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Abstract
We outline different methods to detect er-
rors in automatically-parsed dependency
corpora, by comparing so-called depen-
dency rules to their representation in the
training data and flagging anomalous ones.
By comparing each new rule to every rel-
evant rule from training, we can identify
parts of parse trees which are likely erro-
neous. Even the relatively simple methods
of comparison we propose show promise
for speeding up the annotation process.

1 Introduction and Motivation

Given the need for high-quality dependency parses
in applications such as statistical machine transla-
tion (Xu et al., 2009), natural language generation
(Wan et al., 2009), and text summarization evalu-
ation (Owczarzak, 2009), there is a corresponding
need for high-quality dependency annotation, for
the training and evaluation of dependency parsers
(Buchholz and Marsi, 2006). Furthermore, pars-
ing accuracy degrades unless sufficient amounts
of labeled training data from the same domain
are available (e.g., Gildea, 2001; Sekine, 1997),
and thus we need larger and more varied anno-
tated treebanks, covering a wide range of domains.
However, there is a bottleneck in obtaining an-
notation, due to the need for manual interven-
tion in annotating a treebank. One approach is
to develop automatically-parsed corpora (van No-
ord and Bouma, 2009), but a natural disadvantage
with such data is that it contains parsing errors.
Identifying the most problematic parses for human
post-processing could combine the benefits of au-
tomatic and manual annotation, by allowing a hu-
man annotator to efficiently correct automatic er-
rors. We thus set out in this paper to detect errors
in automatically-parsed data.

If annotated corpora are to grow in scale and re-
tain a high quality, annotation errors which arise

from automatic processing must be minimized, as
errors have a negative impact on training and eval-
uation of NLP technology (see discussion and ref-
erences in Boyd et al., 2008, sec. 1). There is work
on detecting errors in dependency corpus annota-
tion (Boyd et al., 2008), but this is based on finding
inconsistencies in annotation for identical recur-
ring strings. This emphasis on identical strings can
result in high precision, but many strings do not re-
cur, negatively impacting the recall of error detec-
tion. Furthermore, since the same strings often re-
ceive the same automatic parse, the types of incon-
sistencies detected are likely to have resulted from
manual annotation. While we can build from the
insight that simple methods can provide reliable
annotation checks, we need an approach which re-
lies on more general properties of the dependency
structures, in order to develop techniques which
work for automatically-parsed corpora.

Developing techniques to detect errors in parses
in a way which is independent of corpus and
parser has fairly broad implications. By using
only the information available in a training corpus,
the methods we explore are applicable to annota-
tion error detection for either hand-annotated or
automatically-parsed corpora and can also provide
insights for parse reranking (e.g., Hall and Novák,
2005) or parse revision (Attardi and Ciaramita,
2007). Although we focus only on detecting errors
in automatically-parsed data, similar techniques
have been applied for hand-annotated data (Dick-
inson, 2008; Dickinson and Foster, 2009).

Our general approach is based on extracting
a grammar from an annotated corpus and com-
paring dependency rules in a new (automatically-
annotated) corpus to the grammar. Roughly speak-
ing, if a dependency rule—which represents all the
dependents of a head together (see section 3.1)—
does not fit well with the grammar, it is flagged as
potentially erroneous. The methods do not have
to be retrained for a given parser’s output (e.g.,
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Campbell and Johnson, 2002), but work by com-
paring any tree to what is in the training grammar
(cf. also approaches stacking hand-written rules
on top of other parsers (Bick, 2007)).

We propose to flag erroneous parse rules, using
information which reflects different grammatical
properties: POS lookup, bigram information, and
full rule comparisons. We build on a method to
detect so-called ad hoc rules, as described in sec-
tion 2, and then turn to the main approaches in sec-
tion 3. After a discussion of a simple way to flag
POS anomalies in section 4, we evaluate the dif-
ferent methods in section 5, using the outputs from
two different parsers. The methodology proposed
in this paper is easy to implement and independent
of corpus, language, or parser.

2 Approach

We take as a starting point two methods for detect-
ing ad hoc rules in constituency annotation (Dick-
inson, 2008). Ad hoc rules are CFG productions
extracted from a treebank which are “used for spe-
cific constructions and unlikely to be used again,”
indicating annotation errors and rules for ungram-
maticalities (see also Dickinson and Foster, 2009).

Each method compares a given CFG rule to all
the rules in a treebank grammar. Based on the
number of similar rules, a score is assigned, and
rules with the lowest scores are flagged as poten-
tially ad hoc. This procedure is applicable whether
the rules in question are from a new data set—as in
this paper, where parses are compared to a training
data grammar—or drawn from the treebank gram-
mar itself (i.e., an internal consistency check).

The two methods differ in how the comparisons
are done. First, the bigram method abstracts a
rule to its bigrams. Thus, a rule such as NP →
JJ NN provides support for NP → DT JJ JJ NN,
in that it shares the JJ NN sequence. By con-
trast, in the other method, which we call the whole
rule method,1 a rule is compared in its totality
to the grammar rules, using Levenshtein distance.
There is no abstraction, meaning all elements are
present—e.g., NP→ DT JJ JJ NN is very similar
to NP → DT JJ NN because the sequences differ
by only one category.

While previously used for constituencies, what
is at issue is simply the valency of a rule, where
by valency we refer to a head and its entire set

1This is referred to whole daughters in Dickinson (2008),
but the meaning of “daughters” is less clear for dependencies.

of arguments and adjuncts (cf. Przepiórkowski,
2006)—that is, a head and all its dependents. The
methods work because we expect there to be reg-
ularities in valency structure in a treebank gram-
mar; non-conformity to such regularities indicates
a potential problem.

3 Ad hoc rule detection

3.1 An appropriate representation
To capture valency, consider the dependency tree
from the Talbanken05 corpus (Nilsson and Hall,
2005) in figure 1, for the Swedish sentence in (1),
which has four dependency pairs.2

(1) Det
it

går
goes

bara
just

inte
not

ihop
together

.

‘It just doesn’t add up.’

SS MA NA PL

Det går bara inte ihop
PO VV AB AB AB

Figure 1: Dependency graph example

On a par with constituency rules, we define a
grammar rule as a dependency relation rewriting
as a head with its sequence of POS/dependent
pairs (cf. Kuhlmann and Satta, 2009), as in fig-
ure 2. This representation supports the detection
of idiosyncracies in valency.3

1. TOP→ root ROOT:VV
2. ROOT→ SS:PO VV MA:AB NA:AB PL:AB
3. SS→ PO 5. NA→ AB
4. MA→ AB 6. PL→ AB

Figure 2: Rule representation for (1)

For example, for the ROOT category, the head
is a verb (VV), and it has 4 dependents. The
extent to which this rule is odd depends upon
whether comparable rules—i.e., other ROOT rules
or other VV rules (see section 3.2)—have a simi-
lar set of dependents. While many of the other
rules seem rather spare, they provide useful infor-
mation, showing categories which have no depen-
dents. With a TOP rule, we have a rule for every

2Category definitions are in appendix A.
3Valency is difficult to define for coordination and is spe-

cific to an annotation scheme. We leave this for the future.
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head, including the virtual root. Thus, we can find
anomalous rules such as TOP → root ROOT:AV
ROOT:NN, where multiple categories have been
parsed as ROOT.

3.2 Making appropriate comparisons
In comparing rules, we are trying to find evidence
that a particular (parsed) rule is valid by examining
the evidence from the (training) grammar.

Units of comparison To determine similarity,
one can compare dependency relations, POS tags,
or both. Valency refers to both properties, e.g.,
verbs which allow verbal (POS) subjects (depen-
dency). Thus, we use the pairs of dependency re-
lations and POS tags as the units of comparison.

Flagging individual elements Previous work
scored only entire rules, but some dependencies
are problematic and others are not. Thus, our
methods score individual elements of a rule.

Comparable rules We do not want to com-
pare a rule to all grammar rules, only to those
which should have the same valents. Compara-
bility could be defined in terms of a rule’s depen-
dency relation (LHS) or in terms of its head. Con-
sider the four different object (OO) rules in (2).
These vary a great deal, and much of the variabil-
ity comes from the fact that they are headed by
different POS categories, which tend to have dif-
ferent selectional properties. The head POS thus
seems to be predictive of a rule’s valency.

(2) a. OO→ PO
b. OO→ DT:EN AT:AJ NN ET:VV
c. OO→ SS:PO QV VG:VV
d. OO→ DT:PO AT:AJ VN

But we might lose information by ignoring rules
with the same left-hand side (LHS). Our approach
is thus to take the greater value of scores when
comparing to rules either with the same depen-
dency relation or with the same head. A rule has
multiple chances to prove its value, and low scores
will only be for rules without any type of support.

Taking these points together, for a given rule of
interest r, we assign a score (S) to each element ei

in r, where r = e1...em by taking the maximum
of scores for rules with the same head (h) or same
LHS (lhs), as in (3). For the first element in (2b),
for example, S(DT:EN) = max{s(DT:EN, NN),
s(DT:EN, OO)}. The question is now how we de-
fine s(ei, c) for the comparable element c.

(3) S(ei) = max{s(ei, h), s(ei, lhs)}

3.3 Whole rule anomalies

3.3.1 Motivation
The whole rule method compares a list of a rule’s
dependents to rules in a database, and then flags
rule elements without much support. By using all
dependents as a basis for comparison, this method
detects improper dependencies (e.g., an adverb
modifying a noun), dependencies in the wrong
overall location of a rule (e.g., an adverb before
an object), and rules with unnecessarily long ar-
gument structures. For example, in (4), we have
an improper relation between skall (‘shall’) and
sambeskattas (‘be taxed together’), as in figure 3.
It is parsed as an adverb (AA), whereas it should
be a verb group (VG). The rule for this part of the
tree is +F → ++:++ SV AA:VV, and the AA:VV
position will be low-scoring because the ++:++ SV
context does not support it.

(4) Makars
spouses’

övriga
other

inkomster
incomes

är
are

B-inkomster
B-incomes

och
and

skall
shall

som
as

tidigare
previously

sambeskattas
be taxed togeher

.

.
‘The other incomes of spouses are B-incomes and

shall, as previously, be taxed together.’

++ +F UK KA VG

och skall som tidigare sambeskattas
++ SV UK AJ VV

++ +F UK SS AA

och skall som tidigare sambeskattas
++ SV UK AJ VV

Figure 3: Wrong label (top=gold, bottom=parsed)

3.3.2 Implementation
The method we use to determine similarity arises
from considering what a rule is like without a
problematic element. Consider +F → ++:++ SV
AA:VV from figure 3, where AA should be a dif-
ferent category (VG). The rule without this er-
ror, +F → ++:++ SV, starts several rules in the
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training data, including some with VG:VV as the
next item. The subrule ++:++ SV seems to be
reliable, whereas the subrules containing AA:VV
(++:++ AA:VV and SV AA:VV) are less reliable.
We thus determine reliability by seeing how often
each subsequence occurs in the training rule set.

Throughout this paper, we use the term subrule
to refer to a rule subsequence which is exactly one
element shorter than the rule it is a component
of. We examine subrules, counting their frequency
as subrules, not as complete rules. For example,
TOP rules with more than one dependent are prob-
lematic, e.g., TOP → root ROOT:AV ROOT:NN.
Correspondingly, there are no rules with three ele-
ments containing the subrule root ROOT:AV.

We formalize this by setting the score s(ei, c)
equal to the summation of the frequencies of all
comparable subrules containing ei from the train-
ing data, as in (5), where B is the set of subrules
of r with length one less.

(5) s(ei, c) =
∑

sub∈B:ei∈sub C(sub, c)

For example, with c = +F, the frequency of +F
→ ++:++ SV as a subrule is added to the scores
for ++:++ and SV. In this case, +F → ++:++
SV VG:BV, +F → ++:++ SV VG:AV, and +F
→ ++:++ SV VG:VV all add support for +F →
++:++ SV being a legitimate subrule. Thus, ++:++
and SV are less likely to be the sources of any
problems. Since +F → SV AA:VV and +F →
++:++ AA:VV have very little support in the train-
ing data, AA:VV receives a low score.

Note that the subrule count C(sub, c) is differ-
ent than counting the number of rules containing
a subrule, as can be seen with identical elements.
For example, for SS→ VN ET:PR ET:PR, C(VN
ET:PR, SS) = 2, in keeping with the fact that there
are 2 pieces of evidence for its legitimacy.

3.4 Bigram anomalies

3.4.1 Motivation
The bigram method examines relationships be-
tween adjacent sisters, complementing the whole
rule method by focusing on local properties. For
(6), for example, we find the gold and parsed trees
in figure 4. For the long parsed rule TA → PR
HD:ID HD:ID IR:IR AN:RO JR:IR, all elements
get low whole rule scores, i.e., are flagged as po-
tentially erroneous. But only the final elements
have anomalous bigrams: HD:ID IR:IR, IR:IR
AN:RO, and AN:RO JR:IR all never occur.

(6) När
when

det
it

gäller
concerns

inkomståret
the income year

1971
1971

(
(

taxeringsåret
assessment year

1972
1972

)
)

skall
shall

barnet
the child

. . .

. . .
‘Concerning the income year of 1971 (assessment year

1972), the child . . . ’

3.4.2 Implementation
To obtain a bigram score for an element, we sim-
ply add together the bigrams which contain the el-
ement in question, as in (7).

(7) s(ei, c) = C(ei−1ei, c) + C(eiei+1, c)

Consider the rule from figure 4. With c =
TA, the bigram HD:ID IR:IR never occurs, so
both HD:ID and IR:IR get 0 added to their score.
HD:ID HD:ID, however, is a frequent bigram, so
it adds weight to HD:ID, i.e., positive evidence
comes from the bigram on the left. If we look at
IR:IR, on the other hand, IR:IR AN:RO occurs 0
times, and so IR:IR gets a total score of 0.

Both scoring methods treat each element inde-
pendently. Every single element could be given a
low score, even though once one is corrected, an-
other would have a higher score. Future work can
examine factoring in all elements at once.

4 Additional information

The methods presented so far have limited defini-
tions of comparability. As using complementary
information has been useful in, e.g., POS error de-
tection (Loftsson, 2009), we explore other simple
comparable properties of a dependency grammar.
Namely, we include: a) frequency information of
an overall dependency rule and b) information on
how likely each dependent is to be in a relation
with its head, described next.

4.1 Including POS information

Consider PA → SS:NN XX:XX HV OO:VN, as
illustrated in figure 5 for the sentence in (8). This
rule is entirely correct, yet the XX:XX position has
low whole rule and bigram scores.

(8) Uppgift
information

om
of

vilka
which

orter
neighborhood

som
who

har
has

utkörning
delivery

finner
find

Ni
you

också
also

i
in

. . .

. . .
‘You can also find information about which neighbor-

hoods have delivery services in . . . ’

732



AA HD HD DT PA IR DT AN JR ...

När det gäller inkomståret 1971 ( taxeringsåret 1972 ) ...
PR ID ID NN RO IR NN RO IR ...

TA HD HD PA ET IR DT AN JR ...

När det gäller inkomståret 1971 ( taxeringsåret 1972 ) ...
PR ID ID NN RO IR NN RO IR ...

Figure 4: A rule with extra dependents (top=gold, bottom=parsed)

ET DT SS XX PA OO

Uppgift om vilka orter som har utkörning
NN PR PO NN XX HV VN

Figure 5: Overflagging (gold=parsed)

One method which does not have this problem
of overflagging uses a “lexicon” of POS tag pairs,
examining relations between POS, irrespective of
position. We extract POS pairs, note their depen-
dency relation, and add a L/R to the label to in-
dicate which is the head (Boyd et al., 2008). Ad-
ditionally, we note how often two POS categories
occur as a non-depenency, using the label NIL, to
help determine whether there should be any at-
tachment. We generate NILs by enumerating all
POS pairs in a sentence. For example, from fig-
ure 5, the parsed POS pairs include NN PR 7→ ET-
L, NN PO 7→ NIL, etc.

We convert the frequencies to probabilities. For
example, of 4 total occurrences of XX HV in the
training data, 2 are XX-R (cf. figure 5). A proba-
bility of 0.5 is quite high, given that NILs are often
the most frequent label for POS pairs.

5 Evaluation

In evaluating the methods, our main question is:
how accurate are the dependencies, in terms of
both attachment and labeling? We therefore cur-
rently examine the scores for elements functioning

as dependents in a rule. In figure 5, for example,
for har (‘has’), we look at its score within ET →
PR PA:HV and not when it functions as a head, as
in PA→ SS:NN XX:XX HV OO:VN.

Relatedly, for each method, we are interested
in whether elements with scores below a thresh-
old have worse attachment accuracy than scores
above, as we predict they do. We can measure
this by scoring each testing data position below
the threshold as a 1 if it has the correct head and
dependency relation and a 0 otherwise. These are
simply labeled attachment scores (LAS). Scoring
separately for positions above and below a thresh-
old views the task as one of sorting parser output
into two bins, those more or less likely to be cor-
rectly parsed. For development, we also report un-
labeled attachement scores (UAS).

Since the goal is to speed up the post-editing of
corpus data by flagging erroneous rules, we also
report the precision and recall for error detection.
We count either attachment or labeling errors as
an error, and precision and recall are measured
with respect to how many errors are found below
the threshold. For development, we use two F-
scores to provide a measure of the settings to ex-
amine across language, corpus, and parser condi-
tions: the balanced F1 measure and the F0.5 mea-
sure, weighing precision twice as much. Precision
is likely more important in this context, so as to
prevent annotators from sorting through too many
false positives. In practice, one way to use these
methods is to start with the lowest thresholds and
work upwards until there are too many non-errors.

To establish a basis for comparison, we compare
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method performance to a parser on its own.4 By
examining the parser output without any automatic
assistance, how often does a correction need to be
made?

5.1 The data

All our data comes from the CoNLL-X Shared
Task (Buchholz and Marsi, 2006), specifically the
4 data sets freely available online. We use the
Swedish Talbanken data (Nilsson and Hall, 2005)
and the transition-based dependency parser Malt-
Parser (Nivre et al., 2007), with the default set-
tings, for developing the method. To test across
languages and corpora, we use MaltParser on the
other 3 corpora: the Danish DDT (Kromann,
2003), Dutch Alpino (van der Beek et al., 2002),
and Portuguese Bosque data (Afonso et al., 2002).
Then, we present results using the graph-based
parser MSTParser (McDonald and Pereira, 2006),
again with default settings, to test the methods
across parsers. We use the gold standard POS tags
for all experiments.

5.2 Development data

In the first line of table 1, we report the baseline
MaltParser accuracies on the Swedish test data,
including baseline error detection precision (=1-
LASb), recall, and (the best) F-scores. In the rest
of table 1, we report the best-performing results
for each of the methods,5 providing the number
of rules below and above a particular threshold,
along with corresponding UAS and LAS values.
To get the raw number of identified rules, multiply
the number of corpus position below a threshold
(b) times the error detection precision (P ). For ex-
ample, the bigram method with a threshold of 39
leads to finding 283 errors (455 × .622).

Dependency elements with frequency below the
lowest threshold have lower attachment scores
(66.6% vs. 90.1% LAS), showing that simply us-
ing a complete rule helps sort dependencies. How-
ever, frequency thresholds have fairly low preci-
sion, i.e., 33.4% at their best. The whole rule and
bigram methods reveal greater precision in iden-
tifying problematic dependencies, isolating ele-
ments with lower UAS and LAS scores than with
frequency, along with corresponding greater pre-

4One may also use parser confidence or parser revision
methods as a basis of comparison, but we are aware of no sys-
tematic evaluation of these approaches for detecting errors.

5Freq=rule frequency, WR=whole rule, Bi=bigram,
POS=POS-based (POS scores multiplied by 10,000)

cision and F-scores. The bigram method is more
fine-grained, identifying small numbers of rule el-
ements at each threshold, resulting in high error
detection precision. With a threshold of 39, for ex-
ample, we find over a quarter of the parser errors
with 62% precision, from this one piece of infor-
mation. For POS information, we flag 23.6% of
the cases with over 60% precision (at 81.6).

Taking all these results together, we can begin
to sort more reliable from less reliable dependency
tree elements, using very simple information. Ad-
ditionally, these methods naturally group cases
together by linguistic properties (e.g., adverbial-
verb dependencies within a particualr context), al-
lowing a human to uncover the principle behind
parse failure and ajudicate similar cases at the
same time (cf. Wallis, 2003).

5.3 Discussion

Examining some of the output from the Tal-
banken test data by hand, we find that a promi-
nent cause of false positives, i.e., correctly-parsed
cases with low scores, stems from low-frequency
dependency-POS label pairs. If the dependency
rarely occurs in the training data with the partic-
ular POS, then it receives a low score, regardless
of its context. For example, the parsed rule TA
→ IG:IG RO has a correct dependency relation
(IG) between the POS tags IG and its head RO, yet
is assigned a whole rule score of 2 and a bigram
score of 20. It turns out that IG:IG only occurs
144 times in the training data, and in 11 of those
cases (7.6%) it appears immediately before RO.
One might consider normalizing the scores based
on overall frequency or adjusting the scores to ac-
count for other dependency rules in the sentence:
in this case, there may be no better attachment.

Other false positives are correctly-parsed ele-
ments that are a part of erroneous rules. For in-
stance, in AA→ UK:UK SS:PO TA:AJ AV SP:AJ
OA:PR +F:HV +F:HV, the first +F:HV is correct,
yet given a low score (0 whole rule, 1 bigram).
The following and erroneous +F:HV is similarly
given a low score. As above, such cases might
be handled by looking for attachments in other
rules (cf. Attardi and Ciaramita, 2007), but these
cases should be relatively unproblematic for hand-
correction, given the neighboring error.

We also examined false negatives, i.e., errors
with high scores. There are many examples of PR
PA:NN rules, for instance, with the NN improp-
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Score Thr. b a UASb LASb UASa LASa P R F1 F0.5

None n/a 5656 0 87.4% 82.0% 0% 0% 18.0% 100% 30.5% 21.5%
Freq 0 1951 3705 76.6% 66.6% 93.1% 90.1% 33.4% 64.1% 43.9% 36.9%
WR 0 894 4762 64.7% 54.0% 91.7% 87.3% 46.0% 40.5% 43.0% 44.8%

6 1478 4178 71.1% 60.9% 93.2% 89.5% 39.1% 56.9% 46.4% 41.7%
Bi 0 56 5600 10.7% 7.1% 88.2% 82.8% 92.9% 5.1% 9.7% 21.0%

39 455 5201 51.6% 37.8% 90.6% 85.9% 62.2% 27.9% 38.5% 49.9%
431 1685 3971 74.1% 63.7% 93.1% 89.8% 36.3% 60.1% 45.2% 39.4%

POS 0 54 5602 27.8% 22.2% 87.4% 82.6% 77.8% 4.1% 7.9% 17.0%
81.6 388 5268 48.5% 38.4% 90.3% 85.3% 61.6% 23.5% 34.0% 46.5%
763 1863 3793 75.4% 65.8% 93.3% 90.0% 34.2% 62.8% 44.3% 37.7%

Table 1: MaltParser results for Talbanken, for select values (b = below, a = above threshold (Thr.))

erly attached, but there are also many correct in-
stances of PR PA:NN. To sort out the errors, one
needs to look at lexical knowledge and/or other de-
pendencies in the tree. With so little context, fre-
quent rules with only one dependent are not prime
candidates for our methods of error detection.

5.4 Other corpora
We now turn to the parsed data from three other
corpora. The Alpino and Bosque corpora are ap-
proximately the same size as Talbanken, so we use
the same thresholds for them. The DDT data is
approximately half the size; to adjust, we simply
halve the scores. In tables 2, 3, and 4, we present
the results, using the best F0.5 and F1 settings from
development. At a glance, we observe that the best
method differs for each corpus and depending on
an emphasis of precision or recall, with the bigram
method generally having high precision.

Score Thr. b LASb LASa P R
None n/a 5585 73.8% 0% 26.2% 100%
Freq 0 1174 43.2% 81.9% 56.8% 45.6%
WR 0 483 32.5% 77.7% 67.5% 22.3%

6 787 39.4% 79.4% 60.6% 32.6%
Bi 39 253 33.6% 75.7% 66.4% 11.5%

431 845 45.6% 78.8% 54.4% 31.4%
POS 81.6 317 51.7% 75.1% 48.3% 10.5%

763 1767 53.5% 83.2% 46.5% 56.1%

Table 2: MaltParser results for Alpino

For Alpino, error detection is better with fre-
quency than, for example, bigram scores. This is
likely due to the fact that Alpino has the small-
est label set of any of the corpora, with only 24
dependency labels and 12 POS tags (cf. 64 and
41 in Talbanken, respectively). With a smaller la-
bel set, there are less possible bigrams that could
be anomalous, but more reliable statistics about a

Score Thr. b LASb LASa P R
None n/a 5867 82.2% 0% 17.8% 100%
Freq 0 1561 61.2% 89.9% 38.8% 58.1%
WR 0 693 48.1% 86.8% 51.9% 34.5%

6 1074 54.4% 88.5% 45.6% 47.0%
Bi 39 227 15.4% 84.9% 84.6% 18.4%

431 776 51.0% 87.0% 49.0% 36.5%
POS 81.6 369 33.3% 85.5% 66.7% 23.6%

763 1681 60.1% 91.1% 39.9% 64.3%

Table 3: MaltParser results for Bosque

Score Thr. b LASb LASa P R
None n/a 5852 81.0% 0% 19.0% 100%
Freq 0 1835 65.9% 88.0% 34.1% 56.4%
WR 0 739 53.9% 85.0% 46.1% 30.7%

3 1109 60.1% 85.9% 39.9% 39.9%
Bi 19.5 185 25.4% 82.9% 74.6% 12.4%

215.5 884 56.8% 85.4% 43.2% 34.4%
POS 40.8 179 30.2% 82.7% 69.8% 11.3%

381.5 1214 62.5% 85.9% 37.5% 41.0%

Table 4: MaltParser results for DDT

whole rule. Likewise, with fewer possible POS
tag pairs, Alpino has lower precision for the low-
threshold POS scores than the other corpora.

For the whole rule scores, the DDT data is
worse (compare its 46.1% precision with Bosque’s
45.6%, with vastly different recall values), which
could be due to the smaller training data. One
might also consider the qualitative differences in
the dependency inventory of DDT compared to the
others—e.g., appositions, distinctions in names,
and more types of modifiers.

5.5 MSTParser

Turning to the results of running the methods
on the output of MSTParser, we find similar but
slightly worse values for the whole rule and bi-
gram methods, as shown in tables 5-8. What is
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most striking are the differences in the POS-based
method for Bosque and DDT (tables 7 and 8),
where a large percentage of the test corpus is un-
derneath the threshold. MSTParser is apparently
positing fewer distinct head-dependent pairs, as
most of them fall under the given thresholds. With
the exception of the POS-based method for DDT
(where LASb is actually higher than LASa) the
different methods seem to be accurate enough to
be used as part of corpus post-editing.

Score Thr. b LASb LASa P R
None n/a 5656 81.1% 0% 18.9% 100%
Freq 0 3659 65.2% 89.7% 34.8% 64.9%
WR 0 4740 55.7% 86.0% 44.3% 37.9%

6 4217 59.9% 88.3% 40.1% 53.9%
Bi 39 5183 38.9% 84.9% 61.1% 27.0%

431 3997 63.2% 88.5% 36.8% 57.1%
POS 81.6 327 42.8% 83.4% 57.2% 17.5%

763 1764 68.0% 87.0% 32.0% 52.7%

Table 5: MSTParser results for Talbanken

Score Thr. b LASb LASa P R
None n/a 5585 75.4% 0% 24.6% 100%
Freq 0 1371 49.5% 83.9% 50.5% 50.5%
WR 0 453 40.0% 78.5% 60.0% 19.8%

6 685 45.4% 79.6% 54.6% 27.2%
Bi 39 226 39.8% 76.9% 60.2% 9.9%

431 745 48.2% 79.6% 51.8% 28.1%
POS 81.6 570 60.4% 77.1% 39.6% 16.5%

763 1860 61.9% 82.1% 38.1% 51.6%

Table 6: MSTParser results for Alpino

Score Thr. b LASb LASa P R
None n/a 5867 82.5% 0% 17.5% 100%
Freq 0 1562 63.9% 89.3% 36.1% 55.0%
WR 0 540 50.6% 85.8% 49.4% 26.0%

6 985 58.0% 87.5% 42.0% 40.4%
Bi 39 117 34.2% 83.5% 65.8% 7.5%

431 736 56.4% 86.3% 43.6% 31.3%
POS 81.6 2978 75.8% 89.4% 24.2% 70.3%

763 3618 74.3% 95.8% 25.7% 90.7%

Table 7: MSTParser results for Bosque

Score Thr. b LASb LASa P R
None n/a 5852 82.9% 0% 17.1% 100%
Freq 0 1864 70.3% 88.8% 29.7% 55.3%
WR 0 624 60.6% 85.6% 39.4% 24.6%

3 1019 65.4% 86.6% 34.6% 35.3%
Bi 19.5 168 28.6% 84.5% 71.4% 12.0%

215.5 839 61.6% 86.5% 38.4% 32.2%
POS 40.8 5714 83.0% 79.0% 17.0% 97.1%

381.5 5757 82.9% 80.0% 17.1% 98.1%

Table 8: MSTParser results for DDT

6 Summary and Outlook

We have proposed different methods for flag-
ging the errors in automatically-parsed corpora, by
treating the problem as one of looking for anoma-
lous rules with respect to a treebank grammar.
The different methods incorporate differing types
and amounts of information, notably comparisons
among dependency rules and bigrams within such
rules. Using these methods, we demonstrated suc-
cess in sorting well-formed output from erroneous
output across language, corpora, and parsers.

Given that the rule representations and compar-
ison methods use both POS and dependency in-
formation, a next step in evaluating and improv-
ing the methods is to examine automatically POS-
tagged data. Our methods should be able to find
POS errors in addition to dependency errors. Fur-
thermore, although we have indicated that differ-
ences in accuracy can be linked to differences in
the granularity and particular distinctions of the
annotation scheme, it is still an open question as
to which methods work best for which schemes
and for which constructions (e.g., coordination).
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A Some Talbanken05 categories

POS tags
++ coord. conj.
AB adverb
AJ adjective
AV vara (be)
EN indef. article
HV ha(va) (have)
ID part of idiom
IG punctuation
IR parenthesis
NN noun
PO pronoun
PR preposition
RO numeral
QV kunna (can)
SV skola (will)
UK sub. conj.
VN verbal noun
VV verb
XX unclassifiable

Dependencies
++ coord. conj.
+F main clause coord.
AA adverbial
AN apposition
AT nomainl pre-modifier
DT determiner
ET nominal post-modifier
HD head
IG punctuation
IR parenthesis
JR second parenthesis
KA comparative adverbial
MA attitude adverbial
NA negation adverbial
OO object
PA preposition comp.
PL verb particle
SS subject
TA time adverbial
UK sub. conj.
VG verb group
XX unclassifiable

736



References

Afonso, Susana, Eckhard Bick, Renato Haber and
Diana Santos (2002). Floresta Sintá(c)tica: a
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In Anne Abeillé (ed.), Treebanks: Building and
using syntactically annoted corpora, Dordrecht:
Kluwer Academic Publishers, pp. 61–71.

Wan, Stephen, Mark Dras, Robert Dale and Cécile
Paris (2009). Improving Grammaticality in Sta-

737



tistical Sentence Generation: Introducing a De-
pendency Spanning Tree Algorithm with an Ar-
gument Satisfaction Model. In Proceedings of
EACL-09. Athens, Greece, pp. 852–860.

Xu, Peng, Jaeho Kang, Michael Ringgaard and
Franz Och (2009). Using a Dependency Parser
to Improve SMT for Subject-Object-Verb Lan-
guages. In Proceedings of NAACL-HLT-09.
Boulder, Colorado, pp. 245–253.

738


