
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 525–533,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Optimal rank reduction
for Linear Context-Free Rewriting Systems with Fan-Out Two

Benot Sagot
INRIA & Université Paris 7

Le Chesnay, France
benoit.sagot@inria.fr

Giorgio Satta
Department of Information Engineering

University of Padua, Italy
satta@dei.unipd.it

Abstract

Linear Context-Free Rewriting Systems
(LCFRSs) are a grammar formalism ca-
pable of modeling discontinuous phrases.
Many parsing applications useLCFRSs
where thefan-out (a measure of the dis-
continuity of phrases) does not exceed2.
We present an efficient algorithm for opti-
mal reduction of the length of production
right-hand side inLCFRSs with fan-out at
most2. This results in asymptotical run-
ning time improvement for known parsing
algorithms for this class.

1 Introduction

Linear Context-Free Rewriting Systems
(LCFRSs) have been introduced by Vijay-
Shankeret al. (1987) for modeling the syntax
of natural language. The formalism extends the
generative capacity of context-free grammars, still
remaining far below the class of context-sensitive
grammars. An important feature ofLCFRSs is
their ability to generate discontinuous phrases.
This has been recently exploited for modeling
phrase structure treebanks with discontinuous
constituents (Maier and Søgaard, 2008), as well as
non-projective dependency treebanks (Kuhlmann
and Satta, 2009).

The maximum numberf of tuple components
that can be generated by anLCFRS G is called
the fan-out of G, and the maximum numberr of
nonterminals in the right-hand side of a production
is called therank of G. As an example, context-
free grammars areLCFRSs with f = 1 and r

given by the maximum length of a production
right-hand side. Tree adjoining grammars (Joshi
and Levy, 1977) can also be viewed as a special
kind of LCFRS with f = 2, since each auxil-
iary tree generates two strings, and withr given
by the maximum number of adjunction and sub-
stitution sites in an elementary tree. Beyond tree

adjoining languages,LCFRSs with f = 2 can
also generate languages in which pair of strings
derived from different nonterminals appear in so-
called crossing configurations. It has recently been
observed that, in this way,LCFRSs with f = 2
can model the vast majority of data in discontinu-
ous phrase structure treebanks and non-projective
dependency treebanks (Maier and Lichte, 2009;
Kuhlmann and Satta, 2009).

Under a theoretical perspective, the parsing
problem forLCFRSs with f = 2 is NP-complete
(Satta, 1992), and in known parsing algorithms
the running time is exponentially affected by the
rank r of the grammar. Nonetheless, in natu-
ral language parsing applications, it is possible to
achieve efficient, polynomial parsing if we suc-
ceed in reducing the rankr (number of nontermi-
nals in the right-hand side) of individualLCFRSs’
productions (Kuhlmann and Satta, 2009). This
process is called productionfactorization. Pro-
duction factorization is very similar to the reduc-
tion of a context-free grammar production into
Chomsky normal form. However, in theLCFRS
case some productions might not be reducible to
r = 2, and the process stops at some larger value
for r, which in the worst case might as well be the
rank of the source production (Rambow and Satta,
1999).

Motivated by parsing efficiency, the factoriza-
tion problem forLCFRSs with f = 2 has at-
tracted the attention of many researchers in recent
years. Most of the literature has been focusing on
binarization algorithms, which attempt to find a re-
duction tor = 2 and return a failure if this is not
possible. Gómez-Rodrı́guezet al. (2009) report a
general binarization algorithm forLCFRS which,
in the case off = 2, works in timeO(|p|7), where
|p| is the size of the input production. A more ef-
ficient binarization algorithm for the casef = 2 is
presented in (Gómez-Rodrı́guez and Satta, 2009),
working in timeO(|p|).

525

In this paper we are interested in general factor-
ization algorithms, i.e., algorithms that find factor-
izations with the smallest possible rank (not nec-
essarilyr = 2). We present a novel technique that
solves the general factorization problem in time
O(|p|2) for LCFRSs withf = 2.

Strong generative equivalence results between
LCFRS and other finite copying parallel rewrit-
ing systems have been discussed in (Weir, 1992)
and in (Rambow and Satta, 1999). Through these
equivalence results, we can transfer the factoriza-
tion techniques presented in this article to other
finite copying parallel rewriting systems.

2 LCFRSs

In this section we introduce the basic notation for
LCFRS and the notion of production factoriza-
tion.

2.1 Definitions

Let ΣT be a finite alphabet of terminal symbols.
As usual,Σ ∗

T denotes the set of all finite strings
over ΣT , including the empty stringε. For in-
tegerk ≥ 1, (Σ ∗

T)k denotes the set of all tuples
(w1, . . . , wk) of stringswi ∈ Σ ∗

T . In what follows
we are interested in functions mapping several tu-
ples of strings inΣ ∗

T into tuples of strings inΣ ∗
T .

Let r andf be two integers,r ≥ 0 andf ≥ 1.
We say that a functiong hasrank r if there exist
integersfi ≥ 1, 1 ≤ i ≤ r, such thatg is defined
on (Σ ∗

T)f1 × (Σ ∗
T)f2 × · · · × (Σ ∗

T)fr . We also say
thatg hasfan-out f if the range ofg is a subset of
(Σ ∗

T)f . Let yh, xij, 1 ≤ h ≤ f , 1 ≤ i ≤ r and
1 ≤ j ≤ fi, be string-valued variables. A func-
tion g as above is said to belinear regular if it is
defined by an equation of the form

g(〈x11, . . . , x1f1〉, . . . , 〈xr1, . . . , xrfr
〉) =

= 〈y1, . . . , yf 〉, (1)

where〈y1, . . . , yf 〉 represents some grouping into
f sequences of all and only the variables appear-
ing in the left-hand side of (1) (without repeti-
tions) along with some additional terminal sym-
bols (with possible repetitions).

For a mathematical definition ofLCFRS we re-
fer the reader to (Weir, 1992, p. 137). Informally,
in aLCFRS every nonterminal symbolA is asso-
ciated with an integerϕ(A) ≥ 1, called its fan-out,
and it generates tuples in(Σ ∗

T)ϕ(A). Productions
in aLCFRS have the form

p : A → g(B1, B2, . . . , Bρ(p)),

whereρ(p) ≥ 0, A andBi, 1 ≤ i ≤ ρ(p), are non-
terminal symbols, andg is a linear regular func-
tion having rankρ(p) and fan-outϕ(A), defined
on(Σ ∗

T)ϕ(B1)×· · ·× (Σ ∗
T)ϕ(Bρ(p)) and taking val-

ues in(Σ ∗
T)ϕ(A). The basic idea underlying the

rewriting relation associated withLCFRS is that
productionp applies to any sequence of string tu-
ples generated by theBi’s, and provides a new
string tuple in(Σ ∗

T)ϕ(A) obtained through function
g. We say thatϕ(p) = ϕ(A) is the fan-out of p,
andρ(p) is therank of p.

Example 1 Let L be the languageL =
{anbnambmanbnambm |n,m ≥ 1}. A LCFRS
generatingL is defined by means of the nonter-
minalsS, ϕ(S) = 1, andA, ϕ(A) = 2, and the
productions in figure 1. Observe that nonterminal
A generates all tuples of the form〈anbn, anbn〉. 2

Recognition and parsing for a givenLCFRS
can be carried out in polynomial time on the length
of the input string. This is usually done by exploit-
ing standard dynamic programming techniques;
see for instance (Seki et al., 1991).1 However, the
polynomial degree in the running time is a mono-
tonically strictly increasing function that depends
on both the rank and the fan-out of the productions
in the grammar. To optimize running time, one can
then recast the source grammar in such a way that
the value of the above function is kept to a min-
imum. One way to achieve this is by factorizing
the productions of aLCFRS, as we now explain.

2.2 Factorization

Consider a LCFRS production of the form
p : A → g(B1, B2, . . . , Bρ(p)), where g is
specified as in (1). Let alsoC be a subset of
{B1, B2, . . . , Bρ(p)} such that|C| 6= 0 and |C| 6=
ρ(p). We let ΣC be the alphabet of all variables
xij defined as in (1), for all values ofi andj such
that Bi ∈ C and 1 ≤ j ≤ fi. For eachi with
1 ≤ i ≤ f , we rewrite each stringyi in (1) in a
form yi = y′i0zi1y

′
i1 · · · y

′

idi−1
zidi

y′idi
, with di ≥ 0,

such that the following conditions are all met:

• eachzij , 1 ≤ j ≤ di, is a string with one or
more occurrences of variables, all inΣC ;

• eachy′ij, 1 ≤ j ≤ di − 1, is a non-empty
string with no occurrences of symbols inΣC ;

• y′0j andy′0di
are (possibly empty) strings with

no occurrences of symbols inΣC .
1In (Seki et al., 1991) a syntactic variant ofLCFRS is

used, called multiple context-free grammars.

526

S → gS(A,A), gS(〈x11, x12〉, 〈x21, x22〉) = 〈x11x21x12x22〉;
A → gA(A), gA(〈x11, x12〉) = 〈ax11b, ax12b〉;
A → g′A(), g′A() = 〈ab, ab〉.

Figure 1: ALCFRS for languageL = {anbnambmanbnambm |n,m ≥ 1}.

Let c = |C| andc = ρ(p) − |C|. Assume that
C = {Bh1 , . . . , Bhc

}, and{B1, . . . , Bρ(p)} − C =
{Bh′1

, . . . , Bh′c
}. We introduce a fresh nontermi-

nal C with ϕ(C) =
∑f

i=1 di and replace pro-
duction p in our grammar by means of the two
new productionsp1 : C → g1(Bh1 , . . . , Bhc

) and
p2 : A → g2(C,Bh′1

, . . . , Bh′
c
). Functionsg1 and

g2 are defined as:

g1(〈xh11, . . . , xh1fh1
〉, . . . , 〈xhc1, . . . , xhcfhc

〉)

= 〈z11, · · · , z1d1 , z21, · · · , zfdf
〉;

g2(〈xh′11, . . . , xh′1fh′
1

〉, . . . , 〈xh′c1
, . . . , xh′cfh′

c

〉)

= 〈y′10, . . . , y
′
1d1

, y′20, . . . , y
′
fdf

〉.

Note that productionsp1 andp2 have rank strictly
smaller than the source productionp. Further-
more, if it is possible to choose setC in such a
way that

∑f
i=0 di ≤ f , then the fan-out ofp1 and

p2 will be no greater than the fan-out ofp.
We can iterate the procedure above as many

times as possible, under the condition that the fan-
out of the productions does not increase.

Example 2 Let us consider the following produc-
tion with rank 4:

A → gS(B,C,D,E),
gA(〈x11, x12〉, 〈x21, x22〉, 〈x31, x32〉, 〈x41, x42〉)

= 〈x11x21x31x41x12x42, x22x32〉.

Applyng the above procedure twice, we obtain a
factorization consisting of three productions with
rank 2 (variables have been renamed to reflect our
conventions):

A → gA(A1, A2),
gA(〈x11, x12〉, 〈x21, x22〉)

= 〈x11x21x12, x22〉;
A1 → gA1(B,E),

gA1(〈x11, x12〉, 〈x21, x22〉) = 〈x11, x21x12x22〉;
A2 → gA2(C,D),

gA2(〈x11, x12〉, 〈x21, x22〉) = 〈x11x21, x12x22〉.

2

The factorization procedure above should be ap-
plied to all productions of aLCFRS with rank
larger than two. This might result in an asymptotic

improvement of the running time of existing dy-
namic programming algorithms for parsing based
onLCFRS.

The factorization technique we have discussed
can also be viewed as a generalization of well-
known techniques for casting context-free gram-
mars into binary forms. These are forms where no
more than two nonterminal symbols are found in
the right-hand side of productions of the grammar;
see for instance (Harrison, 1978). One important
difference is that, while production factorization
into binary form is always possible in the context-
free case, forLCFRS there are worst case gram-
mars in which rank reduction is not possible at all,
as shown in (Rambow and Satta, 1999).

3 A graph-based representation for
LCFRS productions

Rather than factorizingLCFRS productions di-
rectly, in this article we work with a more abstract
representation of productions based on graphs.
From now on we focus onLCFRS whose non-
terminals and productions all have fan-out smaller
than or equal to2. Consider then a productionp :
A → g(B1, B2, . . . , Bρ(p)), with ϕ(A), ϕ(Bi) ≤
2, 1 ≤ i ≤ ρ(p), and withg defined as

g(〈x11, . . . , x1ϕ(B1)〉, . . .
. . . , 〈xρ(p)1, . . . , xρ(p)ϕ(Bρ(p))〉)

= 〈y1, . . . , yϕ(A)〉.

In what follows, ifϕ(A) = 1 then〈y1, . . . , yϕ(A)〉
should be read as〈y1〉 andy1 · · · yϕ(A) should be
read asy1. The same convention applies to all
other nonterminals and tuples.

We now introduce a special kind of undirected
graph that is associated with a linear order defined
over the set of its vertices. Thep-graph associated
with productionp is a triple(Vp, Ep,≺p) such that

• Vp = {xij | 1 ≤ i ≤ ρ(p), ϕ(Bi) = 2, 1 ≤
j ≤ ϕ(Bi)} is a set of vertices;2

2Here we are overloading symbolsxij . It will always be
clear from the context whetherxij is a string-valued variable
or a vertex in a p-graph.

527

• Ep = {(xi1, xi2) |xi1, xi2 ∈ Vp} is a set of
undirected edges;

• for x, x′ ∈ Vp, x ≺p x′ if x 6= x′ and the
(unique) occurrence ofx in y1 · · · yϕ(A) pre-
cedes the (unique) occurrence ofx′.

Note that in the above definition we are ignor-
ing all string-valued variablesxij associated with
nonterminalsBi with ϕ(Bi) = 1. This is be-
cause nonterminals with fan-out one can always
be treated as in the context-free grammar case, as
it will be explained later.

Example 3 The p-graph associated with the
LCFRS production in Example 2 is shown in Fig-
ure 2. Circled sets of edges indicate the factoriza-
tion in that example. 2

x21 x31 x41x11

B

CD

E

A1

A2

x42x12 x22 x32

Figure 2: The p-graph associated with theLCFRS
production in Example 2.

We close this section by introducing some ad-
ditional notation related to p-graphs that will be
used throughout this paper. LetE ⊆ Ep be some
set of edges. Thecover set for E is defined as
V (E) = {x | (x, x′) ∈ E} (recall that our edges
are unordered pairs, so(x, x′) and(x′, x) denote
the same edge). Conversely, letV ⊆ Vp be some
set of vertices. Theincident set forV is defined
asE(V) = {(x, x′) | (x, x′) ∈ Ep, x ∈ V }.

Assumeϕ(p) = 2, and letx1, x2 ∈ Vp. If x1

andx2 do not occur both in the same stringy1 or
y2, then we say that there is agapbetweenx1 and
x2. If x1 ≺p x2 and there is no gap betweenx1

and x2, then we write[x1, x2] to denote the set
{x1, x2} ∪ {x |x ∈ Vp, x1 ≺p x ≺p x2}. Forx ∈
Vp we also let[x, x] = {x}. A set[x, x′] is called a
range. Let r andr′ be two ranges. The pair(r, r′)
is called atandem if the following conditions are
both satisfied: (i)r∪r′ is not a range, and (ii) there
exists some edge(x, x′) ∈ Ep with x ∈ r and
x′ ∈ r′. Note that the first condition means thatr

andr′ are disjoint sets and, for any pair of vertices
x ∈ r andx′ ∈ r′, either there is a gap betweenx

andx′ or else there exists somexg ∈ Vp such that
x ≺p xg ≺p x′ andxg 6∈ r ∪ r′.

A set of edgesE ⊆ Ep is called abundle with
fan-out one ifV (E) = [x1, x2] for somex1, x2 ∈
Vp, i.e.,V (E) is a range. SetE is called a bundle
with fan-out two ifV (E) = [x1, x2] ∪ [x3, x4] for
somex1, x2, x3, x4 ∈ Vp, and([x1, x2], [x3, x4])
is a tandem. Note that ifE is a bundle with fan-out
two with V (E) = [x1, x2] ∪ [x3, x4], then neither
E([x1, x2]) nor E([x3, x4]) are bundles with fan-
out one, since there is at least one edge incident
upon a vertex in[x1, x2] and a vertex in[x3, x4].
We also use the term bundle to denote a bundle
with fan-out either one or two.

Intuitively, in a p-graph associated with a
LCFRS productionp, a bundleE with fan-outf
and with|E| > 1 identifies a set of nonterminals
C in the right-hand side ofp that can be factorized
into a new production. The nonterminals inC are
then replaced inp by a fresh nonterminalC with
fan-outf , as already explained. Our factorization
algorithm is based on efficient methods for the de-
tection of bundles with fan-out one and two.

4 The algorithm

In this section we provide an efficient, recursive
algorithm for the decomposition of a p-graph into
bundles, which corresponds to factorizing the rep-
resentedLCFRS production.

4.1 Overview of the algorithm

The basic idea underlying our graph-based algo-
rithm can be described as follows. We want to
compute an optimal hierarchical decomposition of
an input bundle with fan-out 1 or 2. This decom-
position can be represented by a tree, in which
each nodeN corresponds to a bundle (the root
node corresponds to the input bundle) and the
daughters ofN represent the bundles in whichN
is immediately decomposed. The decomposition
is optimal in so far as the maximum arity of the
decomposition tree is as small as possible. As
already explained above, this decomposition rep-
resents a factorization of some productionp of a
LCFRS, resulting in optimal rank reduction. All
the internal nodes in the decomposition represent
fresh nonterminals that will be created during the
factorization process.

The construction of the decomposition tree is
carried out recursively. For a given bundle with
fan-out 1 or 2, we apply a procedure for decom-
posing this bundle in its immediate sub-bundles
with fan-out 1 or 2, in an optimal way. Then,

528

we recursively apply our procedure to the obtained
sub-bundles. Recursion stops when we reach bun-
dles containing only one edge (which correspond
to the nonterminals in the right-hand side of the
input production). We shall prove that the result is
an optimal decomposition.

The procedure for computing an optimal de-
composition of a bundleF into its immediate sub-
bundles, which we describe in the first part of this
section, can be sketched as follows. First, we iden-
tify and temporarily remove all maximal bundles
with fan-out 1 (Section 4.3). The result is a new
bundleF ′ which is a subset of the original bundle,
and has the same fan-out. Next, we identify all
sub-bundles with fan-out 2 inF ′ (Section 4.4). We
compute the optimal decomposition ofF ′, rest-
ing on the hypothesis that there are no sub-bundles
with fan-out 1. Each resulting sub-bundle is later
expanded with the maximal sub-bundles with fan-
out 1 that have been previously removed. This re-
sults in a “first level” decomposition of the original
bundleF . We then recursively decompose all in-
dividual sub-bundles ofF , including the bundles
with fan-out 1 that have been later attached.

4.2 Backward and forward quantities

For a setV ⊆ Vp of vertices, we writemax(V)
(resp. min(V)) the maximum (resp. minimum)
vertex inV w.r.t. the≺p total order.

Let r = [x1, x2] be a range. We writer.left =
x1 andr.right = x2. The set of backward edges
for r is defined asBr = {(x, x′) | (x, x′) ∈
Er, x ≺p r.left , x′ ∈ r}. The set of for-
ward edges forr is defined symmetrically asFr =
{(x, x′) | (x, x′) ∈ Er, x ∈ r, r.right ≺p

x′}. For E ∈ {Br, Fr} we also defineL(E) =
{x | (x, x′) ∈ E, x ≺p x′} and R(E) =
{x′ | (x, x′) ∈ E, x ≺p x′}.

Let us assumeBr 6= ∅. We write r.b.left =
min(L(Br)). Intuitively, r.b.left is the leftmost
vertex of the p-graph that is located at the left
of range r and that is connected to some ver-
tex in r through some edge. Similarly, we write
r.b.right = max(L(Br)). If Br = ∅, then we set
r.b.left = r.b.right = ⊥. Quantitiesr.b.left and
r.b.right are calledbackward quantities.

We also introducelocal backward quanti-
ties, defined as follows. We writer.lb.left =
min(R(Br)). Intuitively, r.lb.left is the leftmost
vertex among all those vertices inr that are con-
nected to some vertex to the left ofr. Similarly,

we write r.lb.right = max(R(Br)). If Br = ∅,
then we setr.lb.left = r.lb.right = ⊥.

We defineforward and local forward quanti-
ties in a symmetrical way.

The backward quantitiesr.b.left andr.b.right

and the local backward quantitiesr.lb.left and
r.lb.right for all rangesr in the p-graph can
be computed efficiently as follows. We process
ranges in increasing order of size, expanding each
ranger by one unit at a time by adding a new
vertex at its right. Backward and local backward
quantities for the expanded range can be expressed
as a function of the same quantities forr. There-
fore if we store our quantities for previously pro-
cessed ranges, each new range can be annotated
with the desired quantities in constant time. This
algorithm runs in timeO(n2), wheren is the num-
ber of vertices inVp. This is an optimal result,
sinceO(n2) is also the size of the output.

We compute in a similar way the forward quan-
tities r.f .left andr.f .right and the local forward
quantitiesr.lf .left and r.lf .right , this time ex-
panding each range by one unit at its left.

4.3 Bundles with fan-out one

The detection of bundles with fan-out 1 within the
p-graph can be easily performed inO(n2), where
n is the number of its vertices. Indeed, the incident
setE(r) of a ranger is a bundle with fan-out one
if and only if r.b.left = r.f .left = ⊥. This imme-
diately follows from the definitions given in Sec-
tion 4.2. It is therefore possible to check all ranges
the one after the other, once the backward and
forward properties have been computed. These
checks take constant time for each of theΘ(n2)
ranges, hence the quadratic complexity.

We now remove fromF all bundles with fan-out
1 from the original bundleF . The result is the new
bundleF ′, that has no sub-bundles with fan-out 1.

4.4 Bundles with fan-out two

Efficient detection of bundles with fan-out two in
F ′ is considerably more challenging. A direct gen-
eralization of the technique proposed for detecting
bundles with fan-out 1 would use the following
property, that is also a direct corollary of the def-
initions in Section 4.2: the incident setE(r ∪ r′)
of a tandem(r, r′) is a bundle with fan-out two if
and only if all of the following conditions hold:
(i) r.b.left = r′.f .left = ⊥, (ii) r.f .left ∈ r′,
r.f .right ∈ r′, (iii) r′.b.left ∈ r, r′.b.right ∈ r.

529

However, checking allO(n4) tandems the one af-
ter the other would require timeO(n4). Therefore,
preserving the quadratic complexity of the overall
algorithm requires a more complex representation.

From now on, we assume thatVp =
{x1, . . . , xn}, and we write[i, j] as a shorthand
for the range[xi, xj].

First, we need to compute an additional data
structure that will store local backward figures in
a convenient way. Let us define theexpansion ta-
ble T as follows: for a given ranger′ = [i′, j′],
T (r′) is the set of all rangesr = [i, j] such that
r.lb.left = i′ andr.lb.right = j′, ordered by in-
creasing left boundaryi. It turns out that the con-
struction of such a table can be achieved in time
O(n2). Moreover, it is possible to compute in
O(n2) an auxiliary tableT ′ that associates withr
the first ranger′′ in T ([r.f.left, r.f.right]) such
that r′′.b.right ≥ r. Therefore, either(r, T ′(r))
anchors a valid bundle, or there is no bundleE

such that the first component ofV (E) is r.
We now have all the pieces to extract bundles

with fan-out 2 in timeO(n2). We proceed as fol-
lows. For each ranger = [i, j]:

• We first retriever′ = [r.f.left, r.f.right] in
constant time.

• Then, we check in constant time whether
r′.b.left lies within r. If it doesn’t, r is not
the first part of a valid bundle with fan-out 2,
and we move on to the next ranger.

• Finally, for each r′′ in the ordered set
T (r′), starting withT ′(r), we check whether
r′′.b.right is insider. If it is not, we stop and
move on to the next ranger. If it is, we out-
put the valid bundle(r, r′′) and move on to
the next element inT (r′). Indeed, in case of
a failure, the backward edge that relates a ver-
tex in r′′ with a vertex outsider will still be
included in all further elements inT (r′) since
T (r′) is ordered by increasing left boundary.
This step costs a constant time for each suc-
cess, and a constant time for the unique fail-
ure, if any.

This algorithm spends a constant time on each
range plus a constant time on each bundle with
fan-out 2. We shall prove in Section 5 that there
areO(n2) bundles with fan-out 2. Therefore, this
algorithm runs in timeO(n2).

Now that we have extracted all bundles, we
need to extract an optimal decomposition of the in-
put bundleF ′, i.e., a minimal size partition of all
n elements (edges) in the input bundle such that
each of these partition is a bundle (with fan-out 2,
since bundles with fan-out 1 are excluded, except
for the input bundle). By definition, a partition has
minimal size if there is no other partition it is a
refinment of.3

4.5 Extracting an optimal decomposition

We have constructed the set of all (fan-out 2) sub-
bundles ofF ′. We now need to build one optimal
decomposition ofF ′ into sub-bundles. We need
some more theoretical results on the properties of
bundles.

Lemma 1 Let E1 and E2 be two sub-bundles of
F ′ (with fan-out 2) that have non-empty intersec-
tion, but that are not included the one in the other.
ThenE1 ∪ E2 is a bundle (with fan-out 2).

PROOF This lemma can be proved by considering
all possible respective positions of the covers of
E1 andE2, and discarding all situations that would
lead to the existence of a fan-out 1 sub-bundle.�

Theorem 1 For any bundleE, either it has at
least one binary decomposition, or all its decom-
positions are refinements of a unique optimal one.

PROOF Let us suppose thatE has no bi-
nary decomposition. Its cover corresponds to
the tandem (r, r′) = ([i, j], [i′, j′]). Let
us consider two different decompositions of
E, that correspond respectively to decomposi-
tions of the ranger in two sets of sub-ranges
of the form [i, k1], [k1 + 1, k2], . . . , [km, j] and
[i, k′1], [k

′
1 + 1, k′2], . . . , [k

′

m′ , j]. For simplifying
the notations, we writek0 = k′0 = i andkm+1 =
km′+1 = j. Sincek0 = k′0, there exist an in-
dex p > 0 such that for anyl < p, kl = k′l, but
kp 6= k′p: p is the index that identifies the first
discrepancy between both decomposition. Since
km+1 = km′+1, there must existq ≤ m and
q′ ≤ m′ such thatq and q′ are strictly greater
thanp and that are the minimal indexes such that
kq = k′q′ . By definition, all bundles of the form
E[kl−1,kl] (p ≤ l ≤ q) have a non-empty intersec-
tion with at least one bundle of the formE[k′

l−1,k′
l
]

3The term “refinement” is used in the usual way concern-
ing partitions, i.e., a partitionP1 is a refinement of another
oneP2 if all constituents inP1 are constituents ofP2, or be-
longs to a subset of the partitionP1 that is a partition of one
element ofP2.

530

(p ≤ l ≤ q′). The reverse is true as well. Ap-
plying Lemma 1, this shows thatE([kp+1, kq]) is
a bundle with fan-out 2. Therefore, by replacing
all ranges involved in this union in one decom-
position or the other, we get a third decomposi-
tion for which the two initial ones are strict refine-
ments. This is a contradiction, which concludes
the proof. �

Lemma 2 Let E = V (r ∪ r′) be a bundle, with
r = [i, j]. We suppose it has a unique (non-binary)
optimal decomposition, which decomposes[i, j]
into [i, k1], [k1 + 1, k2], . . . , [km, j]. There exist
no ranger′′ ⊂ r such that (i)Er′′ is a bundle and
(ii) ∃l, 1 ≤ l ≤ m such that[kl, kl+1] ⊂ r′′.

PROOF Let us consider a ranger′′ that would con-
tradict the lemma. The union ofr′′ and of the
ranges in the optimal decomposition that have a
non-empty intersection withr′′ is a fan-out 2 bun-
dle that includes at least two elements of the opti-
mal decomposition, but that is strictly included in
E because the decomposition is not binary. This
is a contradiction. �

Lemma 3 LetE = V (r, r′) be a bundle, withr =
[i, j]. We suppose it has a binary (optimal) decom-
position (not necessarily unique). Letr′′ = [i, k]
be the largest range starting ini such thatk < j

and such that it anchors a bundle, namelyE(r′′).
ThenE(r′′) and E([k + 1, j]) form a binary de-
composition ofE.

PROOF We need to prove thatE([k + 1, j]) is a
bundle. Each (optimal) binary decomposition of
E decomposesr in 1, 2 or 3 sub-ranges. If no opti-
mal decomposition decomposesr in at least 2 sub-
ranges, then the proof given here can be adapted
by reasoning onr′ instead ofr. We now sup-
pose that at least one of them decomposesr in at
least 2 sub-ranges. Therefore, it decomposesr in
[i, k1] and[k1 + 1, j] or in [i, k1], [k1 + 1, k2] and
[k2 + 1, j]. We select one of these optimal decom-
position by taking one such thatk1 is maximal.
We shall now distinguish between two cases.

First, let us suppose thatr is decomposed
into two sub-ranges[i, k1] and [k1 + 1, j] by
the selected optimal decomposition. Obviously,
E([i, k1]) is a “crossing” bundle, i.e., the right
component of its cover is is a sub-range ofr′.
Since r is decomposed in two sub-ranges, it is
necessarily the same forr′. Therefore,E([i, k1])
has a cover of the form[i, k1] ∪ [i′, k′1] or [i, k1] ∪
[k′1 + 1, j]. Sincer′′ includes[i, k1], E(r′′) has a

cover of the form[i, k]∪[i′, k′] or [i, k]∪[k′ + 1, j].
This means thatr′ is decomposed byE(r′′) in
only 2 ranges, namely the right component of
E(r′′)’s cover and another range, that we can call
r′′′. Sincer \ r′′ = [k + 1, j] may not anchor
a bundle with fan-out 1, it must contain at least
one crossing edge. All such edges necessarily fall
within r′′′. Conversely, any crossing edge that
falls insider′′′ necessarily has its other end inside
[k + 1, j]. Which means thatE(r′′) and E(r′′′)
form a binary decomposition ofE. Therefore, by
definition ofk1, k = k1.

Second, let us suppose thatr is decomposed
into 3 sub-ranges by the selected original decom-
position (therefore,r′ is not decomposed by this
decomposition). This means that this decompo-
sition involves a bundle with a cover of the form
[i, k1]∪[k2 + 1, j] and another bundle with a cover
of the form[k1 + 1, k2] ∪ r′ (this bundle is in fact
E(r′)). If k ≥ k2, then the left range of both mem-
bers of the original decomposition are included in
r′′, which means thatE(r′′) = E, and therefore
r′′ = r which is excluded. Note thatk is at least
as large ask1 (since[i, k1] is a valid “range start-
ing in i such thatk < j and such that it anchors
a bundle”). Therefore, we havek1 ≤ k < k2.
Therefore,E([i, k1]) ⊂ E(r′′), which means that
all edges anchored inside[k2 + 1, j]) are included
in E(r′′). Hence,E(r′′) can not be a crossing bun-
dle without having a left component that is[i, j],
which is excluded (it would meanE(r′′) = E).
This means thatE(r′′) is a bundle with a cover
of the form [i, k] ∪ [k′ + 1, j]. Which means
that E(r′) is in fact the bundle whose cover is
[k + 1, k′ + 1]∪ r′. Hence,E(r′′) andE(r′) form
a binary decomposition ofE. Hence, by definition
of k1, k = k1. �

As an immediate consequence of Lemmas 2
and 3, our algorithm for extracting the optimal de-
composition forF ′ consists in applying the fol-
lowing procedure recursively, starting withF ′,
and repeating it on each constructed sub-bundleE,
until sub-bundles with only one edge are reached.

Let E = E(r, r′) be a bundle, withr = [i, j].
One optimal decomposition ofE can be obtained
as follows. One selects the bundle with a left com-
ponent starting ini and with the maximum length,
and iterating this selection process untilr is cov-
ered. The same is done withr′. We retain the opti-
mal among both resulting decompositions (or one
of them if they are both optimal). Note that this

531

decomposition is unique if and only if it has four
components or more; it can not be ternary; it may
be binary, and in this case it may be non-unique.

This algorithm gives us a way to extract an op-
timal decomposition ofF ′ in linear time w.r.t. the
number of sub-bundles in this optimal decomposi-
tion. The only required data structure is, for each
i (resp.k), the list of bundles with a cover of the
form [i, j]∪ [k, l] ordered by decreasingj (resp.l).
This can trivially be constructed in timeO(n2)
from the list of all bundles we built in timeO(n2)
in the previous section. Since the number of bun-
dles is bounded byO(n2) (as mentioned above
and proved in Section 5), this means we can ex-
tract an optimal decomposition forF ′ in O(n2).

Similar ideas apply to the simpler case of the
decomposition of bundles with fan-out 1.

4.6 The main decomposition algorithm

We now have to generalize our algorithm in or-
der to handle the possible existence of fan-out 1
bundles. We achieve this by using the fan-out 2
algorithm recursively. First, we extract and re-
move (maximal) bundles with fan-out 1 fromF ,
and recursively apply to each of them the com-
plete algorithm. What remains isF ′, which is a
set of bundles with no sub-bundles with fan-out 1.
This means we can apply the algorithm presented
above. Then, for each bundle with fan-out 1, we
group it with a randomly chosen adjacent bundle
with fan-out 2, which builds an expanded bundle
with fan-out 2, which has a binary decomposition
into the original bundle with fan-out 2 and the bun-
dle with fan-out 1.

5 Time complexity analysis

In Section 4, we claimed that there are no more
thanO(n2) bundles. In this section we sketch the
proof of this result, which will prove the quadratic
time complexity of our algorithm.

Let us compute an upper bound on the num-
ber of bundles with fan-out two that can be found
within the p-graph processed in Section 4.5, i.e., a
p-graph with no fan-out 1 sub-bundle.

Let E,E′ ⊆ Ep be bundles with fan-out two. If
E ⊂ E′, then we say thatE′ expandsE. E′ is
said toimmediately expandE, written E → E′,
if E′ expandsE and there is no bundleE′′ such
thatE′′ expandsE andE′ expandsE′′.

Let us represent bundles and the associated im-
mediate expansion relation by means of a graph.

Let E denote the set of all bundles (with fan-out
two) in our p-graph. Thee-graph associated with
our LCFRS production p is the directed graph
with verticesE and edges defined by the relation
→. ForE ∈ E , we letout(E) = {E′ |E → E′}
andin(E) = {E′ |E′ → E}.

Lack of space prevents us from providing the
proof of the following property. For anyE ∈ E
that contains more than one edge,|out(E)| ≤ 2
and|in(E)| ≥ 2. This allows us to prove our up-
per bound on the size ofE .

Theorem 2 The e-graph associated with an
LCFRS production p has at mostn2 vertices,
wheren is the rank ofp.

PROOF Consider the e-graph associated with pro-
duction p, with set of verticesE . For a vertex
E ∈ E , we define thelevel of E as the number
|E| of edges in the corresponding bundle from the
p-graph associated withp. Let d be the maximum
level of a vertex inE . We thus have1 ≤ d ≤ n.
We now prove the following claim. For any inte-
gerk with 1 ≤ k ≤ d, the set of vertices inE with
levelk has no more thann elements.

Fork = 1, since there are no more thann edges
in such a p-graph, the statement holds.

We can now consider all vertices inE with level
k > 1 (k ≤ d). Let E(k−1) be the set of all ver-
tices inE with level smaller than or equal tok−1,
and let us callT (k−1) the set of all edges in the e-
graph that are leaving from some vertex inE(k−1).
Since for each bundleE in E(k−1) we know that
|out(E)| ≤ 2, we have|T (k−1)| ≤ 2|E(k−1)|.

The number of vertices inE(k) with level larger
than one is at least|E(k−1)| − n. Since for each
E ∈ E(k−1) we know that|in(E)| ≥ 2, we con-
clude that at least2(|E(k−1)| − n) edges inT (k−1)

must end up at some vertex inE(k). Let T be the
set of edges inT (k−1) that impinge on some ver-
tex in E \ E(k). Thus we have|T | ≤ 2|E(k−1)| −
2(|E(k−1)|−n) = 2n. Since the vertices of levelk
in E must have incoming edges from setT , and be-
cause each of them have at least 2 incoming edges,
there cannot be more thann such vertices. This
concludes the proof of our claim.

Since the the level of a vertex inE is necessarily
lower thann, this completes the proof. �

The overall complexity of the complete algo-
rithm can be computed by induction. Our in-
duction hypothesis is that form < n, the time
complexity is inO(m2). This is obviously true
for n = 1 and n = 2. Extracting the bundles

532

with fan-out 1 costsO(n2). These bundles are of
lengthn1 . . . nm. Extracting bundles with fan-out
2 costsO((n− n1 − . . .− nm)2). Applying re-
cursively the algorithm to bundles with fan-out 1
costsO(n2

1) + . . . +O(n2
m). Therefore, the com-

plexity is inO(n2)+O((n − n1 − . . .− nm)2)+∑n
i=1O(ni) = O(n2) +O(

∑n
i=1 ni) = O(n2).

6 Conclusion

We have introduced an efficient algorithm for opti-
mal reduction of the rank ofLCFRSs with fan-out
at most2, that runs in quadratic time w.r.t. the rank
of the input grammar. Given the fact that fan-out1
bundles can be attached to any adjacent bundle in
our factorization, we can show that our algorithm
also optimizes time complexity for known tabular
parsing algorithms forLCFRSs with fan-out2.

As for generalLCFRS, it has been shown by
Gildea (2010) that rank optimization and time
complexity optimization are not equivalent. Fur-
thermore, all known algorithms for rank or time
complexity optimization have an exponential time
complexity (Gómez-Rodrı́guez et al., 2009).

Acknowledgments

Part of this work was done while the second author
was a visiting scientist at Alpage (INRIA Paris-
Rocquencourt and Université Paris 7), and was fi-
nancially supported by the hosting institutions.

References

Daniel Gildea. 2010. Optimal parsing strategies for
linear context-free rewriting systems. InHuman
Language Technologies: The 11th Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics; Proceedings of
the Main Conference, Los Angeles, California. To
appear.

Carlos Gómez-Rodrı́guez and Giorgio Satta. 2009.
An optimal-time binarization algorithm for linear
context-free rewriting systems with fan-out two. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP, pages 985–993, Suntec, Singapore,
August. Association for Computational Linguistics.

Carlos Gómez-Rodrı́guez, Marco Kuhlmann, Giorgio
Satta, and David J. Weir. 2009. Optimal reduc-
tion of rule length in linear context-free rewriting
systems. InProceedings of the North American
Chapter of the Association for Computational Lin-
guistics - Human Language Technologies Confer-

ence (NAACL’09:HLT), Boulder, Colorado. To ap-
pear.

Michael A. Harrison. 1978.Introduction to Formal
Language Theory. Addison-Wesley, Reading, MA.

Aravind K. Joshi and Leon S. Levy. 1977. Constraints
on local descriptions: Local transformations.SIAM
Journal of Computing

Marco Kuhlmann and Giorgio Satta. 2009. Treebank
grammar techniques for non-projective dependency
parsing. InProceedings of the 12th Meeting of the
European Chapter of the Association for Computa-
tional Linguistics (EACL 2009), Athens, Greece. To
appear.

Wolfgang Maier and Timm Lichte. 2009. Character-
izing discontinuity in constituent treebanks. InPro-
ceedings of the 14th Conference on Formal Gram-
mar (FG 2009), Bordeaux, France.

Wolfgang Maier and Anders Søgaard. 2008. Tree-
banks and mild context-sensitivity. In Philippe
de Groote, editor,Proceedings of the 13th Confer-
ence on Formal Grammar (FG 2008), pages 61–76,
Hamburg, Germany. CSLI Publications.

Owen Rambow and Giorgio Satta. 1999. Independent
parallelism in finite copying parallel rewriting sys-
tems.Theoretical Computer Science, 223:87–120.

Giorgio Satta. 1992. Recognition of linear context-free
rewriting systems. InProceedings of the 30th Meet-
ing of the Association for Computational Linguistics
(ACL’92), Newark, Delaware.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free
grammars.Theoretical Computer Science, 88:191–
229.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions pro-
duced by various grammatical formalisms. InPro-
ceedings of the 25th Meeting of the Association for
Computational Linguistics (ACL’87).

David J. Weir. 1992. Linear context-free rewriting
systems and deterministic tree-walk transducers. In
Proceedings of the 30th Meeting of the Association
for Computational Linguistics (ACL’92), Newark,
Delaware.

533

