℓ : 〈h′

, h

i...j

〉 : ( , v)

ℓ + 1 : 〈h′′

, h

h
′

k...i

i...j

〉 : (c′ + v + λ, v
′ + v + λ)

whererex costλ = w · frex
(h′, h)

Figure 4: Example of shift-reduce with dynamic
programming: simulating an edge-factored model.
GSS is implicit here, andrey case omitted.

whereh(x) returns the head word index of treex,
because all features in this model are based on the
head and modifier indices in a dependency link.
This function is obviously bounded and mono-
tonic in our definitions. The theoretical complexity
of this algorithm isO(n7) because in a reduction
step we have three span indices and three head in-
dices, plus a step indexℓ. By contrast, the naı̈ve
CKY algorithm for this model isO(n5) which can
be improved toO(n3) (Eisner, 1996).6 The higher
complexity of our algorithm is due to two factors:
first, we have to maintain bothh and h′ in one
state, because the current shift-reduce model can
not draw featuresacrossdifferent states (unlike
CKY); and more importantly, we group states by
stepℓ in order to achieve incrementality and lin-
ear runtime with beam search that is not (easily)
possible with CKY or MST.

4 Experiments

We first reimplemented the reference shift-reduce
parser of Huang et al. (2009) in Python (hence-
forth “non-DP”), and then extended it to do dy-
namic programing (henceforth “DP”). We evalu-
ate their performances on the standard Penn Tree-
bank (PTB) English dependency parsing task7 us-
ing the standard split: secs 02-21 for training, 22
for development, and 23 for testing. Both DP and
non-DP parsers use the same feature templates in
Table 1. For Secs. 4.1-4.2, we use a baseline model
trained with non-DP for both DP and non-DP, so
that we can do a side-by-side comparison of search

6Or O(n2) with MST, but including non-projective trees.
7Using the head rules of Yamada and Matsumoto (2003).

quality; in Sec. 4.3 we will retrain the model with
DP and compare it against training with non-DP.

4.1 Speed Comparisons

To compare parsing speed between DP and non-
DP, we run each parser on the development set,
varying the beam widthb from 2 to 16 (DP) or 64
(non-DP). Fig. 5a shows the relationship between
search quality (as measured by the average model
score per sentence, higher the better) and speed
(average parsing time per sentence), where DP
with a beam width ofb=16 achieves the same
search quality with non-DP atb=64, while being 5
times faster. Fig. 5b shows a similar comparison
for dependency accuracy. We also test with an
edge-factored model (Sec. 3.5) using feature tem-
plates (1)-(3) in Tab. 1, which is a subset of those
in McDonald et al. (2005b). As expected, this dif-
ference becomes more pronounced (8 times faster
in Fig. 5c), since the less expressive feature set
makes more states “equivalent” and mergeable in
DP. Fig. 5d shows the (almost linear) correlation
between dependency accuracy and search quality,
confirming that better search yields better parsing.

4.2 Search Space, Forest, and Oracles

DP achieves better search quality because it ex-
pores an exponentially large search space rather
than onlyb trees allowed by the beam (see Fig. 6a).
As a by-product, DP can output aforestencoding
these exponentially many trees, out of which we
can draw longer and better (in terms of oracle)k-
best lists than those in the beam (see Fig. 6b). The
forest itself has an oracle of 98.15 (as ifk → ∞),
computed̀a la Huang (2008, Sec. 4.1). These can-
didate sets may be used for reranking (Charniak
and Johnson, 2005; Huang, 2008).8

4.3 Perceptron Training and Early Updates

Another interesting advantage of DP over non-DP
is the faster training with perceptron, even when
both parsers use the same beam width. This is due
to the use of early updates (see Sec. 2.3), which
happen much more often with DP, because a gold-
standard statep is often merged with an equivalent
(but incorrect) state that has a higher model score,
which triggers update immediately. By contrast, in
non-DP beam search, states such asp might still

8DP’s k-best lists are extracted from the forest using the
algorithm of Huang and Chiang (2005), rather than those in
the final beam as in the non-DP case, because many deriva-
tions have been merged during dynamic programming.
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survive in the beam throughout, even though it is
no longer possible to rank the best in the beam.

The higher frequency of early updates results
in faster iterations of perceptron training. Table 2
shows the percentage of early updates and the time
per iteration during training. While the number of
updates is roughly comparable between DP and
non-DP, the rate of early updates is much higher
with DP, and the time per iteration is consequently
shorter. Figure 7 shows that training with DP is
about 1.2 times faster than non-DP, and achieves
+0.2% higher accuracy on the dev set (93.27%).

Besides training with gold POS tags, we also
trained on noisy tags, since they are closer to the
test setting (automatic tags on sec 23). In that
case, we tag the dev and test sets using an auto-
matic POS tagger (at 97.2% accuracy), and tag
the training set using four-way jackknifing sim-
ilar to Collins (2000), which contributes another
+0.1% improvement in accuracy on the test set.
Faster training also enables us to incorporate more
features, where we found more lookahead features
(q2) results in another +0.3% improvement.

4.4 Final Results on English and Chinese

Table 3 presents the final test results of our DP
parser on the Penn English Treebank, compared
with other state-of-the-art parsers. Our parser
achieves the highest (unlabeled) dependency ac-
curacy among dependency parsers trained on the
Treebank, and is also much faster than most other
parsers even with a pure Python implementation

it update early% time update early% time
1 31943 98.9 22 31189 87.7 29
5 20236 98.3 38 19027 70.3 47
17 8683 97.1 48 7434 49.5 60
25 5715 97.2 51 4676 41.2 65

Table 2: Perceptron iterations with DP (left) and
non-DP (right). Early updates happen much more
often with DP due to equivalent state merging,
which leads to faster training (time in minutes).

word L time comp.
McDonald 05b 90.2 Ja 0.12 O(n2)
McDonald 05a 90.9 Ja 0.15 O(n3)

Koo 08base 92.0 − − O(n4)
Zhang 08single 91.4 C 0.11 O(n)‡

this work 92.1 Py 0.04 O(n)
†Charniak 00 92.5 C 0.49 O(n5)
†Petrov 07 92.4 Ja 0.21 O(n3)

Zhang 08combo 92.1 C − O(n2)‡

Koo 08semisup 93.2 − − O(n4)

Table 3: Final test results on English (PTB). Our
parser (in pure Python) has the highest accuracy
among dependency parsers trained on the Tree-
bank, and is also much faster than major parsers.
†converted from constituency trees. C=C/C++,
Py=Python, Ja=Java. Time is in seconds per sen-
tence. Search spaces:‡linear; others exponential.

(on a 3.2GHz Xeon CPU). Best-performing con-
stituency parsers like Charniak (2000) and Berke-
ley (Petrov and Klein, 2007) do outperform our
parser, since they consider more information dur-
ing parsing, but they are at least 5 times slower.
Figure 8 shows the parse time in seconds for each
test sentence. The observed time complexity of our
DP parser is in fact linear compared to the super-
linear complexity of Charniak, MST (McDonald
et al., 2005b), and Berkeley parsers. Additional
techniques such as semi-supervised learning (Koo
et al., 2008) and parser combination (Zhang and
Clark, 2008) do achieve accuracies equal to or
higher than ours, but their results are not directly
comparable to ours since they have access to ex-
tra information like unlabeled data. Our technique
is orthogonal to theirs, and combining these tech-
niques could potentially lead to even better results.

We also test our final parser on the Penn Chi-
nese Treebank (CTB5). Following the set-up of
Duan et al. (2007) and Zhang and Clark (2008), we
split CTB5 into training (secs 001-815 and 1001-
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word non-root root compl.
Duan 07 83.88 84.36 73.70 32.70

Zhang 08† 84.33 84.69 76.73 32.79
this work 85.20 85.52 78.32 33.72

Table 4: Final test results on Chinese (CTB5).
†The transition parser in Zhang and Clark (2008).

1136), development (secs 886-931 and 1148-
1151), and test (secs 816-885 and 1137-1147) sets,
assume gold-standard POS-tags for the input, and
use the head rules of Zhang and Clark (2008). Ta-
ble 4 summarizes the final test results, where our
work performs the best in all four types of (unla-
beled) accuracies: word, non-root, root, and com-
plete match (all excluding punctuations).9,10

5 Related Work

This work was inspired in part by Generalized LR
parsing (Tomita, 1991) and the graph-structured
stack (GSS). Tomita uses GSS for exhaustive LR
parsing, where the GSS is equivalent to a dy-
namic programming chart in chart parsing (see
Footnote 4). In fact, Tomita’s GLR is an in-
stance of techniques for tabular simulation of non-
deterministic pushdown automata based on deduc-
tive systems (Lang, 1974), which allow for cubic-
time exhaustive shift-reduce parsing with context-
free grammars (Billot and Lang, 1989).

Our work advances this line of research in two
aspects. First, ours is more general than GLR in

9Duan et al. (2007) and Zhang and Clark (2008) did not
report word accuracies, but those can be recovered given non-
root and root ones, and the number of non-punctuation words.

10Parser combination in Zhang and Clark (2008) achieves
a higher word accuracy of 85.77%, but again, it is not directly
comparable to our work.

that it is not restricted to LR (a special case of
shift-reduce), and thus does not require building an
LR table, which is impractical for modern gram-
mars with a large number of rules or features. In
contrast, we employ the ideas behind GSS more
flexibly to merge states based on features values,
which can be viewed as constructing an implicit
LR tableon-the-fly. Second, unlike previous the-
oretical results about cubic-time complexity, we
achieved linear-time performance by smart beam
search with prefix cost inspired by Stolcke (1995),
allowing for state-of-the-art data-driven parsing.

To the best of our knowledge, our work is the
first linear-time incremental parser that performs
dynamic programming. The parser of Roark and
Hollingshead (2009) is also almost linear time, but
they achieved this by discarding parts of the CKY
chart, and thus do achieve incrementality.

6 Conclusion

We have presented a dynamic programming al-
gorithm for shift-reduce parsing, which runs in
linear-time in practice with beam search. This
framework is general and applicable to a large-
class of shift-reduce parsers, as long as the feature
functions satisfy boundedness and monotonicity.
Empirical results on a state-the-art dependency
parser confirm the advantage of DP in many as-
pects: faster speed, larger search space, higher ora-
cles, and better and faster learning. Our final parser
outperforms all previously reported dependency
parsers trained on the Penn Treebanks for both
English and Chinese, and is much faster in speed
(even with a Python implementation). For future
work we plan to extend it to constituency parsing.
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