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Abstract 

 

This paper proposes new algorithms to com-

pute the sense similarity between two units 

(words, phrases, rules, etc.) from parallel cor-

pora. The sense similarity scores are computed 

by using the vector space model.  We then ap-

ply the algorithms to statistical machine trans-

lation by computing the sense similarity be-

tween the source and target side of translation 
rule pairs. Similarity scores are used as addi-

tional features of the translation model to im-

prove translation performance. Significant im-

provements are obtained over a state-of-the-art 

hierarchical phrase-based machine translation 

system. 

1 Introduction 

The sense of a term can generally be inferred 
from its context. The underlying idea is that a 

term is characterized by the contexts it co-occurs 

with. This is also well known as the Distribu-

tional Hypothesis (Harris, 1954): terms occurring 
in similar contexts tend to have similar mean-

ings. There has been a lot of work to compute the 

sense similarity between terms based on their 
distribution in a corpus, such as (Hindle, 1990; 

Lund and Burgess, 1996; Landauer and Dumais, 

1997; Lin, 1998; Turney, 2001; Pantel and Lin, 
2002; Pado and Lapata, 2007).  

In the work just cited, a common procedure is 

followed. Given two terms to be compared, one 

first extracts various features for each term from 
their contexts in a corpus and forms a vector 

space model (VSM); then, one computes their 

similarity by using similarity functions. The fea-
tures include words within a surface window of a 

fixed size (Lund and Burgess, 1996), grammati-

cal dependencies (Lin, 1998; Pantel and Lin 

2002; Pado and Lapata, 2007), etc.  The similari-

ty function which has been most widely used is 
cosine distance (Salton and McGill, 1983); other 

similarity functions include Euclidean distance, 

City Block distance (Bullinaria and Levy; 2007), 

and Dice and Jaccard coefficients (Frakes and 
Baeza-Yates, 1992), etc. Measures of monolin-

gual sense similarity have been widely used in 

many applications, such as synonym recognizing 
(Landauer and Dumais, 1997), word clustering 

(Pantel and Lin 2002), word sense disambigua-

tion (Yuret and Yatbaz 2009), etc. 

Use of the vector space model to compute  

sense similarity has also been adapted to the mul-

tilingual condition,  based on the assumption that 

two terms with similar meanings often occur in 
comparable contexts across languages. Fung 

(1998) and Rapp (1999) adopted VSM for the 

application of extracting translation pairs from 
comparable or even unrelated corpora. The vec-

tors in different languages are first mapped to a 

common space using an initial bilingual dictio-

nary, and then compared. 
However, there is no previous work that uses 

the VSM to compute sense similarity for terms 

from parallel corpora. The sense similarities, i.e. 
the translation probabilities in a translation mod-

el, for units from parallel corpora are mainly 

based on the co-occurrence counts of the two 
units. Therefore, questions emerge: how good is 

the sense similarity computed via VSM for two 

units from parallel corpora? Is it useful for multi-

lingual applications, such as statistical machine 
translation (SMT)? 

In this paper, we try to answer these questions, 

focusing on sense similarity applied to the SMT 
task. For this task, translation rules are heuristi-

cally extracted from automatically word-aligned 

sentence pairs. Due to noise in the training cor-
pus or wrong word alignment, the source and 

target sides of some rules are not semantically 

equivalent, as can be seen from the following 
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real examples which are taken from the rule table 

built on our training data (Section 5.1): 

世界 上 X 之一 ||| one of X (*) 

世界 上 X 之一 ||| one of X in the world    

许多 市民 ||| many citizens 

许多 市民 ||| many hong kong residents (*) 

The source and target sides of the rules with (*) 

at the end are not semantically equivalent; it 
seems likely that measuring the semantic similar-

ity from their context between the source and 

target sides of rules might be helpful to machine 

translation. 
In this work, we first propose new algorithms 

to compute the sense similarity between two 

units (unit here includes word, phrase, rule, etc.) 
in different languages by using their contexts. 

Second, we use the sense similarities between the 

source and target sides of a translation rule to 
improve statistical machine translation perfor-

mance.  

This work attempts to measure directly the 

sense similarity for units from different languag-
es by comparing their contexts

1
. Our contribution 

includes proposing new bilingual sense similarity 

algorithms and applying them to machine trans-
lation. 

We chose a hierarchical phrase-based SMT 

system as our baseline; thus, the units involved 
in computation of sense similarities are hierar-

chical rules. 

2 Hierarchical phrase-based MT system 

The hierarchical phrase-based translation method 

(Chiang, 2005; Chiang, 2007) is a formal syntax-

based translation modeling method; its transla-

tion model is a weighted synchronous context 
free grammar (SCFG). No explicit linguistic syn-

tactic information appears in the model. An 

SCFG rule has the following form: 

~,,γα→X  

where X is a non-terminal symbol shared by all 
the rules; each rule has at most two non-

terminals. α  (γ ) is a source (target) string con-

sisting of terminal and non-terminal symbols. ~  
defines a one-to-one correspondence between 

non-terminals in α  and γ . 

                                                
1 There has been a lot of work (more details in Section 7) on 
applying word sense disambiguation (WSD) techniques in 

SMT for translation selection. However, WSD techniques 
for SMT do so indirectly, using source-side context to help 
select a particular translation for a source rule. 

 source target 

Ini. phr. 他 出席 了 会议 he attended the meeting 

Rule 1 

Context 1 
他 出席 了 X1 

会议 

he attended X1 

the, meeting 

Rule 2 

Context 2 
会议 

他, 出席, 了 

the meeting 

he, attended 

Rule 3 

Context 3 
他 X1会议 

出席, 了 

he X1 the meeting 

attended 

Rule 4 

Context 4 
出席 了 

他,会议 

attended 

he, the, meeting 

 
Figure 1: example of hierarchical rule pairs and their 

context features. 

 

Rule frequencies are counted during rule ex-
traction over word-aligned sentence pairs, and 

they are normalized to estimate features on rules. 

Following (Chiang, 2005; Chiang, 2007), 4 fea-

tures are computed for each rule: 

• )|( αγP  and )|( γαP  are direct and in-

verse rule-based conditional probabilities; 

• )|( αγwP  and )|( γαwP are direct and in-

verse lexical weights (Koehn et al., 2003). 

Empirically, this method has yielded better 
performance on language pairs such as Chinese-

English than the phrase-based method because it 

permits phrases with gaps; it generalizes the 
normal phrase-based models in a way that allows 

long-distance reordering (Chiang, 2005; Chiang, 

2007). We use the Joshua implementation of the 

method for decoding (Li et al., 2009). 

3 Bag-of-Words Vector Space Model 

To compute the sense similarity via VSM, we 
follow the previous work (Lin, 1998) and 

represent the source and target side of a rule by 

feature vectors. In our work, each feature corres-

ponds to a context word which co-occurs with 
the translation rule. 

3.1 Context Features 

In the hierarchical phrase-based translation me-

thod, the translation rules are extracted by ab-
stracting some words from an initial phrase pair 

(Chiang, 2005). Consider a rule with non-

terminals on the source and target side; for a giv-

en instance of the rule (a particular phrase pair in 
the training corpus), the context will be the 

words instantiating the non-terminals. In turn, the 

context for the sub-phrases that instantiate the 
non-terminals will be the words in the remainder 

of the phrase pair. For example in Figure 1, if we 
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have an initial phrase pair 他 出席 了 会议 ||| he 

attended the meeting, and we extract four rules 

from this initial phrase: 他 出席 了 X1 ||| he at-

tended X1, 会议 ||| the meeting, 他 X1会议 ||| he 

X1 the meeting, and出席 了 ||| attended. There-

fore, the and meeting are context features of tar-

get pattern he attended X1; he and attended are 
the context features of the meeting; attended is 

the context feature of he X1 the meeting;  also he, 

the and meeting are the context feature of at-

tended (in each case, there are also source-side 

context features).  

3.2 Bag-of-Words Model 

For each side of a translation rule pair, its context 

words are all collected from the training data, 
and two “bags-of-words” which consist of col-

lections of source and target context words co-

occurring with the rule’s source and target sides 
are created. 

},...,,{

},...,,{

21

21

Je

If

eeeB

fffB

=

=
                        (1) 

where )1( Iifi ≤≤  are source context words 

which co-occur with the source side of rule α , 

and )1( Jje j ≤≤  are target context words 

which co-occur with the target side of rule γ . 

Therefore, we can represent source and target 

sides of the rule by vectors fv
v

  and 
e

v
v

 as in Eq-

uation (2): 

},...,,{

},...,,{

21

21

J

I

eeee

ffff

wwwv

wwwv

=

=
v

v

                     (2) 

where 
if

w  and 
jew are values for each source 

and target context feature; normally, these values 

are based on the counts of the words in the cor-

responding bags.  

3.3 Feature Weighting Schemes 

We use pointwise mutual information (Church et 
al., 1990) to compute the feature values. Let c 

( fBc ∈ or 
e

Bc ∈  ) be a context word and 

),( crF  be the frequency count of a rule r (α  or 

γ ) co-occurring with the context word c. The 

pointwise mutual information ),( crMI  is de-

fined as: 

N

cF

N

rF
N

crF

crMIcrw
)(

log
)(

log

),(
log

),(),(

×

==           (3) 

where N is the total frequency counts of all rules 

and their context words. Since we are using this 

value as a weight, following (Turney, 2001), we 

drop log, N and )(rF . Thus (3) simplifies to:  

)(

),(
),(

cF

crF
crw =                      (4) 

It can be seen as an estimate of )|( crP , the em-

pirical probability of observing r given c. 

A problem with )|( crP  is that it is biased 

towards infrequent words/features. We therefore 

smooth ),( crw  with add-k smoothing: 

kRcF

kcrF

kcrF

kcrF
crw

R

i

i

+

+
=

+

+
=

∑
=

)(

),(

)),((

),(
),(

1

  (5) 

where k is a tunable global smoothing constant, 

and R is the number of rules. 

4 Similarity Functions 

There are many possibilities for calculating simi-

larities between bags-of-words in different lan-

guages. We consider IBM model 1 probabilities 
and cosine distance similarity functions. 

4.1 IBM Model 1 Probabilities 

For the IBM model 1 similarity function, we take 

the geometric mean of symmetrized conditional 
IBM model 1 (Brown et al., 1993) bag probabili-

ties, as in Equation (6). 

))|()|((),( feef BBPBBPsqrtsim ⋅=γα       (6) 

To compute )|( ef BBP , IBM model 1 as-

sumes that all source words are conditionally 

independent, so that: 

 ∏
=

=
I

i

eief BfpBBP
1

)|()|(                (7) 

To compute, we use a “Noisy-OR” combina-

tion which has shown better performance than 
standard IBM model 1 probability, as described 

in (Zens and Ney, 2004): 

)|(1)|( eiei BfpBfp −=                       (8) 

∏
=

−−≈
J

j

jiei efpBfp
1

))|(1(1)|(          (9) 

where )|( ei Bfp  is the probability that if  is not 

in the translation of eB , and  is the IBM model 1 

probability. 

4.2 Vector Space Mapping 

A common way to calculate semantic similarity 

is by vector space cosine distance; we will also 
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use this similarity function in our algorithm. 

However, the two vectors in Equation (2) cannot 

be directly compared because the axes of their 

spaces represent different words in different lan-
guages, and also their dimensions I and J are not 

assured to be the same. Therefore, we need to 

first map a vector into the space of the other vec-
tor, so that the similarity can be calculated. Fung 

(1998) and Rapp (1999) map the vector one-

dimension-to-one-dimension (a context word is a 
dimension in each vector space) from one lan-

guage to another language via an initial bilingual 

dictionary. We follow (Zhao et al., 2004) to do 

vector space mapping.  
Our goal is – given a source pattern – to dis-

tinguish between the senses of its associated tar-

get patterns. Therefore, we map all vectors in 
target language into the vector space in the 

source language. What we want is a representa-

tion 
a

v
v

 in the source language space of the target 

vector 
ev
v

. To get 
a

v
v

, we can let if

aw , the weight 

of the i
th
 source feature, be a linear combination 

over target features. That is to say, given a 

source feature weight for fi, each target feature 
weight is linked to it with some probability. So 

that we can calculate a transformed vector from 

the target vectors by calculating weights if

aw  us-

ing a translation lexicon: 

∑
=

=
J

j

eji

f

a j

i wefw
1

)|Pr(                    (10) 

where )|( ji efp  is a lexical probability (we use 

IBM model 1 probability). Now the source vec-

tor and the mapped vector av
v

 have the same di-

mensions as shown in (11): 
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                   (11) 

4.3 Naïve Cosine Distance Similarity 

The standard cosine distance is defined as the 

inner product of the two vectors fv
v

 and av
v

 nor-

malized by their norms. Based on Equation (10) 

and (11), it is easy to derive the similarity as fol-

lows: 
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vvsim vv
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γα

         (12) 

where I and J are the number of the words in 

source and target bag-of-words; 
ifw  and 

jew are 

values of source and target features; if

aw  is the 

transformed weight mapped from all target fea-
tures to the source dimension at word fi. 

4.4 Improved Similarity Function 

To incorporate more information than the origi-

nal similarity functions – IBM model 1 proba-
bilities in Equation (6) and naïve cosine distance 

similarity function in Equation (12) – we refine 

the similarity function and propose a new algo-

rithm.  
As shown in Figure 2, suppose that we have a 

rule pair ),( γα . 
full

fC  and 
full

eC  are the contexts 

extracted according to the definition in section 3 

from the full training data for α  and for γ , re-

spectively. 
cooc

fC and
cooc

eC  are the contexts for 

α    and γ   when α  and γ co-occur. Obviously, 

they satisfy the constraints: 
full

f

cooc

f CC ⊆  and  

full

e

cooc

e CC ⊆ .  Therefore, the original similarity 

functions are to compare the two context vectors 

built on full training data directly, as shown in 

Equation (13). 

),(),( full

e

full

f CCsimsim =γα             (13) 

Then, we propose a new similarity function as 

follows: 

321 ),(),(),(

),(

λλλ

γα
cooc

e

full

e

cooc

e

cooc

f

cooc

f

full

f
CCsimCCsimCCsim

sim

⋅⋅

=

(14) 

where the parameters i
λ (i=1,2,3) can be tuned 

via minimal error rate training (MERT) (Och, 

2003). 

 
 

 

 

 
 

 

 
 

 
Figure 2: contexts for rule α    and γ . 

 

A unit’s sense is defined by all its contexts in 

the whole training data; it may have a lot of dif-

ferent senses in the whole training data. Howev-
er, when it is linked with another unit in the other 

language, its sense pool is constrained and is just 

α  

γ  

full

fC  cooc

fC  

   
full

eC  cooc

eC  
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a subset of the whole sense set. ),( cooc

f

full

f CCsim  

is the metric which evaluates the similarity be-

tween the whole sense pool of α  and the sense 

pool when α  co-occurs with γ ; 

),( cooc

e

full

e CCsim  is the analogous similarity me-

tric for γ . They range from 0 to 1. These two 

metrics both evaluate the similarity for two vec-

tors in the same language, so using cosine dis-

tance to compute the similarity is straightfor-
ward. And we can set a relatively large size for 

the vector, since it is not necessary to do vector 

mapping as the vectors are in the same language. 

),( cooc

e

cooc

f CCsim  computes the similarity between 

the context vectors when α  and γ co-occur. We 

may compute ),( cooc

e

cooc

f CCsim by using IBM 

model 1 probability and cosine distance similari-

ty functions as Equation (6) and (12). Therefore, 
on top of the degree of bilingual semantic simi-

larity between a source and a target translation 

unit, we have also incorporated the monolingual 
semantic similarity between all occurrences of a 

source or target unit, and that unit’s occurrence 

as part of the given rule, into the sense similarity 
measure. 

5 Experiments 

We evaluate the algorithm of bilingual sense si-
milarity via machine translation. The sense simi-

larity scores are used as feature functions in the 

translation model. 

5.1 Data 

We evaluated with different language pairs: Chi-
nese-to-English, and German-to-English. For 

Chinese-to-English tasks, we carried out the ex-

periments in two data conditions. The first one is 
the large data condition, based on training data 

for the NIST
2

 2009 evaluation Chinese-to-

English track. In particular, all the allowed bilin-
gual corpora except the UN corpus and Hong 

Kong Hansard corpus have been used for esti-

mating the translation model. The second one is 

the small data condition where only the FBIS
3
 

corpus is used to train the translation model. We 

trained two language models: the first one is a 4-

gram LM which is estimated on the target side of 
the texts used in the large data condition. The 

second LM is a 5-gram LM trained on the so-

                                                
2 http://www.nist.gov/speech/tests/mt 
3 LDC2003E14 

called English Gigaword corpus. Both language 

models are used for both tasks. 

We carried out experiments for translating 

Chinese to English. We use the same develop-
ment and test sets for the two data conditions. 

We first created a development set which used 

mainly data from the NIST 2005 test set, and 
also some balanced-genre web-text from the 

NIST training material. Evaluation was per-

formed on the NIST 2006 and 2008 test sets. Ta-
ble 1 gives figures for training, development and 

test corpora; |S| is the number of the sentences, 

and |W| is the number of running words. Four 

references are provided for all dev and test sets. 
 

   Chi Eng 

 

Parallel 
Train 

Large 

Data 

|S| 3,322K 

|W| 64.2M 62.6M 

Small 

Data 

|S| 245K 

|W| 9.0M 10.5M 

   Dev |S| 1,506 1,506×4 

Test NIST06 |S| 1,664 1,664×4 

NIST08 |S| 1,357 1,357×4 

Gigaword |S| - 11.7M 

 
Table 1: Statistics of training, dev, and test sets for 

Chinese-to-English task. 

 

For German-to-English tasks, we used WMT 

2006
4
 data sets. The parallel training data con-

tains 21 million target words; both the dev set 

and test set contain 2000 sentences; one refer-

ence is provided for each source input sentence. 

Only the target-language half of the parallel 
training data are used to train the language model 

in this task.  

5.2 Results 

For the baseline, we train the translation model 
by following (Chiang, 2005; Chiang, 2007) and 

our decoder is Joshua
5
, an open-source hierar-

chical phrase-based machine translation system 
written in Java. Our evaluation metric is IBM 

BLEU (Papineni et al., 2002), which performs 

case-insensitive matching of n-grams up to n = 4. 

Following (Koehn, 2004), we use the bootstrap-
resampling test to do significance testing. 

By observing the results on dev set in the addi-

tional experiments, we first set the smoothing 
constant k in Equation (5) to 0.5. 

Then, we need to set the sizes of the vectors to 

balance the computing time and translation accu-

                                                
4 http://www.statmt.org/wmt06/ 
5 http://www.cs.jhu.edu/~ccb/joshua/index.html 
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racy, i.e., we keep only the top N context words 

with the highest feature value for each side of a 

rule
6

. In the following, we use “Alg1” to 

represent the original similarity functions which 
compare the two context vectors built on full 

training data, as in Equation (13); while we use 

“Alg2” to represent the improved similarity as in 
Equation (14). “IBM” represents IBM model 1 

probabilities, and “COS” represents cosine dis-

tance similarity function. 
After carrying out a series of additional expe-

riments on the small data condition and observ-

ing the results on the dev set, we set the size of 

the vector to 500 for Alg1; while for Alg2, we 

set the sizes of full

fC  and full

eC N1 to 1000, and the 

sizes of cooc

fC  and cooc

e
C N2 to 100.  

The sizes of the vectors in Alg2 are set in the 
following process: first, we set N2 to 500 and let 

N1  range from 500 to 3,000, we observed that the 

dev set got best performance when N1 was 1000; 

then we set N1 to 1000 and let N1 range from 50 
to 1000, we got best performance when N1 =100. 

We use this setting as the default setting in all 

remaining experiments. 
 

Algorithm NIST’06 NIST’08 

Baseline 27.4 21.2 

Alg1 IBM 27.8* 21.5 

Alg1 COS 27.8* 21.5 

Alg2 IBM 27.9* 21.6* 

Alg2 COS 28.1** 21.7* 

 
Table 2: Results (BLEU%) of small data Chinese-to-

English NIST task. Alg1 represents the original simi-
larity functions as in Equation (13); while Alg2 

represents the improved similarity as in Equation 

(14). IBM represents IBM model 1 probability, and 

COS represents cosine distance similarity function. * 

or ** means result is significantly better than the 

baseline (p < 0.05 or p < 0.01, respectively). 

 

 Ch-En De-En 

Algorithm NIST’06 NIST’08 Test’06 

Baseline 31.0 23.8 26.9 

Alg2 IBM 31.5* 24.5** 27.2* 

Alg2 COS 31.6** 24.5** 27.3* 

 
Table 3: Results (BLEU%) of large data Chinese-to-

English NIST task and German-to-English WMT 

task. 

                                                
6 We have also conducted additional experiments by remov-

ing the stop words from the context vectors; however, we 
did not observe any consistent improvement. So we filter 
the context vectors by only considering the feature values. 

Table 2 compares the performance of Alg1 

and Alg2 on the Chinese-to-English small data 

condition. Both Alg1 and Alg2 improved the 

performance over the baseline, and Alg2 ob-
tained slight and consistent improvements over 

Alg1. The improved similarity function Alg2 

makes it possible to incorporate monolingual 
semantic similarity on top of the bilingual se-

mantic similarity, thus it may improve the accu-

racy of the similarity estimate. Alg2 significantly 
improved the performance over the baseline. The 

Alg2 cosine similarity function got 0.7 BLEU-

score (p<0.01) improvement over the baseline 

for NIST 2006 test set, and a 0.5 BLEU-score 
(p<0.05) for NIST 2008 test set. 

Table 3 reports the performance of Alg2 on 

Chinese-to-English NIST large data condition 
and German-to-English WMT task. We can see 

that IBM model 1 and cosine distance similarity 

function both obtained significant improvement 
on all test sets of the two tasks. The two similari-

ty functions obtained comparable results. 

6 Analysis and Discussion 

6.1 Effect of Single Features 

In Alg2, the similarity score consists of three 

parts as in Equation (14): ),( cooc

f

full

f CCsim , 

),(
cooc

e

full

e CCsim , and ),( cooc

e

cooc

f CCsim ; where  

),( cooc

e

cooc

f CCsim  could be computed by IBM mod-

el 1 probabilities ),( cooc

e

cooc

fIBM CCsim  or cosine dis-

tance similarity function ),( cooc

e

cooc

fCOS CCsim . 

Therefore, our first study is to determine which 

one of the above four features has the most im-

pact on the result. Table 4 shows the results ob-
tained by using each of the 4 features. First, we 

can see that ),( cooc

e

cooc

fIBM CCsim  always gives a 

better improvement than ),( cooc

e

cooc

fCOS CCsim . This 

is because  ),( cooc

e

cooc

fIBM CCsim  scores are more 

diverse than the latter when the number of con-

text features is small (there are many rules that 
have only a few contexts.) For an extreme exam-

ple, suppose that there is only one context word 

in each vector of source and target context fea-
tures, and the translation probability of the two 

context words is not 0. In this case, 

),( cooc

e

cooc

fIBM CCsim   reflects the translation proba-

bility of the context word pair, while 

),( cooc

e

cooc

fCOS CCsim  is always 1.  

   Second, ),( cooc

f

full

f CCsim  and ),(
cooc

e

full

e CCsim   

also give some improvements even when used 
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independently. For a possible explanation, con-

sider the following example. The Chinese word 

“红 ” can translate to “red”, “communist”, or 

“hong” (the transliteration of 红, when it is used 

in a person’s name).  Since these translations are 
likely to be associated with very different source 

contexts, each will have a low ),( cooc

f

full

f CCsim  

score.  Another Chinese word 小溪 may translate 

into synonymous words, such as “brook”, 

“stream”, and “rivulet”, each of which will have 

a high  ),( cooc

f

full

f CCsim  score. Clearly, 红 is a 

more “dangerous” word than小溪, since choos-

ing the wrong translation for it would be a bad 

mistake. But if the two words have similar trans-

lation distributions, the system cannot distinguish 
between them. The monolingual similarity scores 

give it the ability to avoid “dangerous” words, 

and choose alternatives (such as larger phrase 
translations) when available. 

Third, the similarity function of Alg2 consis-

tently achieved further improvement by incorpo-

rating the monolingual similarities computed for 
the source and target side. This confirms the ef-

fectiveness of our algorithm. 

 

 CE_LD CE_SD 

testset (NIST) ’06 ’08 ’06 ’08 

Baseline 31.0 23.8 27.4 21.2 

),( cooc

f

full

f CCsim  31.1 24.3 27.5 21.3 

),(
cooc

e

full

e CCsim  31.1 23.9 27.9 21.5 

),( cooc

e

cooc

fIBM CCsim  31.4 24.3 27.9 21.5 

),( cooc

e

cooc

fCOS CCsim  31.2 23.9 27.7 21.4 

Alg2 IBM 31.5 24.5 27.9 21.6 

Alg2 COS 31.6 24.5 28.1 21.7 

 
Table 4: Results (BLEU%) of Chinese-to-English 
large data (CE_LD) and small data (CE_SD) NIST 
task by applying one feature. 

6.2 Effect of Combining the Two Similari-

ties 

We then combine the two similarity scores by 

using both of them as features to see if we could 
obtain further improvement. In practice, we use 

the four features in Table 4 together.  

Table 5 reports the results on the small data 
condition. We observed further improvement on 

dev set, but failed to get the same improvements 

on test sets or even lost performance. Since the 

IBM+COS configuration has one extra feature, it 
is possible that it overfits the dev set. 

 

Algorithm Dev NIST’06 NIST’08 

Baseline 20.2 27.4 21.2 

Alg2 IBM 20.5 27.9 21.6 

Alg2 COS 20.6 28.1 21.7 

Alg2 IBM+COS 20.8 27.9 21.5 

 
Table 5: Results (BLEU%) for combination of two 
similarity scores. Further improvement was only ob-
tained on dev set but not on test sets. 

6.3 Comparison with Simple Contextual 

Features 

Now, we try to answer the question: can the si-
milarity features computed by the function in 

Equation (14) be replaced with some other sim-

ple features? We did additional experiments on 
small data Chinese-to-English task to test the 

following features: (15) and (16) represent the 

sum of the counts of the context words in C
full, 

while (17) represents the proportion of words in 

the context of α  that appeared in the context of 

the rule ( γα , ); similarly, (18) is related to the 

properties of the words in the context of γ . 

∑ ∈
= full

fi Cf if
fFN ),()( αα              (15) 

∑ ∈
= full

ej Ce je
eFN ),()( γγ                (16) 

)(

),(
),(

α

α
γα

f

Cf i

f
N

fF
E

cooc
fi

∑ ∈
=           (17) 

)(

),(
),(

γ

γ
γα

e

Ce j

e
N

eF
E

cooc
ej

∑ ∈
=           (18)   

where ),(
i

fF α  and ),( jeF γ  are the frequency 

counts of rule α  or γ   co-occurring with the 

context word 
i

f  or je   respectively. 

 

Feature Dev NIST’06 NIST’08 

Baseline 20.2 27.4 21.2 

+Nf 20.5 27.6 21.4 

+Ne 20.5 27.5 21.3 

+Ef 20.4 27.5 21.2 

+Ee 20.4 27.3 21.2 

+Nf+Ne 20.5 27.5 21.3 

 
Table 6: Results (BLEU%) of using simple features 
based on context on small data NIST task. Some im-
provements are obtained on dev set, but there was no 
significant effect on the test sets. 
 

Table 6 shows results obtained by adding the 

above features to the system for the small data 
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condition. Although all these features have ob-

tained some improvements on dev set, there was 

no significant effect on the test sets. This means 

simple features based on context, such as the 
sum of the counts of the context features, are not 

as helpful as the sense similarity computed by 

Equation (14). 

6.4 Null Context Feature 

There are two cases where no context word can 

be extracted according to the definition of con-

text in Section 3.1. The first case is when a rule 
pair is always a full sentence-pair in the training 

data. The second case is when for some rule 

pairs, either their source or target contexts are 

out of the span limit of the initial phrase, so that 
we cannot extract contexts for those rule-pairs. 

For Chinese-to-English NIST task, there are 

about 1% of the rules that do not have contexts; 
for German-to-English task, this number is about 

0.4%. We assign a uniform number as their bi-

lingual sense similarity score, and this number is 

tuned through MERT. We call it the null context 
feature. It is included in all the results reported 

from Table 2 to Table 6. In Table 7, we show the 

weight of the null context feature tuned by run-
ning MERT in the experiments reported in Sec-

tion 5.2. We can learn that penalties always dis-

courage using those rules which have no context 
to be extracted.  

 

 

Alg. 

Task 

CE_SD CE_LD DE 

Alg2 IBM -0.09 -0.37 -0.15 

Alg2 COS -0.59 -0.42 -0.36 

 
Table 7: Weight learned for employing the null con-

text feature. CE_SD, CE_LD and DE are Chinese-to-
English small data task, large data task and German-
to-English task respectively. 

6.5 Discussion 

Our aim in this paper is to characterize the se-

mantic similarity of bilingual hierarchical rules. 

We can make several observations concerning 

our features: 
1) Rules that are largely syntactic in nature, 

such as 的 X ||| the X of, will have very diffuse 

“meanings” and therefore lower similarity 

scores. It could be that the gains we obtained 

come simply from biasing the system against 

such rules. However, the results in table 6 show 
that this is unlikely to be the case: features that 

just count context words help very little. 

2) In addition to bilingual similarity, Alg2 re-

lies on the degree of monolingual similarity be-

tween the sense of a source or target unit within a 

rule, and the sense of the unit in general. This has 
a bias in favor of less ambiguous rules, i.e. rules 

involving only units with closely related mean-

ings. Although this bias is helpful on its own, 
possibly due to the mechanism we outline in sec-

tion 6.1, it appears to have a synergistic effect 

when used along with the bilingual similarity 
feature. 

3) Finally, we note that many of the features 

we use for capturing similarity, such as the con-

text “the, of” for instantiations of X in the unit 
the X of, are arguably more syntactic than seman-

tic. Thus, like other “semantic” approaches, ours 

can be seen as blending syntactic and semantic 
information. 

7 Related Work 

There has been extensive work on incorporating 
semantics into SMT. Key papers by Carpuat and 

Wu (2007) and Chan et al (2007) showed that 

word-sense disambiguation (WSD) techniques 
relying on source-language context can be effec-

tive in selecting translations in phrase-based and 

hierarchical SMT. More recent work has aimed 

at incorporating richer disambiguating features 
into the SMT log-linear model (Gimpel and 

Smith, 2008; Chiang et al, 2009); predicting co-

herent sets of target words rather than individual 
phrase translations (Bangalore et al, 2009; Maus-

er et al, 2009); and selecting applicable rules in 

hierarchical (He et al, 2008) and syntactic (Liu et 
al, 2008) translation, relying on source as well as 

target context. Work by Wu and Fung (2009) 

breaks new ground in attempting to match se-

mantic roles derived from a semantic parser 
across source and target languages. 

Our work is different from all the above ap-

proaches in that we attempt to discriminate 
among hierarchical rules based on: 1) the degree 

of bilingual semantic similarity between source 

and target translation units; and 2) the monolin-
gual semantic similarity between occurrences of 

source or target units as part of the given rule, 

and in general. In another words, WSD explicitly 

tries to choose a translation given the current 
source context, while our work rates rule pairs 

independent of the current context. 

8 Conclusions and Future Work 

In this paper, we have proposed an approach that 

uses the vector space model to compute the sense 
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similarity for terms from parallel corpora and 

applied it to statistical machine translation. We 

saw that the bilingual sense similarity computed 

by our algorithm led to significant improve-
ments. Therefore, we can answer the questions 

proposed in Section 1. We have shown that the 

sense similarity computed between units from 
parallel corpora by means of our algorithm is 

helpful for at least one multilingual application: 

statistical machine translation. 
Finally, although we described and evaluated 

bilingual sense similarity algorithms applied to a 

hierarchical phrase-based system, this method is 

also suitable for syntax-based MT systems and 
phrase-based MT systems. The only difference is 

the definition of the context. For a syntax-based 

system, the context of a rule could be defined 
similarly to the way it was defined in the work 

described above. For a phrase-based system, the 

context of a phrase could be defined as its sur-
rounding words in a given size window. In our 

future work, we may try this algorithm on syn-

tax-based MT systems and phrase-based MT sys-

tems with different context features. It would 
also be possible to use this technique during 

training of an SMT system – for instance, to im-

prove the bilingual word alignment or reduce the 
training data noise. 
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