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Abstract (Strictly Local, SL) (McNaughton and Papert,

_ _ N _ 1971; Rogers and Pullum, to appear), the Piece-
This paper provides a unified, learning- e Testable (PT) languages (Simon, 1975), the
theoretic analysis of several leamnable  pjecewise Testable languages in the Strict Sense
classes of languages discussed previously (gyricily Piecewise, SP) (Rogers et al., 2009), the
in the literature. The_analyS|s shows that Strongly Testable languages (Beauquier and Pin,
for these classes an incremental, globally  1991), the Definite languages (Brzozowski, 1962),
consistent, locally conservative, set-driven 514 the Finite languages, among others. To our
learner always exists. ~Additionally, the  ynowiledge, this is the first analysis which identi-
analysis provides arecipe for constructing  fies the common structural elements of these lan-
new learnable classes. Potential applica- 596 classes which allows them to be identifiable
tions include learnable models for aspects iy, the |imit from positive data: each language class
of natural language and cogpnition. induces a natural partition over all logically possi-
ble strings and each language in the class is the
union of finitely many blocks of this partition.

The problem of generalizing from examples to  One consequence of this analysis is a recipe
patterns is an important one in linguistics andfor constructing new learnable classes. One no-
computer science. This paper shows that manyable case is the Strictly Piecewise (SP) languages,
disparate language classes, many previously disvhich was originally motivated for two reasons:
cussed in the literature, have a simple, naturahe learnability properties discussed here and its
and interesting (because non-enumerative) learneibility to describe long-distance dependencies in
which exactly identifies the class in the limit from natural language phonology (Heinz, 2007; Heinz,
distribution-free, positive evidence in the sense otg appear). Later this class was discovered to have
Gold (Gold, 1967). These learners are called several independent characterizations and form
String Extension Learners because each string ithe basis of another subregular hierarchy (Rogers
the language can be mapped (extended) to an elet al., 2009).

ment of the grammar, which in every case, is con- |tjs expected string extension learning will have
ceived as a finite set of elements. These Iearneréppncations in linguistic and cognitive models. As
have desirable properties: they are incrementainentioned, the SP languages already provide a
globally consistent, and locally conservative. novel hypothesis of how long-distance dependen-

Classes previously discussed in the literagies in sound patterns are learned. Another exam-
ture which are string extension learnable in-p|e is the Strictly Local (SL) languages which are
clude the Locally Testable (LT) languages, thethe categorical, symbolic version of n-gram mod-
Locally Testable Languages in the Strict Sense|s, which are widely used in natural language pro-
~ IThe allowance of negative evidence (Gold, 1967) or re-C€SSing (Jurafsky and Martin, 2008). Since the SP
stricting the kinds of texts the learner is required to sadce languages also admit a probabilistic variant which

on (i.e. non-distribution-free evidence) (Gold, 1967; htor ; i ; ictrib 1.
ing, 1969; Angluin, 1988) admits the learnability of thesda d_escrlbe _an efficiently estimable (.:Ia_SS of dl_smbu
of recursively enumerable languages. Classes of languagd¥ns (Heinz and Rogers, 2010), it is plausible to
learnable in the harder, distribution-free, positivedevice-  expect the other classes will as well, though this is
only settings are due to structural properties of the laggua

classes that permit generalization (Angluin, 1980b; Blume left fo_r future researCh' )

etal., 1989). That is the central interest here. String extension learners are also simple, mak-
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ing them accessible to linguists without a rigorous Thecontentof a text is defined below.
mathematical background.

This paper is organized as follow.§2 goes content(t) =
over basic notation and definitions§3 defines {w € ¥* : In € N such that(n) = w}
string extension grammars, languages, and lan-
guage classes and proves some of their fundamen- A text ¢ is a positive text for a languagé. iff
tal properties. ¢4 defines string extension learn- content(t) = L. Thus there is only one textfor
ers and proves their behaviof5 shows how im- the empty language: for all t(i) = #-.
portant subregular classes are string extension lan- A |earner is a function ¢ which maps ini-
guage classes§6 gives examples of nonregular tial finite sequences of texts to grammars,
and infinite language classes which are string exi.e. ¢ : SEQ — G. The elements of (the gram-
tension learnable§7 summarizes the results, and mars) generate languages in some well-defined

discusses lines of inquiry for future research. way. A learnerconverges on a texiff there exists
2 Preliminaries i € N and a gramma¢ such that for allj > 1,
o(tlj]) =G.

This section establishes notation and recalls basic For any gramma¢, the language it generates is
definitions for formal languages, the paradigm ofdenotedL(G). A learner¢ identifies a language
identification in the limit from positive data (Gold, L in the limit iff for any positive textt for L, ¢
1967). Familiarity with the basic concepts of sets,converges o to grammaiG and L(G) = L. Fi-
functions, and sequences is assumed. nally, a learnew identifies a class of languages

For some setd, P(A) denotes the set of all in the limitiff for any I € L, ¢ identifies L in
subsets ofA and Py;,(A) denotes the set of all the limit. Angluin (1980b) provides necessary and
finite subsets ofd. If f is a function such that sufficient properties of language classes which are
f: A — Bthenletf°(a) = {f(a)}. Thus, identifiable inthe limit from positive data.
f° : A — P(B) (note f° is not surjective). A A learner¢ of language clasg is globally con-
setw of nonempty subsets ¢f is apartition of S sistentiff for each ¢ and for all textst for some
iff the elements ofr (calledblockg are pairwise L € L, content(t[i]) C L(4(t[i])). Alearners is
disjoint and their union equals. locally conservativeff for each: and for all texts

¥ denotes a fixed finite set of symbols, the ¢ for someL € £, whenevew(t[i]) # ¢(t[i —1]),
phabet Let¥", ¥=", ¥* St denote all strings itis the case that(i) ¢ L(¢([i—1])). These terms
formed over this alphabet of length, of length are from Jain et al. (2007). Also, learners which
less than or equal te, of any finite length, and do not depend on the order of the text are called
of any finite length strictly greater than zero, re-set-driven(Jain et al., 1999, p. 99).
spectively. The terrvordis used interchangeably
with string. The range of a stringw is the set 3 Grammars and Languages
of symbols which are inv. The empty string is
the unique string of length zero denot&d Thus
range(\) = (. The length of a string: is de-
noted by|ul|, e.g. |A] = 0. A languageL is
some subset oE*. The reverse of a language
L" ={w":w e L}.

Gold (1967) establishes a learning paradig
known as identification in the limit from positive
data. Atextis an infinite sequence whose ele-
ments are drawn fronX* U {#} where# rep-
resents a non-expression. Tk element oft is  Definition 1 Let f € SEF.
denotedt (i), andt[i] denotes the finite sequence o
#(0),#(1),...t(i). Following Jain et al. (1999), 1. Agrammaris a finite subset ofl.
let SEQ denote the set of all possible finite se-
qguences:

SEQ = {t[i] : t is atext and € N} Li(G) ={weX": f(w) C G}

Consider some sed. A string extension function
is a total functionf : ¥* — Ppn(A). Itis not
required thatf be onto. Denote the class of func-
tions which have this general for8€ F.

Each string extension function is naturally as-
sociated with some formal class of grammars and
rT]anguage:s. These functions, grammars, and lan-
guages are callestring extension functions, gram-
mars andlanguagesrespectively.

2. Thelanguage of grammaty is

898



3. Theclass of languagesbtained by all possi- result can now be proved, used in the next section
ble grammars is on learning?

Theorem 3 For any finte Ly, C X*, L =
L(f(Lop)) is the smallest language ify; contain-
The subscriptf is omitted when it is understood g Lo.
from context. Proof: Clearly Ly C L. Supposel’ € Ly and
A function f € SEF naturally induces a par- Lo € L'. It follows directly from Lemma 1 that
tition 7 ; overX*. Stringsu andv are equivalent L € L’ (sincef(L) = f(Lo) & f(L")). D
(u~y v)iff f(u) = f(v).
Theorem 1 Every languagel. € Ly is a finite
union of blocks ofr . Learning string extension classes is simple. The
initial hypothesis of the learner is the empty gram-
mar. The learner’s next hypothesis is obtained by
applying functionf to the current observation and
We return to this result i§6. taking the union of that set with the previous one.

Theorem 2 L is closed under intersection. Definition 2 For all f € SEF and for allt €

Proof: We showL;NLs; = L(G1NG3). Consider SEQ, defineg; as follows:
any wordw belonging toL; and Ly. Then f(w) 0 i 1
is a subset of7; and of Go. Thusf(w) C G1 N e =-

Go, and thereforav € L(G; N Gy). The other ¢ (tli]) = qﬁf(t[l: —1)) 4 it 4(i) = #
inc2:lusion follows similarly. o | ¢s(tli —1)) U f((2)) otherwise

[,f = {Lf(G) G e me(A)}

4 String Extension Learning

Proof: Follows directly from the definition of- ;
and the finiteness of string extension grammars.

String extension language classes are not in gen- By convention, the initial state of the grammar
eral closed under union or reversal (counterexamis given by¢(t[—1]) = (. The learnery; exem-
ples to union closure are given .1 and to re- plifies string extension learningEach individual
versal closure ig6.) string in the text reveals, by extension withas-

It is useful to extend the domain of the function pects of the canonical grammar fbrec L;.
f from strings to languages.

F() = fw (1)
welL Proof: Global consistness and local conservative-
ness follow immediately from Definition 2. For
set-drivenness, witness (by Definition 2) it is the
case that for any textand any: € N, ¢(t[i]) =
f(content(t[i])). O

The key to the proof that; identifiesL s in the
limit from positive data is the finiteness 6f for

Theorem 4 ¢, is globally consistent, locally con-
servative, and set-driven.

An elementy of grammarG for languagel =
L;(G) is usefuliff g € f(L). An element isuse-
lessif it is not useful. A grammar with no useless
elements is calledanonical

Remark 1 Fix a function f € SEF. For every
L € Ly, there is a canonical grammar, namely all L(G) € L. The idea is that there is a point

f(L)- In other words[, = L(f(L)). in the text in which every element of the grammar
LemmalletL, L' € L;. L C L'iff f(L) € has been seen because (1) there are only finitely
f(L) many useful elements o, and (2) the learner is

Proof: (=) Supposel. C I’ and consider any 9uaranteed to see a wordinwhich yields (viaf)

g € f(L). Sinceg is useful, there is @ € L such each element afr at some point (since the learner

thatg € f(w). But f(w) C f(L') sincew € L' receives a positive text fak). Thus at this point
(«<) Supposef(L) C f(L') and consider any 2The requirement in Theorem 3 that be finite can be

w € L. Then f(w) C f(L) so by transitivity, dropped if the qualifier “inC" be dropped as well. This

C f(L)). Therefor . 0O can be seen when one considers_ the i_dentity f_unc_tion anc_i the
f(w) = f( ) eretorew < class of finite languages. (The identity function is a string
The significance of this result is that as the gram£xtension function, se¢s.) In this casejd(%") = %7, but

a tonically i the | >* is not a member of ¢;,,. However since the interest here
mar mono 9n|ca _y Increases, e angu_ageis learners which generalize on the basis of finite expeegnc
L(G) monotonically increases too. The following Theorem 3 is sufficient as is.
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the learnerp is guaranteed to have converged toand Rogers et al. (2009) for an introduction to the
the targetGG as no additional words will add any subregular hierarchies, as well as their relevance
more elements to the learner’'s grammar. to linguistics and cognition.

Lemma 2 ForallL € Ly, there is afinite sample 51 K-factor languages
S such that is the smallest language iy con-
taining S. S is called acharacteristic samplef L
in £ (S'is also called aell-tale).

The k-factors of a word are the contiguous subse-
quences of lengtlk in w. Consider the following
string extension function.

Proof: For L € Ly, construct the sampl§' as  pefinition 3 For somek € N, let

follows. For eachy € f(L), choose some word

w € L such thaty € f(w). Sincef(L) is finite facy(w) =

(Remark 1),S is finite. Clearlyf(S) = f(L) and {reXF: Ju,vex”

thusL = L(f(S)). Therefore, by Theorem 3, is such thatw = uzv} whenk < |w| and
the smallest language ifi; containing$. O {w} otherwise

;htizrﬁmif Fix f € SEF. Thengy identifies . Following the earlier definitions, for somige a

grammarG is a subset oB=* and a wordw be-
Proof: ForanyL € Ly, there is a characteristic fi- longs to the language @f iff facy(w) C G.

nite samples for L (Lemma 2). Thus for any text Example 1 Let ¥ = {a,b} and consider gram-
for L, there isi such thatS C content(t[i]). ThUS  marsG = {\,a,aa,ab,ba}. ThenL(G) =

for any j > i, ¢(t(j)) is the smallest language () 4} U {w : jw| > 2 andw ¢ S*bbS*}. The 2-
in £ containingS by Theorem 3 and Lemma 2. tactorph is aprohibited2-factor forL(G). Clearly,
Thus,¢(t(j)) = f(S) = f(L). B L(G) € Liae,-

An immediate corollary is the efficiency ofy Languages irC ¢, make distinctions based on
in the length of the sample, providefds efficient  which k-factors are permitted or prohibited. Since
in the length of the string (de la Higuera, 1997). fac, € SEF, it follows immediately from the

Corollary 1 ¢; is efficient in the length of the results in§53-4 that thek-factor languages are

sample iff/ is efficiently computable in the length Closed under intersection, and each has a char-
of a string. acteristic sample. For example, a characteristic

sample for the 2-factor language in Example 1 is
A, a,ab,ba,aa}; i.e. the canonical grammar it-

th i det ined b f self. It follows from Theorem 5 that the class of
guages they generale are determined by a UNG: ¢actor languages is identifiable in the limit by

tion f which maps strings to finite subsets 4f .
. . . The learne with a text from the lan-
(chunks of grammars). Since the size of the canon(?f‘w’“ P facs

ical arammars is finit learner which devel guage in Example 1 is illustrated in Table 1.

cal grammars 15 .e’ alearne ch QEVEIOPS & e (lass Lfae, Is not closed under
grammar on the basis of the observed words and . E le f _

the function f identifies this class exactly in the znion. or example fork = 2, con-
L - , sider I, = L({\a,b,aa,bb,ba}) and
limit from positive data. It also follows that if

. LT . . Ly = L({\ a,b,aa,ab,bb}). Then L; U Ly

:CS ?m?.e n:r:n tlhe I?E gtp t?]f the strlln 9 thj’{ 'S e,f' excludes stringiba, but includes:b andba, which
'IC'in”m © .etngt IO IF sampe a? h@('js tis not possible forany. € Ly, -

globally consistent, focally conservative, and set- i ¢ ors are used to define other language

driven. It is striking that such a natural and gen'classes, such as the Strictly Local and Lo-

eral framework for generalization exists and that,

as will be shown, a variety of language classes caﬁa”y Testable languages (McNaughton and Pa-
! . ert, 1971), discussed §§5.4 ands5.5.

be expressed given the choicejof P ), discu i g

To summarize: string extension grammars ar
finite subsets of some set. The class of lan-

5.2 Strictly k-Piecewise languages

5 Subregular examples . : .
g P The Strictlyk-Piecewise (SP languages (Rogers

This section shows how classes which make ugt al., 2009) can be defined with a function whose
the subregular hierarchies (McNaughton and Pago-domain isP(X="). However unlike the func-
pert, 1971) are string extension language classetion facy, the functionS P, does not require that
Readers are referred to Rogers and Pullum (200#he k-length subsequences be contiguous.
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i | t(i) | faca(t(s)) | GrammarG | L(G)

-1 0 0

0 | aaaa | {aa} {aa} aaa*

1 |aab | {aa, ab} | {aa, ab} aaa® U aaa*b
2 |a {a} {a, aa, ab} | aa* U aa*b

Table 1: The learneps,., with a text from the language in Example 1. Boldtype indisatewly added
elements to the grammar.

A string u = a7 ...a; is asubsequenc®f of length at mosk andw isin L, thenvisin L as

stringw iff 34 vy, vy1,... vy € ¥* such thatw =  well (Simon, 1975; Simon, 1993; Lothaire, 2005).
vpaivy - .. apvE. The empty stringh is a subse- A languagelL is said to be Piecewise-Testable
quence of every string. Wheanis a subsequence (PT) if it is k-Piecewise Testable for sonkec N.

of w we writeu C w. If k is fixed, thek-Piecewise Testable languages

are identifiable in the limit from positive data
(Garcia and Ruiz, 1996; Garcia and Ruiz, 2004).
SP(w) = {ue vk uCw More recently, the Piecewise Testable languages
has been shown to be linearly separable with a
In other words, SP.(w) returns all subse- subsequence kernel (Kontorovich et al., 2008).
guences, contiguous or not, in up to lengthk. The k-Piecewise Testable languages can also
Thus, for somé:, a grammar is a subset oE<*.  be described with the functiof /. Recall that
Following Definition 1, a wordw belongs to the f°(a) = {f(a)}. Thus functionsSP; define
language of> only if SPy(w) C G.3 grammars as a finite list afets of subsequences
up to lengthk that may occur in words in the lan-
guage. This reflects the fact that thePiecewise

Definition 4 For somek ¢ N,

Example 2 Let ¥ = {a,b} and consider the

gramrrlarG = {A,a,b,aa,ab,ba}. ThenL(G) = Testable languages are the boolean closure of the
3\ (ZFHEFHE*). : ) ;
Strictly k-Piecewise languagés.

As seen from Example 2, SP languages encode
long-distance dependencies. In Examplé pro- 5.4 Strictly k-Local languages
hibits ab from following anotherb in a word, no  To define the Strictly:-Local languages, it is nec-
matter how distant. Table 2 illustrateés p, learn-  essary to make a pointwise extension to the defini-
ing the language in Example 2. tions in§3.
o e . o aambelons For 5051 4, suppose for

—eachi, f; : ¥* — Ppp(4;), and let f =
able by suchSP, languages and hypotheS|zes( )
that humans learn them in the way suggested byfl’ e
¢sp,- Strictly 2-Piecewise languages have also 1. A grammarG is a tuple(Gy, ..., G,,) where
been used in models of reading comprehension G, e Prin(A1), ... ,Gn € Prin(An).
(Whitney, 2001; Grainger and Whitney, 2004,
Whitney and Cornelissen, 2008) as well as text 2. If foranyw € ¥, eachf;(w) € G; for all
classification(Lodhi et al., 2002; Cancedda et al., 1 < i < n, thenf(w) is apointwise subset
2003) (see also (Shawe-Taylor and Christianini,  of G, written f(w) € G.

2005, chap. 11)). 3. Thelanguage of gramma¢- is

5.3 K-Piecewise Testable languages
o . Li(G) ={w: f(w) € G}
A languagel is k-Piecewise Testable iff when-

ever stringsu andv have the same subsequences 4. Theclass of languagesbtained by all such

%In earlier work, the functionSP, has been described possible grammar§'is L.
as returning the set of precedence relationsvinand the
language clas€sp, was called the precedence languages “More generally, it is not hard to show thétso is the
(Heinz, 2007; Heinz, to appear). boolean closure of ;.
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i | ti) | SPy(t(4)) GrammarG Language of~¥
1 0 0

0 | aaaa | {\ a,aa} {\, a, ag a*

1 | aab {\ a,b,aa,ab} | {\, a, aap, ab} a*Ua*b

2 | baa | {\a,b,aa,ba} | {\ a,b,aa, alha}l | X*\(X*bX*DE*)
3 | aba {N\,a,b,ab,ba} | {\ a, b, aa, ab, a| X*\(Z*bX*bX*)

Table 2: The learnepsp, with a text from the language in Example 2. Boldtype indisatewly added

elements to the grammar.

These definitions preserve the learning resultenly if LRI;(w) € G. Clearly, Lrrr, = k-

of §4. Note that the characteristic samplelof

SL, and henceforth we refer to this classkaSL.

L ¢ will be the union of the characteristic samplesSince, for fixedk, LRI}, € SEF, all of the learn-

of eachf; and the languagé ;(G) is the intersec-

tion of L, (G;).

ing results ing4 apply.

Locally k-Testable Languages in the Strict5.5 Locally k-Testable languages

Sense (Strictly k-Local) have been studied by sevype Locally k-testable language&-LT) are orig-
eral researchers (McNaughton and Papert, 1971xally defined in McNaughton and Papert (1971)
Garcia et al., 1990; Caron, 2000; Rogers and Pulyng are the subject of several studies (Brzozowski
lum, to appear), among others. We follow thegng Simon, 1973; McNaughton, 1974; Kim et
definitions from (McNaughton and Papert, 1971,5  1991: Caron, 2000; Garcia and Ruiz, 2004:

p. 14), effectively encoded in the following func- Rogers and Pullum, to appear).

tions.

A languageL is k-testable iff for allw;, ws €

Definition 6 Fix k£ € N. Then the (left-edge) pre- ¥* such that|w;| > k and |wy| > k, and

fix of length &, the (right-edge) suffix of length,
and the interiokk-factors of a wordv are

Li(w) = {u € ¥ : v € * such thatw = uv}
Ri(w) = {u € ¥ : Jv € ¥* such thatw = vu}

Tr(w) = fack(w)\(Lg(w) U Ri(w))
Example 3 Supposev = abcba. ThenLa(w) =
{ab}, Ra(w) = {ba} andIz(w) = {be, cb}.
Example 4 Supposelw| = k. Then Ly(w) =
Ri(w) = {w} andI(w) = 0.

Example 5 Suppose|w| is less thank. Then
Li(w) = Rg(w) = 0 and Iy (w) = {w}.

A languagel is k-Strictly Local (k-SL) iff for
all w € L, there exist setd,, R, and I such
thatw € Liff Ly(w) C L, Rx(w) € R, and

Ix(w) C I. McNaughton and Papert note that if
w is of length less thak than L may be perfectly

arbitrary aboutw.

LRIy (wy) = LRI;(w9) then either bothuy, wo
belong toL or neither do. Clearly, every language
in k-SL belongs tok-LT. However k-LT prop-
erly include kSL because &-testable language
only distinguishes words wheneveR [ (w) #
LRI, (ws). Itis known that thek-LT languages
are the boolean closure of theSL (McNaughton
and Papert, 1971).

The functionL RI} exactly expresses-testable
languages. Informally, each word is mapped
to a set containing a single element, this element
is the triple LRI (w). Thus a grammafy is a
subset of the triples used to defiheSL. Clearly,
ELRI;; = k-LT since it is the boolean closure of
Lrrr,. Henceforth we refer iR a@s thek-
Locally Testable k-LT) languages.

5.6 Generalized subsequence languages

Here we introduce generalized subsequence func-

This can now be expressed as the string extertions, a general class of functions to which the

sion function:
LRIi(w) = (Lg(w), Ri(w), I (w))

Thus for somek, a grammax_ is triple formed
by taking subsets oE*, ¥* and X=F, respec-
tively. A word w belongs to the language of
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SP; and facy functions belong. Like those

functions, generalized subsequence functions map
words to a set of subsequences found within the
words. These functions are instantiated by a vec-
tor whose number of coordinates determine how
many times a subsequence may be discontiguous



and whose coordinate values determine the length grammarG | Language of

of each contiguous part of the subsequence. 0 0

Definition 7 For somen € N, let v = ﬁ{ ;*b\a"b”
h i N. L

{(vg,v1,...,v,), Where eachy; € et k be 0, 1] SE

the length of the subsequences; ke= > v;.

Table 3: The language clags from Example 9

fa(w) =
{uEEk:Elxo,...,xn,u07...,un+1EE* )

In the examples considered so far, the enumera-
such thatw = ugTourT1, -, UnTnln 1 tion of the blocks is essentially encoded in partic-
and|z;| = v; forall 0 <4 < n} ular substrings (or tuples of substrings). However,
whenk < |w|, andw} otherwise much less clever enumerations are available.

Example 9 Let A = {0,1} and consider the fol-

lowing function:

The following examples help make the general-
ized subsequence functions clear. Fw) { 0 iff wea"b”
w) = .
Example 6 Let & = (2). Thenfy = facs. Gen- 1 otherwise

Il = : . -
erally, f) = fack The functionf belongs taSEF because it is maps
Example 7 Let 7 = (1,1). Thenf, ;y = SP. strings to a finite co-domain.L; has four lan-
Generally, ift’ = (1,...1) with |¢] = k. Then guages shown in Table 3.

fo = 5P The language class in Example 9 is not regular be-
Example 8 Let v = (3,2,1) anda, b, ¢, d, e, E cause itincludes the well-known context-free lan-
Y.  Then Ly, includes languages which guagea"b". This collection of languages is also
prohibit stringsw which contain subsequences not closed under reversal.

abcdef whereabe andde must be contiguous in  There are also infinite language classes that are

w andabcde f is a subsequence af. string extension language classes. Arguably the
Generalized subsequence languages make dr?_lg:\;())lteeztce?(ample Is the class of finite languages,
ferent kinds of distinctions to be made than PT ancfj fin

LT languages. For example, the language in ExExample 10 Consider the functionid which
ample 8 is neithek-LT nor k’-PT for any values maps words inX* to their singleton sets, i.e.
k,k'. Generalized subsequence languages propd(w) = {w}.> A grammarG is then a finite
erly include thek-SP andk-SL classes (Exam- subset of£*, and soL(G) is just a finite set of
ples 6 and 7), and the boolean closure of the subwords in¥*; in fact, L(G) = G. It follows that
sequence languageg’] properly includes the LT Liqg = Lyin.

and PT classes. It can be easily seen that the functiahinduces
Since for any’, f5 and f3 are string extension he trivial partition over:*, and languages are

functions the learning results ig# apply. Note st finite unions of these blocks. The learrgg
that f(w) is computable in imé(|w|*) wherek  makes no generalizations at all, and only remem-
is the length of the maximal subsequences detekgrs what it has observed.

mined by There are other more interesting infinite string
extension classes. Here is one relating to the
Parikh map (Parikh, 1966). For all € X, let

This section provides examples of infinite and./a(w) be the set containing wheren is the num-
nonregular language classes that are string exteRer of times the lettes occurs in the stringv. For

sion learnable. Recall from Theorem 1 that string *Strictly speaking, this is not the identity function per

extension languages are finite unions of blocks o8e, but it is as close to the identity function as one can get

the partition of:* induced byf. Assuming the since string extension functions are defined as mappings fro
block f thi titi b ted. th strings to sets. However, once the domain of the function is
ocks o IS parution can be enumerated, € xtended (Equation 1), then it follows that is the identity

range off can be construed &3y, (N). function when its argument is a set of strings.

6 Other examples
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examplef,(babab) = {2}. Thusf, is atotal func- this class is essentially two learnergyr;, and
tion mapping strings to singleton sets of naturalpp,, operating simultaneousfy. The learners
numbers, so it is a string extension function. Thismake predictions about generalizations, which can
function induces an infinite partition &i*, where be tested in artificial language learning experi-
the words in any particular block have the samements on adults and infants (Rogers and Pullum, to
number of letters:. It is convenient to enumerate appear; Chambers et al., 2002; Onishi et al., 2003;
the blocks according to how many occurrences oCristia and Seidl, 2008).
the lettera may occur in words within the block.  For theoretical computer science, it remains an
Hence, By is the block whose words have no oc- open question what property holds of functions
currences oti, By is the block whose words have f in SEF to ensure thal; is regular, context-
one occurrence af, and so on. free, or context-sensitive. For known subregular
In this case, a grammaét# is a finite subset dN,  classes, there are constructions that provide deter-
e.g0.{2, 3, 4. L(G) is simply those words which ministic automata that suggest the relevant prop-
have either 2, 3, or 4, occurrences of the letter erties. (See, for example, Garcia et al. (1990) and
Thus Ly, is an infinite class, which contains lan- Garica and Ruiz (1996).)
guages of infinite size, which is easily identified in  Also, Timo Kotzing and Samuel Moelius (p.c.)
the limit from positive data by, . suggest that the results here may be generalized
This section gave examples of nonregular andlong the following lines. Instead of defining the
nonfinite string extension classes by pursuing théunction f as a map from strings to finite subsets,
implications of Theorem 1, which established thatlet f be a function from strings to elements of a
f € SEF partition * into blocks of which lan- lattice. A grammaiG is an element of the lattice
guages are finite unions thereof. The string extenand the language of thé are all stringsw such
sion function f provides an effective way of en- thatf mapsw to a grammar less thai. Learners
coding all languaged. in £; becausef(L) en- ¢ are defined as the least upper bound of its cur-

codes a finite set, the grammar. rent hypothesis and the grammar to whitimaps
the current word@. Kasprzik and Koétzing (2010)
7 Conclusion and open questions develop this idea and demonstrate additional prop-

o _ _ - erties of string extension classes and learning, and
One contribution of this paper is a unified way of g\ that the pattern languages (Angluin, 1980a)
thinking about many formal language classes, aljoym a string extension class.
of which have been shown to be identifiable in  Aj5o hyperplane learning (Clark et al., 2006a;
the limit from positive data by a string extension cjark et al., 2006b) and function-distinguishable
learner. Another contribution is a recipe for deﬁ“‘learning (Fernau, 2003) similarly associate lan-
ing classes of languages identifiable in the limity,age classes with functions. How those analyses
from positive data by this kind of learner. relate to the current one remains open.

As shown, these learners have many desirable Finally, since the stochastic counterpart jof
properties. In particular, they are globally consis-g|_class is the:-gram model, it is plausible that
tent, locally conservative, and set-driven.  Addi-propabilistic string extension language classes can
tionally, the learner is guaranteed to be efficieniorm the basis of new natural language process-
in the size of the sample, provided the functibn jng techniques. (Heinz and Rogers, 2010) show
itself is efficient in the length of the string. ot tems bles what learning theorists aft

e . . . IS learner resembles what learning theorists

Several addlthnal ques_tlo_ns of mtere_St remain g learning (Case and Moelius, 2007) and what cognitive
open for theoretical linguistics, theoretical com-scientists calmodular learning(Gallistel and King, 2009).
puter science, and computational linguistics. I conjecture that morphological and syntactic patterns

h ical Ii isti it that th are generally not amenable to a string extension learning

For theoretical linguistics, it appears tha eanalysis because these patterns appear to require a paradig

string extension functiorf = (LRI3, P»), which  i.e. a set of data points, before any conclusion can be confi-

defines a class of languages which obey restricdently drawn about the generating grammar. Stress_ patterns
so do not appear to be amenable to a string extension learn-

: . |
tions on both contiguous subsequences of |en9tﬁhg (Heinz, 2007; Edlefsen et al., 2008; Heinz, 2009).
3 and on discontiguous subsequences of leBgth  ®See also Lange et al. (2008, Theorem 15) and Case et al.

provides a good first approximation to the seg-{199. pp.101-103). _
tal phonotactic patterns in natural lanquage The basic idea is to consider the lattite= (L, 2).
mental p p QuUageE4ch element of is a finite set of strings representing the

(Heinz, 2007). The string extension learner forintersection of all pattern languages consistent withsbis
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how to efficiently estimaté-SP distributions, and John Case, Sanjay Jain, Steffen Lange, and Thomas
it is conjectured that the other string extension lan- Zeugmann. 1999. Incremental concept learning for
guage classes can be recast as classes of distri-20unded data mining.Information and Computa-

. . ) tion, 152:74-110.
butions, which can also be successfully estimated

from positive evidence. Kyle E. Chambers, Kristine H. Onishi, and Cynthia
Fisher. 2002. Learning phonotactic constraints from
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