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Abstract 

In this paper, we present a simple and effective 
method to address the issue of how to generate 
diversified translation systems from a single 
Statistical Machine Translation (SMT) engine 
for system combination. Our method is based 
on the framework of boosting. First, a se-
quence of weak translation systems is gener-
ated from a baseline system in an iterative 
manner. Then, a strong translation system is 
built from the ensemble of these weak transla-
tion systems. To adapt boosting to SMT sys-
tem combination, several key components of 
the original boosting algorithms are redes-
igned in this work. We evaluate our method on 
Chinese-to-English Machine Translation (MT) 
tasks in three baseline systems, including a 
phrase-based system, a hierarchical phrase-
based system and a syntax-based system. The 
experimental results on three NIST evaluation 
test sets show that our method leads to signifi-
cant improvements in translation accuracy 
over the baseline systems. 

1 Introduction 

Recent research on Statistical Machine Transla-
tion (SMT) has achieved substantial progress. 
Many SMT frameworks have been developed, 
including phrase-based SMT (Koehn et al., 2003), 
hierarchical phrase-based SMT (Chiang, 2005), 
syntax-based SMT (Eisner, 2003; Ding and 
Palmer, 2005; Liu et al., 2006; Galley et al., 2006; 
Cowan et al., 2006), etc. With the emergence of 
various structurally different SMT systems, more 
and more studies are focused on combining mul-
tiple SMT systems for achieving higher transla-
tion accuracy rather than using a single transla-
tion system. 

The basic idea of system combination is to ex-
tract or generate a translation by voting from an 
ensemble of translation outputs. Depending on 

how the translation is combined and what voting 
strategy is adopted, several methods can be used 
for system combination, e.g. sentence-level com-
bination (Hildebrand and Vogel, 2008) simply 
selects one from original translations, while 
some more sophisticated methods, such as word-
level and phrase-level combination (Matusov et 
al., 2006; Rosti et al., 2007), can generate new 
translations differing from any of the original 
translations. 

One of the key factors in SMT system combi-
nation is the diversity in the ensemble of transla-
tion outputs (Macherey and Och, 2007). To ob-
tain diversified translation outputs, most of the 
current system combination methods require 
multiple translation engines based on different 
models. However, this requirement cannot be 
met in many cases, since we do not always have 
the access to multiple SMT engines due to the 
high cost of developing and tuning SMT systems. 
To reduce the burden of system development, it 
might be a nice way to combine a set of transla-
tion systems built from a single translation en-
gine. A key issue here is how to generate an en-
semble of diversified translation systems from a 
single translation engine in a principled way. 

Addressing this issue, we propose a boosting-
based system combination method to learn a 
combined translation system from a single SMT 
engine. In this method, a sequence of weak trans-
lation systems is generated from a baseline sys-
tem in an iterative manner. In each iteration, a 
new weak translation system is learned, focusing 
more on the sentences that are relatively poorly 
translated by the previous weak translation sys-
tem. Finally, a strong translation system is built 
from the ensemble of the weak translation sys-
tems. 

Our experiments are conducted on Chinese-to-
English translation in three state-of-the-art SMT 
systems, including a phrase-based system, a hier-
archical phrase-based system and a syntax-based 
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Input:   a model u, a sequence of (training) samples {(f1, r1), ..., (fm, rm)} where fi is the 
i-th source sentence, and ri is the set of reference translations for fi. 
Output: a new translation system 
Initialize: D1(i) = 1 / m for all i = 1, ..., m 
For t = 1, ..., T 

1. Train a translation system u(λ*
t) on {(fi, ri)} using distribution Dt 

2. Calculate the error rate tε of u(λ*
t) on {(fi, ri)} 

3. Set 
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            where li is the loss on the i-th training sample, and Zt is the normalization factor. 
Output the final system:  

v(u(λ*
1), ..., u (λ*

T)) 

Figure 1: Boosting-based System Combination 

system. All the systems are evaluated on three 
NIST MT evaluation test sets. Experimental re-
sults show that our method leads to significant 
improvements in translation accuracy over the 
baseline systems. 

2 Background 

Given a source string f, the goal of SMT is to 
find a target string e* by the following equation. 

* arg max(Pr( | ))
e

e e f=                (1) 

where Pr( | )e f is the probability that e is the 
translation of the given source string f. To model 
the posterior probability Pr( | )e f , most of the 
state-of-the-art SMT systems utilize the log-
linear model proposed by Och and Ney (2002), 
as follows, 
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where {hm( f, e ) | m = 1, ..., M} is a set of fea-
tures, and λm is the feature weight corresponding 
to the m-th feature. hm( f, e ) can be regarded as a 
function that maps every pair of source string f 
and target string e into a non-negative value, and 
λm can be viewed as the contribution of hm( f, e ) 
to the overall score Pr( | )e f . 

In this paper, u denotes a log-linear model that 
has M fixed features {h1( f ,e ), ..., hM( f ,e )}, λ = 
{λ1, ..., λM} denotes the M parameters of u, and 
u(λ) denotes a SMT system based on u with pa-
rameters λ. Generally, λ is trained on a training 

data set1 to obtain an optimized weight vector λ* 
and consequently an optimized system u(λ*). 

3 Boosting-based System Combination 
for Single Translation Engine  

Suppose that there are T available SMT systems 
{u1(λ*

1), ..., uT(λ*
T)}, the task of system combina-

tion is to build a new translation system 
v(u1(λ*

1), ..., uT(λ*
T)) from {u1(λ*

1), ..., uT(λ*
T)}. 

Here v(u1(λ*
1), ..., uT(λ*

T)) denotes the combina-
tion system which combines translations from the 
ensemble of the output of each ui(λ*

i). We call 
ui(λ*

i) a member system of v(u1(λ*
1), ..., uT(λ*

T)). 
As discussed in Section 1, the diversity among 
the outputs of member systems is an important 
factor to the success of system combination. To 
obtain diversified member systems, traditional 
methods concentrate more on using structurally 
different member systems, that is u1≠ u2 ≠...≠ 
uT. However, this constraint condition cannot be 
satisfied when multiple translation engines are 
not available.  

In this paper, we argue that the diversified 
member systems can also be generated from a 
single engine u(λ*) by adjusting the weight vector 
λ* in a principled way. In this work, we assume 
that u1 = u2 =...= uT  = u. Our goal is to find a se-
ries of λ*

i and build a combined system from 
{u(λ*

i)}. To achieve this goal, we propose a 

                                                 
1 The data set used for weight training is generally called 
development set or tuning set in the SMT field. In this paper, 
we use the term training set to emphasize the training of 
log-linear model. 
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boosting-based system combination method (Fig-
ure 1). 

Like other boosting algorithms, such as 
AdaBoost (Freund and Schapire, 1997; Schapire, 
2001), the basic idea of this method is to use 
weak systems (member systems) to form a strong 
system (combined system) by repeatedly calling 
weak system trainer on different distributions 
over the training samples. However, since most 
of the boosting algorithms are designed for the 
classification problem that is very different from 
the translation problem in natural language proc-
essing, several key components have to be redes-
igned when boosting is adapted to SMT system 
combination. 

3.1 Training 

In this work, Minimum Error Rate Training 
(MERT) proposed by Och (2003) is used to es-
timate feature weights λ over a series of training 
samples. As in other state-of-the-art SMT sys-
tems, BLEU is selected as the accuracy measure 
to define the error function used in MERT. Since 
the weights of training samples are not taken into 
account in BLEU2, we modify the original defi-
nition of BLEU to make it sensitive to the distri-
bution Dt(i) over the training samples. The modi-
fied version of BLEU is called weighted BLEU 
(WBLEU) in this paper. 

Let E = e1 ... em be the translations produced 
by the system, R = r1 ... rm be the reference trans-
lations where ri = {ri1, ..., riN}, and Dt(i) be the 
weight of the i-th training sample (fi, ri). The 
weighted BLEU metric has the following form: 
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where ( )ng s  is the multi-set of all n-grams in a 
string s. In this definition, n-grams in ei and {rij} 
are weighted by Dt(i). If the i-th training sample 
has a larger weight, the corresponding n-grams 
will have more contributions to the overall score 
WBLEU( , )E R . As a result, the i-th training 
sample gains more importance in MERT. Obvi-
                                                 
2 In this paper, we use the NIST definition of BLEU where 
the effective reference length is the length of the shortest 
reference translation. 

ously the original BLEU is just a special case of 
WBLEU when all the training samples are 
equally weighted. 

As the weighted BLEU is used to measure the 
translation accuracy on the training set, the error 
rate is defined to be: 

1 WBLEU( , )t E Rε = −               (6) 

3.2 Re-weighting 

Another key point is the maintaining of the dis-
tribution Dt(i) over the training set. Initially all 
the weights of training samples are set equally. 
On each round, we increase the weights of the 
samples that are relatively poorly translated by 
the current weak system so that the MERT-based 
trainer can focus on the hard samples in next 
round. The update rule is given in Equation 4 
with two parameters tα  and li in it. 

tα  can be regarded as a measure of the im-
portance that the t-th weak system gains in boost-
ing. The definition of tα  guarantees that tα  al-
ways has a positive value3. A main effect of tα  
is to scale the weight updating (e.g. a larger tα  
means a greater update). 

li is the loss on the i-th sample. For each i, let 
{ei1, ..., ein} be the n-best translation candidates 
produced by the system. The loss function is de-
fined to be: 

*

1

1BLEU( , ) BLEU( , )k
i i i ij i

j
l e e

k =
= − ∑r r  (7) 

where BLEU(eij, ri) is the smoothed sentence-level 
BLEU score (Liang et al., 2006) of the transla-
tion e with respect to the reference translations ri, 
and ei

* is the oracle translation which is selected 
from {ei1, ..., ein} in terms of BLEU(eij, ri). li can 
be viewed as a measure of the average cost that 
we guess the top-k translation candidates instead 
of the oracle translation. The value of li counts 
for the magnitude of weight update, that is, a lar-
ger li means a larger weight update on Dt(i). The 
definition of the loss function here is similar to 
the one used in (Chiang et al., 2008) where only 
the top-1 translation candidate (i.e. k = 1) is 
taken into account. 

3.3 System Combination Scheme 

In the last step of our method, a strong transla-
tion system v(u(λ*

1), ..., u(λ*
T)) is built from the 

                                                 
3 Note that the definition of tα  here is different from that in 
the original AdaBoost algorithm (Freund and Schapire, 
1997; Schapire, 2001) where tα  is a negative number when 

0.5tε > . 
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ensemble of member systems {u(λ*
1), ..., u(λ*

T)}. 
In this work, a sentence-level combination 
method is used to select the best translation from 
the pool of the n-best outputs of all the member 
systems.  

Let H(u(λ*
t)) (or Ht for short) be the set of the 

n-best translation candidates produced by the t-th 
member system u(λ*

t), and H(v) be the union set 
of all Ht (i.e. ( ) tH v H=U ). The final translation 
is generated from H(v) based on the following 
scoring function: 

*
1

( )
arg max ( ) ( , ( ))T

t tt
e H v

e e e H vβ φ ψ
=

∈
= ⋅ +∑    (8) 

where ( )t eφ  is the log-scaled model score of e in 
the t-th member system, and tβ  is the corre-
sponding feature weight. It should be noted that 

ie H∈  may not exist in any 'i iH ≠ . In this case, 
we can still calculate the model score of e in any 
other member systems, since all the member sys-
tems are based on the same model and share the 
same feature space. ( , ( ))e H vψ  is a consensus-
based scoring function which has been success-
fully adopted in SMT system combination (Duan 
et al., 2009; Hildebrand and Vogel, 2008; Li et 
al., 2009). The computation of ( , ( ))e H vψ  is 
based on a linear combination of a set of n-gram 
consensuses-based features.  

( , ( )) ( , ( ))n n
n

e H v h e H vψ θ + += ⋅ +∑  

( , ( ))n n
n

h e H vθ − −⋅∑            (9) 

For each order of n-gram, ( , ( ))nh e H v+ and 
( , ( ))nh e H v−  are defined to measure the n-gram 

agreement and disagreement between e and other 
translation candidates in H(v), respectively. nθ

+  
and nθ

− are the feature weights corresponding to 
( , ( ))nh e H v+ and ( , ( ))nh e H v− . As ( , ( ))nh e H v+ and 
( , ( ))nh e H v−  used in our work are exactly the 

same as the features used in (Duan et al., 2009) 
and similar to the features used in (Hildebrand 
and Vogel, 2008; Li et al., 2009), we do not pre-
sent the detailed description of them in this paper. 

If p orders of n-gram are used in computing 
( , ( ))e H vψ , the total number of features in the 

system combination will be 2T p+ × (T model-
score-based features defined in Equation 8 and 
2 p×  consensus-based features defined in Equa-
tion 9). Since all these features are combined 
linearly, we use MERT to optimize them for the 
combination model. 

4 Optimization 

If implemented naively, the translation speed of 
the final translation system will be very slow. 
For a given input sentence, each member system 
has to encode it individually, and the translation 
speed is inversely proportional to the number of 
member systems generated by our method. For-
tunately, with the thought of computation, there 
are a number of optimizations that can make the 
system much more efficient in practice. 

A simple solution is to run member systems in 
parallel when translating a new sentence. Since 
all the member systems share the same data re-
sources, such as language model and translation 
table, we only need to keep one copy of the re-
quired resources in memory. The translation 
speed just depends on the computing power of 
parallel computation environment, such as the 
number of CPUs. 

Furthermore, we can use joint decoding tech-
niques to save the computation of the equivalent 
translation hypotheses among member systems. 
In joint decoding of member systems, the search 
space is structured as a translation hypergraph 
where the member systems can share their trans-
lation hypotheses. If more than one member sys-
tems share the same translation hypothesis, we 
just need to compute the corresponding feature 
values only once, instead of repeating the com-
putation in individual decoders. In our experi-
ments, we find that over 60% translation hy-
potheses can be shared among member systems 
when the number of member systems is over 4. 
This result indicates that promising speed im-
provement can be achieved by using the joint 
decoding and hypothesis sharing techniques. 

Another method to speed up the system is to 
accelerate n-gram language model with n-gram 
caching techniques. In this method, a n-gram 
cache is used to store the most frequently and 
recently accessed n-grams. When a new n-gram 
is accessed during decoding, the cache is 
checked first. If the required n-gram hits the 
cache, the corresponding n-gram probability is 
returned by the cached copy rather than re-
fetching the original data in language model. As 
the translation speed of SMT system depends 
heavily on the computation of n-gram language 
model, the acceleration of n-gram language 
model generally leads to substantial speed-up of 
SMT system. In our implementation, the n-gram 
caching in general brings us over 30% speed im-
provement of the system. 
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5 Experiments  

Our experiments are conducted on Chinese-to-
English translation in three SMT systems. 

5.1 Baseline Systems 

The first SMT system is a phrase-based system 
with two reordering models including the maxi-
mum entropy-based lexicalized reordering model 
proposed by Xiong et al. (2006) and the hierar-
chical phrase reordering model proposed by Gal-
ley and Manning (2008). In this system all 
phrase pairs are limited to have source length of 
at most 3, and the reordering limit is set to 8 by 
default4. 

The second SMT system is an in-house reim-
plementation of the Hiero system which is based 
on the hierarchical phrase-based model proposed 
by Chiang (2005).  

The third SMT system is a syntax-based sys-
tem based on the string-to-tree model (Galley et 
al., 2006; Marcu et al., 2006), where both the 
minimal GHKM and SPMT rules are extracted 
from the bilingual text, and the composed rules 
are generated by combining two or three minimal 
GHKM and SPMT rules. Synchronous binariza-
tion (Zhang et al., 2006; Xiao et al., 2009) is per-
formed on each translation rule for the CKY-
style decoding. 

In this work, baseline system refers to the sys-
tem produced by the boosting-based system 
combination when the number of iterations (i.e. 
T ) is set to 1. To obtain satisfactory baseline per-
formance, we train each SMT system for 5 times 
using MERT with different initial values of fea-
ture weights to generate a group of baseline can-
didates, and then select the best-performing one 
from this group as the final baseline system (i.e. 
the starting point in the boosting process) for the 
following experiments. 

5.2 Experimental Setup 

Our bilingual data consists of 140K sentence 
pairs in the FBIS data set5. GIZA++ is employed 
to perform the bi-directional word alignment be-
tween the source and target sentences, and the 
final word alignment is generated using the inter-
sect-diag-grow method. All the word-aligned 
bilingual sentence pairs are used to extract 
phrases and rules for the baseline systems. A 5-
gram language model is trained on the target-side 
                                                 
4 Our in-house experimental results show that this system 
performs slightly better than Moses on Chinese-to-English 
translation tasks. 
5 LDC catalog number: LDC2003E14 

of the bilingual data and the Xinhua portion of 
English Gigaword corpus. Berkeley Parser is 
used to generate the English parse trees for the 
rule extraction of the syntax-based system. The 
data set used for weight training in boosting-
based system combination comes from NIST 
MT03 evaluation set. To speed up MERT, all the 
sentences with more than 20 Chinese words are 
removed. The test sets are the NIST evaluation 
sets of MT04, MT05 and MT06. The translation 
quality is evaluated in terms of case-insensitive 
NIST version BLEU metric. Statistical signifi-
cant test is conducted using the bootstrap re-
sampling method proposed by Koehn (2004). 

Beam search and cube pruning (Huang and 
Chiang, 2007) are used to prune the search space 
in all the three baseline systems. By default, both 
of the beam size and the size of n-best list are set 
to 20. 

In the settings of boosting-based system com-
bination, the maximum number of iterations is 
set to 30, and k (in Equation 7) is set to 5. The n-
gram consensuses-based features (in Equation 9) 
used in system combination ranges from unigram 
to 4-gram. 

5.3 Evaluation of Translations 

First we investigate the effectiveness of the 
boosting-based system combination on the three 
systems.  

Figures 2-5 show the BLEU curves on the de-
velopment and test sets, where the X-axis is the 
iteration number, and the Y-axis is the BLEU 
score of the system generated by the boosting-
based system combination. The points at itera-
tion 1 stand for the performance of the baseline 
systems. We see, first of all, that all the three 
systems are improved during iterations on the 
development set. This trend also holds on the test 
sets. After 5, 7 and 8 iterations, relatively stable 
improvements are achieved by the phrase-based 
system, the Hiero system and the syntax-based 
system, respectively. The BLEU scores tend to 
converge to the stable values after 20 iterations 
for all the systems. Figures 2-5 also show that the 
boosting-based system combination seems to be 
more helpful to the phrase-based system than to 
the Hiero system and the syntax-based system. 
For the phrase-based system, it yields over 0.6 
BLEU point gains just after the 3rd iteration on 
all the data sets.  

Table 1 summarizes the evaluation results, 
where the BLEU scores at iteration 5, 10, 15, 20 
and 30 are reported for the comparison. We see 
that the boosting-based system method stably ac- 
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Figure 2: BLEU scores on the development set 
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Figure 3: BLEU scores on the test  set of MT04 

 32

 33

 34

 35

 36

 37

 0  5  10  15  20  25  30

BL
EU

4[
%

]

iteration number

BLEU on MT05 (test)

phrase-based
hiero

syntax-based

Figure 4: BLEU scores on the test set of MT05 
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Phrase-based Hiero Syntax-based 
Dev. MT04 MT05 MT06 Dev. MT04 MT05 MT06 Dev. MT04 MT05 MT06 

Baseline 33.21 33.68 32.68 30.59 33.42 34.30 33.24 30.62 35.84 35.71 35.11 32.43 
Baseline+600best 33.32 33.93 32.84 30.76 33.48 34.46 33.39 30.75 35.95 35.88 35.23 32.58 
Boosting-5Iterations 33.95* 34.32* 33.33* 31.33* 33.73 34.48 33.44 30.83 36.03 35.92 35.27 33.09 
Boosting-10Iterations 34.14* 34.68* 33.42* 31.35* 33.75 34.65 33.75* 31.02 36.14 36.39* 35.47 33.15*
Boosting-15Iterations 33.99* 34.78* 33.46* 31.45* 34.03* 34.88* 33.98* 31.20* 36.36* 36.46* 35.53* 33.43*
Boosting-20Iterations 34.09* 35.11* 33.56* 31.45* 34.17* 35.00* 34.04* 31.29* 36.44* 36.79* 35.77* 33.36*
Boosting-30Iterations 34.12* 35.16* 33.76* 31.59* 34.05* 34.99* 34.05* 31.30* 36.52* 36.81* 35.71* 33.46*

Table 1: Summary of the results (BLEU4[%]) on the development and test sets. * = significantly better 
than baseline (p < 0.05). 
  
hieves significant BLEU improvements after 15 
iterations, and the highest BLEU scores are gen-
erally yielded after 20 iterations.  

Also as shown in Table 1, over 0.7 BLEU 
point gains are obtained on the phrase-based sys-
tem after 10 iterations. The largest BLEU im-
provement on the phrase-based system is over 1 
BLEU point in most cases. These results reflect 
that our method is relatively more effective for 
the phrase-based system than for the other two 

systems, and thus confirms the fact we observed 
in Figures 2-5. 

We also investigate the impact of n-best list 
size on the performance of baseline systems. For 
the comparison, we show the performance of the 
baseline systems with the n-best list size of 600 
(Baseline+600best in Table 1) which equals to 
the maximum number of translation candidates 
accessed in the final combination system (combi- 
ne 30 member systems, i.e. Boosing-30Iterations). 
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Figure 6: Diversity on the development set 
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Figure 7: Diversity on the test set of MT04 
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Figure 8: Diversity on the test set of MT05 
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Figure 9: Diversity on the test set of MT06 
 

As shown in Table 1, Baseline+600best obtains 
stable improvements over Baseline. It indicates 
that the access to larger n-best lists is helpful to 
improve the performance of baseline systems. 
However, the improvements achieved by Base-
line+600best are modest compared to the im-
provements achieved by Boosting-30Iterations. 
These results indicate that the SMT systems can 
benefit more from the diversified outputs of 
member systems rather than from larger n-best 
lists produced by a single system. 

5.4 Diversity among Member Systems 

We also study the change of diversity among the 
outputs of member systems during iterations. 
The diversity is measured in terms of the Trans-
lation Error Rate (TER) metric proposed in 
(Snover et al., 2006). A higher TER score means 
that more edit operations are performed if we 
transform one translation output into another 

translation output, and thus reflects a larger di-
versity between the two outputs. In this work, the 
TER score for a given group of member systems 
is calculated by averaging the TER scores be-
tween the outputs of each pair of member sys-
tems in this group. 

Figures 6-9 show the curves of diversity on 
the development and test sets, where the X-axis 
is the iteration number, and the Y-axis is the di-
versity. The points at iteration 1 stand for the 
diversities of baseline systems. In this work, the 
baseline’s diversity is the TER score of the group 
of baseline candidates that are generated in ad-
vance (Section 5.1). 

We see that the diversities of all the systems 
increase during iterations in most cases, though a 
few drops occur at a few points. It indicates that 
our method is very effective to generate diversi-
fied member systems. In addition, the diversities 
of baseline systems (iteration 1) are much lower 
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than those of the systems generated by boosting 
(iterations 2-30). Together with the results shown 
in Figures 2-5, it confirms our motivation that 
the diversified translation outputs can lead to 
performance improvements over the baseline 
systems. 

Also as shown in Figures 6-9, the diversity of 
the Hiero system is much lower than that of the 
phrase-based and syntax-based systems at each 
individual setting of iteration number. This inter-
esting finding supports the observation that the 
performance of the Hiero system is relatively 
more stable than the other two systems as shown 
in Figures 2-5. The relative lack of diversity in 
the Hiero system might be due to the spurious 
ambiguity in Hiero derivations which generally 
results in very few different translations in trans-
lation outputs (Chiang, 2007). 

5.5 Evaluation of Oracle Translations 

In this set of experiments, we evaluate the oracle 
performance on the n-best lists of the baseline 
systems and the combined systems generated by 
boosting-based system combination. Our primary 
goal here is to study the impact of our method on 
the upper-bound performance.  

Table 2 shows the results, where Base-
line+600best stands for the top-600 translation 
candidates generated by the baseline systems, 
and Boosting-30iterations stands for the ensem-
ble of 30 member systems’ top-20 translation 
candidates. As expected, the oracle performance 
of Boosting-30Iterations is significantly higher 
than that of Baseline+600best. This result indi-
cates that our method can provide much “better” 
translation candidates for system combination 
than enlarging the size of n-best list naively. It 
also gives us a rational explanation for the sig-
nificant improvements achieved by our method 
as shown in Section 5.3. 

 
Data 
Set 

Method Phrase-
based 

Hiero Syntax-
based 

Baseline+600best 46.36 46.51 46.92 Dev. 
Boosting-30Iterations 47.78* 47.44* 48.70* 
Baseline+600best 43.94 44.52 46.88 MT04 
Boosting-30Iterations 45.97* 45.47* 49.40* 
Baseline+600best 42.32 42.47 45.21 MT05 
Boosting-30Iterations 44.82* 43.44* 47.02* 
Baseline+600best 39.47 39.39 40.52 MT06 
Boosting-30Iterations 41.51* 40.10* 41.88* 

Table 2: Oracle performance of various systems. 
* = significantly better than baseline (p < 0.05). 

6 Related Work 

Boosting is a machine learning (ML) method that 
has been well studied in the ML community 

(Freund, 1995; Freund and Schapire, 1997; 
Collins et al., 2002; Rudin et al., 2007), and has 
been successfully adopted in natural language 
processing (NLP) applications, such as document 
classification (Schapire and Singer, 2000) and 
named entity classification (Collins and Singer, 
1999). However, most of the previous work did 
not study the issue of how to improve a single 
SMT engine using boosting algorithms. To our 
knowledge, the only work addressing this issue is 
(Lagarda and Casacuberta, 2008) in which the 
boosting algorithm was adopted in phrase-based 
SMT. However, Lagarda and Casacuberta 
(2008)’s method calculated errors over the 
phrases that were chosen by phrase-based sys-
tems, and could not be applied to many other 
SMT systems, such as hierarchical phrase-based 
systems and syntax-based systems. Differing 
from Lagarda and Casacuberta’s work, we are 
concerned more with proposing a general 
framework which can work with most of the cur-
rent SMT models and empirically demonstrating 
its effectiveness on various SMT systems. 

There are also some other studies on building 
diverse translation systems from a single transla-
tion engine for system combination. The first 
attempt is (Macherey and Och, 2007). They em-
pirically showed that diverse translation systems 
could be generated by changing parameters at 
early-stages of the training procedure. Following 
Macherey and Och (2007)’s work, Duan et al. 
(2009) proposed a feature subspace method to 
build a group of translation systems from various 
different sub-models of an existing SMT system. 
However, Duan et al. (2009)’s method relied on 
the heuristics used in feature sub-space selection. 
For example, they used the remove-one-feature 
strategy and varied the order of n-gram language 
model to obtain a satisfactory group of diverse 
systems. Compared to Duan et al. (2009)’s 
method, a main advantage of our method is that 
it can be applied to most of the SMT systems 
without designing any heuristics to adapt it to the 
specified systems. 

7 Discussion and Future Work 

Actually the method presented in this paper is 
doing something rather similar to Minimum 
Bayes Risk (MBR) methods. A main difference 
lies in that the consensus-based combination 
method here does not model the posterior prob-
ability of each hypothesis (i.e. all the hypotheses 
are assigned an equal posterior probability when 
we calculate the consensus-based features). 
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Greater improvements are expected if MBR 
methods are used and consensus-based combina-
tion techniques smooth over noise in the MERT 
pipeline. 

In this work, we use a sentence-level system 
combination method to generate final transla-
tions. It is worth studying other more sophisti-
cated alternatives, such as word-level and 
phrase-level system combination, to further im-
prove the system performance. 

Another issue is how to determine an appro-
priate number of iterations for boosting-based 
system combination. It is especially important 
when our method is applied in the real-world 
applications. Our empirical study shows that the 
stable and satisfactory improvements can be 
achieved after 6-8 iterations, while the largest 
improvements can be achieved after 20 iterations. 
In our future work, we will study in-depth prin-
cipled ways to determine the appropriate number 
of iterations for boosting-based system combina-
tion. 

8 Conclusions 

We have proposed a boosting-based system com-
bination method to address the issue of building 
a strong translation system from a group of weak 
translation systems generated from a single SMT 
engine. We apply our method to three state-of-
the-art SMT systems, and conduct experiments 
on three NIST Chinese-to-English MT evalua-
tions test sets. The experimental results show that 
our method is very effective to improve the 
translation accuracy of the SMT systems. 
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