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Abstract

Dominance links were introduced in
grammars to model long distance scram-
bling phenomena, motivating the defi-
nition of multiset-valued linear indexed
grammars (MLIGs) by Rambow (1994b),
and inspiring quite a few recent for-
malisms. It turns out that MLIGs have
since been rediscovered and reused in a
variety of contexts, and that the complex-
ity of their emptiness problem has become
the key to several open questions in com-
puter science. We survey complexity re-
sults and open issues on MLIGs and re-
lated formalisms, and provide new com-
plexity bounds for some linguistically mo-
tivated restrictions.

1 Introduction

Scrambling constructions, as found in German and
other SOV languages (Becker et al., 1991; Ram-
bow, 1994a; Lichte, 2007), cause notorious diffi-
culties to linguistic modeling in classical grammar
formalisms like HPSG or TAG. A well-known il-
lustration of this situation is given in the following
two German sentences for “that Peter has repaired
the fridge today” (Lichte, 2007),

dass [Peter] heute [den Kühlschrank] repariert hat
that Peternom today the fridgeacc repaired has

dass [den Kühlschrank] heute [Peter] repariert hat
that the fridgeacc today Peternom repaired has

with a flexible word order between the two com-
plements of repariert, namely between the nomi-
native Peter and the accusative den Kühlschrank.

Rambow (1994b) introduced a formalism, un-
ordered vector grammars with dominance links
(UVG-dls), for modeling such phenomena. These
grammars are defined by vectors of context-
free productions along with dominance links that




VP

NPnom VP

VP

NPacc VP

VP

V

repariert

Figure 1: A vector of productions for the verb
repariert together with its two complements.

should be enforced during derivations; for in-
stance, Figure 1 shows how a flexible order be-
tween the complements of repariert could be ex-
pressed in an UVG-dl. Similar dominance mecha-
nisms have been employed in various tree descrip-
tion formalisms (Rambow et al., 1995; Rambow et
al., 2001; Candito and Kahane, 1998; Kallmeyer,
2001; Guillaume and Perrier, 2010) and TAG ex-
tensions (Becker et al., 1991; Rambow, 1994a).

However, the prime motivation for this survey
is another grammatical formalism defined in the
same article: multiset-valued linear indexed gram-
mars (Rambow, 1994b, MLIGs), which can be
seen as a low-level variant of UVG-dls that uses
multisets to emulate unfulfilled dominance links
in partial derivations. It is a natural extension of
Petri nets, with broader scope than just UVG-dls;
indeed, it has been independently rediscovered by
de Groote et al. (2004) in the context of linear
logic, and by Verma and Goubault-Larrecq (2005)
in that of equational theories. Moreover, the decid-
ability of its emptiness problem has proved to be
quite challenging and is still uncertain, with sev-
eral open questions depending on its resolution:

• provability in multiplicative exponential lin-
ear logic (de Groote et al., 2004),

• emptiness and membership of abstract cat-
egorial grammars (de Groote et al., 2004;
Yoshinaka and Kanazawa, 2005),

• emptiness and membership of Stabler
(1997)’s minimalist grammars without

514



shortest move constraint (Salvati, 2010),
• satisfiability of first-order logic on data

trees (Bojańczyk et al., 2009), and of course
• emptiness and membership for the various

formalisms that embed UVG-dls.

Unsurprisingly in the light of their importance
in different fields, several authors have started in-
vestigating the complexity of decisions problems
for MLIGs (Demri et al., 2009; Lazić, 2010). We
survey the current state of affairs, with a particular
emphasis on two points:

1. the applicability of complexity results to
UVG-dls, which is needed if we are to con-
clude anything on related formalisms with
dominance links,

2. the effects of two linguistically motivated re-
strictions on such formalisms, lexicalization
and boundedness/rankedness.

The latter notion is imported from Petri nets,
and turns out to offer interesting new complex-
ity trade-offs, as we prove that k-boundedness and
k-rankedness are EXPTIME-complete for MLIGs,
and that the emptiness and membership problems
are EXPTIME-complete for k-bounded MLIGs but
PTIME-complete in the k-ranked case. This also
implies an EXPTIME lower bound for emptiness
and membership in minimalist grammars with
shortest move constraint.

We first define MLIGs formally in Section 2 and
review related formalisms in Section 3. We pro-
ceed with complexity results in Section 4 before
concluding in Section 5.

Notations In the following, Σ denotes a finite al-
phabet, Σ∗ the set of finite sentences over Σ, and ε
the empty string. The length of a string w is noted
|w|, and the number of occurrence of a symbol a
in w is noted |w|a. A language is formalized as a
subset of Σ∗. Let Nn denote the set of vectors of
positive integers of dimension n. The i-th compo-
nent of a vector x in Nn is x(i), 0 denotes the null
vector, 1 the vector with 1 values, and ei the vec-
tor with 1 as its i-th component and 0 everywhere
else. The ordering ≤ on Nn is the componentwise
ordering: x ≤ y iff x(i) ≤ y(i) for all 0 < i ≤ n.
The size of a vector refers to the size of its binary
encoding: |x| =

∑n
i=1 1 + max(0, blog2 x(i)c).

We refer the reader unfamiliar with complex-
ity classes and notions such as hardness or
LOGSPACE reductions to classical textbooks (e.g.
Papadimitriou, 1994).

2 Multiset-Valued Linear Indexed
Grammars

Definition 1 (Rambow, 1994b). An n-
dimensional multiset-valued linear indexed gram-
mar (MLIG) is a tuple G = 〈N,Σ, P, (S, x0)〉
whereN is a finite set of nonterminal symbols, Σ a
finite alphabet disjoint fromN , V = (N×Nn)]Σ
the vocabulary, P a finite set of productions in
(N × Nn) × V ∗, and (S, x0) ∈ N × Nn the start
symbol. Productions are more easily written as

(A,x)→ u0(B1,x1)u1 · · ·um(Bm,xm)um+1 (?)

with each ui in Σ∗ and each (Bi, xi) in N × Nn.
The derivation relation⇒ over sequences in V ∗

is defined by

δ(A,y)δ′ ⇒ δu0(B1,y1)u1 · · ·um(Bm,ym)um+1δ
′

if δ and δ′ are in V ∗, a production of form (?) ap-
pears in P , x ≤ y, for each 1 ≤ i ≤ m, xi ≤ yi,
and y − x =

∑m
i=1 yi − xi.

The language of a MLIG is the set of terminal
strings derived from (S, x0), i.e.

L(G) = {w ∈ Σ∗ | (S, x0)⇒∗ w}

and we denote by L(MLIG) the class of MLIG
languages.

Example 2. To illustrate this definition, and its
relevance for free word order languages, consider
the 3-dimensional MLIG with productions

(S, 0)→ ε | (S, 1), (S, e1)→ a (S, 0),
(S, e2)→ b (S, 0), (S, e3)→ c (S, 0)

and start symbol (S, 0). It generates the MIX lan-
guage of all sentences with the same number of a,
b, and c’s (see Figure 2 for an example derivation):

Lmix = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c} .

The size |G| of a MLIG G is essentially the sum
of the sizes of each of its productions of form (?):

|x0|+
∑
P

(
m+ 1 + |x|+

m∑
i=1

|xi|+
m+1∑
i=0

|ui|

)
.

2.1 Normal Forms
A MLIG is in extended two form (ETF) if all its
productions are of form

terminal (A, 0)→ a or (A, 0)→ ε, or
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S, (0, 0, 0)

S, (1, 1, 1)

b S, (1, 0, 1)

S, (2, 1, 2)

c S, (2, 1, 1)

a S, (1, 1, 1)

a S, (0, 1, 1)

b S, (0, 0, 1)

c S, (0, 0, 0)

ε

Figure 2: A derivation for bcaabc in the grammar
of Example 2.

nonterminal (A, x) → (B1, x1)(B2, x2) or
(A, x)→ (B1, x1),

with a in Σ, A, B1, B2 in N , and x, x1, x2 in Nn.
Using standard constructions, any MLIG can be
put into ETF in linear time or logarithmic space.

A MLIG is in restricted index normal form
(RINF) if the productions in P are of form
(A,0) → α, (A,0) → (B,ei), or (A,ei) →
(B,0), with A, B in N , 0 < i ≤ n, and α in
(Σ∪(N×{0}))∗. The direct translation into RINF
proposed by Rambow (1994a) is exponential if we
consider a binary encoding of vectors, but using
techniques developed for Petri nets (Dufourd and
Finkel, 1999), this blowup can be avoided:

Proposition 3. For any MLIG, one can construct
an equivalent MLIG in RINF in logarithmic space.

2.2 Restrictions
Two restrictions on dominance links have been
suggested in an attempt to reduce their complex-
ity, sometimes in conjunction: lexicalization and
k-boundedness. We provide here characterizations
for them in terms of MLIGs. We can combine
the two restrictions, thus defining the class of k-
bounded lexicalized MLIGs.

Lexicalization Lexicalization in UVG-dls re-
flects the strong dependence between syntactic
constructions (vectors of productions representing
an extended domain of locality) and lexical an-
chors. We define here a restriction of MLIGs with
similar complexity properties:

Definition 4. A terminal derivation α ⇒p w with
w in Σ∗ is c-lexicalized for some c > 0 if p ≤
c·|w|.1 A MLIG is lexicalized if there exists c such
that any terminal derivation starting from (S, x0) is
c-lexicalized, and we denote by L(MLIG`) the set
of lexicalized MLIG languages.

Looking at the grammar of Example 2, any ter-
minal derivation (S, 0)⇒p w verifies p = 4·|w|

3 +
1, and the grammar is thus lexicalized.

Boundedness As dominance links model long-
distance dependencies, bounding the number of
simultaneously pending links can be motivated
on competence/performance grounds (Joshi et al.,
2000; Kallmeyer and Parmentier, 2008), and on
complexity/expressiveness grounds (Søgaard et
al., 2007; Kallmeyer and Parmentier, 2008; Chi-
ang and Scheffler, 2008). The shortest move con-
straint (SMC) introduced by Stabler (1997) to en-
force a strong form of minimality also falls into
this category of restrictions.

Definition 5. A MLIG derivation α0 ⇒ α1 ⇒
· · · ⇒ αp is of rank k for some k ≥ 0 if, no vector
with a sum of components larger than k can appear
in any αj , i.e. for all x in Nn such that there exist
0 ≤ j ≤ p, δ, δ′ in V ∗ and A in N with αj =
δ(A, x)δ′, one has

∑n
i=1 x(i) ≤ k.

A MLIG is k-ranked (noted kr-MLIG) if any
derivation starting with α0 = (S, x0) is of rank k.
It is ranked if there exists k such that it is k-ranked.

A 0-ranked MLIG is simply a context-free
grammar (CFG), and we have more generally the
following:

Lemma 6. Any n-dimensional k-ranked MLIG G
can be transformed into an equivalent CFG G′ in
time O(|G| · (n+ 1)k3

).

Proof. We assume G to be in ETF, at the expense
of a linear time factor. Each A in N is then
mapped to at most (n + 1)k nonterminals (A, y)
in N ′ = N × Nn with

∑n
i=1 y(i) ≤ k. Finally,

for each production (A, x) → (B1, x1)(B2, x2) of
P , at most (n+ 1)k3

choices are possible for pro-
ductions (A, y) → (B1, y1)(B2, y2) with (A, y),
(B1, y1), and (B2, y2) in N ′.

A definition quite similar to k-rankedness can
be found in the Petri net literature:

1This restriction is slightly stronger than that of linearly
restricted derivations (Rambow, 1994b), but still allows to
capture UVG-dl lexicalization.
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Definition 7. A MLIG derivation α0 ⇒ α1 ⇒
· · · ⇒ αp is k-bounded for some k ≥ 0 if, no
vector with a coordinate larger than k can appear
in any αj , i.e. for all x in Nn such that there exist
0 ≤ j ≤ p, δ, δ′ in V ∗ and A in N with αj =
δ(A, x)δ′, and for all 1 ≤ i ≤ n, one has x(i) ≤ k.

A MLIG is k-bounded (noted kb-MLIG) if
any derivation starting with α0 = (S, x0) is k-
bounded. It is bounded if there exists k such that
it is k-bounded.

The SMC in minimalist grammars translates ex-
actly into 1-boundedness of the corresponding
MLIGs (Salvati, 2010).

Clearly, any k-ranked MLIG is also k-bounded,
and conversely any n-dimensional k-bounded
MLIG is (kn)-ranked, thus a MLIG is ranked iff it
is bounded. The counterpart to Lemma 6 is:

Lemma 8. Any n-dimensional k-bounded MLIG
G can be transformed into an equivalent CFG G′
in time O(|G| · (k + 1)n2

).

Proof. We assume G to be in ETF, at the expense
of a linear time factor. Each A in N is then
mapped to at most (k+1)n nonterminals (A, y) in
N ′ = N × {0, . . . , k}n. Finally, for each produc-
tion (A, x) → (B1, x1)(B2, x2) of P , each non-
terminal (A, y) of N ′ with x ≤ y, and each index
0 < i ≤ n, there are at most k + 1 ways to split
(y(i) − x(i)) ≤ k into y1(i) + y2(i) and span a
production (A, y) → (B1, x1 + y1)(B2, x2 + y2)
of P ′. Overall, each production is mapped to at
most (k + 1)n2

context-free productions.

One can check that the grammar of Example 2 is
not bounded (to see this, repeatedly apply produc-
tion (S, 0) → (S, 1)), as expected since MIX is
not a context-free language.

2.3 Language Properties

Let us mention a few more results pertaining to
MLIG languages:

Proposition 9 (Rambow, 1994b). L(MLIG) is
a substitution closed full abstract family of lan-
guages.

Proposition 10 (Rambow, 1994b). L(MLIG`) is
a subset of the context-sensitive languages.

Natural languages are known for displaying
some limited cross-serial dependencies, as wit-
nessed in linguistic analyses, e.g. of Swiss-
German (Shieber, 1985), Dutch (Kroch and San-

torini, 1991), or Tagalog (Maclachlan and Ram-
bow, 2002). This includes the copy language

Lcopy = {ww | w ∈ {a, b}∗} ,

which does not seem to be generated by any
MLIG:

Conjecture 11 (Rambow, 1994b). Lcopy is not in
L(MLIG).

Finally, we obtain the following result as a con-
sequence of Lemmas 6 and 8:

Corollary 12. L(kr-MLIG) = L(kb-MLIG) =
L(kb-MLIG`) is the set of context-free languages.

3 Related Formalisms

We review formalisms connected to MLIGs, start-
ing in Section 3.1 with Petri nets and two of their
extensions, which turn out to be exactly equiva-
lent to MLIGs. We then consider various linguis-
tic formalisms that employ dominance links (Sec-
tion 3.2).

3.1 Petri Nets
Definition 13 (Petri, 1962). A marked Petri net2

is a tuple N = 〈S, T, f,m0〉 where S and T are
disjoint finite sets of places and transitions, f a
flow function from (S × T ) ∪ (T × S) to N, and
m0 an initial marking in NS . A transition t ∈ T
can be fired in a marking m in NS if f(p, t) ≥
m(p) for all p ∈ S, and reaches a new marking
m′ defined by m′(p) = m(p) − f(p, t) + f(t, p)
for all p ∈ S , written m [t〉 m′. Another view is
that place p holds m(p) tokens, f(p, t) of which
are first removed when firing t, and then f(t, p)
added back. Firings are extended to sequences σ
in T ∗ by m [ε〉 m, and m [σt〉 m′ if there exists
m′′ with m [σ〉 m′′ [t〉 m′.

A labeled Petri net with reachability acceptance
is endowed with a labeling homomorphism ϕ :
T ∗ → Σ∗ and a finite acceptance set F ⊆ NS ,
defining the language (Peterson, 1981)

L(N , ϕ, F ) = {ϕ(σ) ∈ Σ∗ | ∃m ∈ F,m0 [σ〉 m} .

Labeled Petri nets (with acceptance set {0}) are
notational variants of right linear MLIGs, defined
as having production in (N×Nn)×(Σ∗∪(Σ∗·(N×
Nn))). This is is case of the MLIG of Example 2,
which is given in Petri net form in Figure 3, where

2Petri nets are also equivalent to vector addition system
(Karp and Miller, 1969, VAS) and vector addition systems
with states (Hopcroft and Pansiot, 1979, VASS).
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S

e1 e2 e3

a b cε

ε

Figure 3: The labeled Petri net corresponding to
the right linear MLIG of Example 2.

circles depict places (representing MLIG nonter-
minals and indices) with black dots for initial to-
kens (representing the MLIG start symbol), boxes
transitions (representing MLIG productions), and
arcs the flow values. For instance, production
(S,e3) → c (S,0) is represented by the rightmost,
c-labeled transition, with f(S, t) = f(e3, t) =
f(t, S) = 1 and f(e1, t) = f(e2, t) = f(t, e1) =
f(t, e2) = f(t, e3) = 0.

Extensions The subsumption of Petri nets is not
innocuous, as it allows to derive lower bounds on
the computational complexity of MLIGs. Among
several extensions of Petri net with some branch-
ing capacity (see e.g. Mayr, 1999; Haddad and
Poitrenaud, 2007), two are of singular importance:
It turns out that MLIGs in their full generality have
since been independently rediscovered under the
names vector addition tree automata (de Groote et
al., 2004, VATA) and branching VASS (Verma and
Goubault-Larrecq, 2005, BVASS).

Semilinearity Another interesting consequence
of the subsumption of Petri nets by MLIGs is
that the former generate some non semilinear lan-
guages, i.e. with a Parikh image which is not a
semilinear subset of N|Σ| (Parikh, 1966). Hopcroft
and Pansiot (1979, Lemma 2.8) exhibit an exam-
ple of a VASS with a non semilinear reachability
set, which we translate as a 2-dimensional right
linear MLIG with productions3

(S, e2)→ (S, e1), (S, 0)→ (A, 0) | (B, 0),
(A, e1)→ (A, 2e2), (A, 0)→ a (S, 0),
(B, e1)→ b (B, 0) | b, (B, e2)→ b (B, 0) | b

3Adding terminal symbols c in each production would re-
sult in a lexicalized grammar, still with a non semilinear lan-
guage.




S

ε




S

S

S

a S

S

b S

S

c S

Figure 4: An UVG-dl for Lmix.

and (S, e2) as start symbol, that generates the non
semilinear language

Lnsm = {anbm | 0 ≤ n, 0 < m ≤ 2n} .

Proposition 14 (Hopcroft and Pansiot, 1979).
There exist non semilinear Petri nets languages.

The non semilinearity of MLIGs entails that of
all the grammatical formalisms mentioned next in
Section 3.2; this answers in particular a conjecture
by Kallmeyer (2001) about the semilinearity of V-
TAGs.

3.2 Dominance Links
UVG-dl Rambow (1994b) introduced UVG-dls
as a formal model for scrambling and tree descrip-
tion grammars.

Definition 15 (Rambow, 1994b). An unordered
vector grammars with dominance links (UVG-dl)
is a tuple G = 〈N,Σ,W, S〉 where N and Σ are
disjoint finite sets of nonterminals and terminals,
V = N ∪ Σ is the vocabulary, W is a set of vec-
tors of productions with dominance links, i.e. each
element of W is a pair (P,D) where each P is a
multiset of productions in N × V ∗ and D is a re-
lation from nonterminals in the right parts of pro-
ductions in P to nonterminals in their left parts,
and S in N is the start symbol.

A terminal derivation of w in Σ∗ in an UVG-dl
is a context-free derivation of form S

p1=⇒ α1
p2=⇒

α2 · · ·αp−1
pp=⇒ w such that the control word

p1p2 · · · pp is a permutation of a member of W ∗

and the dominance relations of W hold in the as-
sociated derivation tree. The language L(G) of
an UVG-dl G is the set of sentences w with some
terminal derivation. We write L(UVG-dl) for the
class of UVG-dl languages.

An alternative semantics of derivations in UVG-
dls is simply their translation into MLIGs: as-
sociate with each nonterminal in a derivation the
multiset of productions it has to spawn. Figure 4
presents the two vectors of an UVG-dl for the MIX
language of Example 2, with dashed arrows indi-
cating dominance links. Observe that production
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S → S in the second vector has to spawn even-
tually one occurrence of each S → aS, S → bS,
and S → cS, which corresponds exactly to the
MLIG of Example 2.

The ease of translation from the grammar of
Figure 4 into a MLIG stems from the impossi-
bility of splitting any of its vectors (P,D) into
two nonempty ones (P1, D1) and (P2, D2) while
preserving the dominance relation, i.e. with P =
P1]P2 andD = D1]D2. This strictness property
can be enforced without loss of generality since
we can always add to each vector (P,D) a pro-
duction S → S with a dominance link to each
production in P . This was performed on the sec-
ond vector in Figure 4; remark that the grammar
without this addition is an unordered vector gram-
mar (Cremers and Mayer, 1974, UVG), and still
generates Lmix.

Theorem 16 (Rambow, 1994b). Every MLIG can
be transformed into an equivalent UVG-dl in log-
arithmic space, and conversely.

Proof sketch. One can check that Rambow
(1994b)’s proof of L(MLIG) ⊆ L(UVG-dl)
incurs at most a quadratic blowup from a MLIG
in RINF, and invoke Proposition 3. More pre-
cisely, given a MLIG in RINF, productions
of form (A,0) → α with A in N and α in
(Σ ∪ (N × {0}))∗ form singleton vectors, and
productions of form (A,0) → (B,ei) with A, B
in N and 0 < i ≤ n need to be paired with a
production of form (C,ei) → (D,0) for some
C and D in N in order to form a vector with a
dominance link between B and C.

The converse inclusion and its complexity are
immediate when considering strict UVG-dls.

The restrictions to k-ranked and k-bounded
grammars find natural counterparts in strict UVG-
dls by bounding the (total) number of pending
dominance links in any derivation. Lexicaliza-
tion has now its usual definition: for every vec-
tor ({pi,1, . . . , pi,ki

}, Di) in W , at least one of the
pi,j should contain at least one terminal in its right
part—we have then L(UVG-dl`) ⊆ L(MLIG`).

More on Dominance Links Dominance links
are quite common in tree description formalisms,
where they were already in use in D-theory (Mar-
cus et al., 1983) and in quasi-tree semantics for fb-
TAGs (Vijay-Shanker, 1992). In particular, D-tree
substitution grammars are essentially the same as
UVG-dls (Rambow et al., 2001), and quite a few

other tree description formalisms subsume them
(Candito and Kahane, 1998; Kallmeyer, 2001;
Guillaume and Perrier, 2010). Another class of
grammars are vector TAGs (V-TAGs), which ex-
tend TAGs and MCTAGs using dominance links
(Becker et al., 1991; Rambow, 1994a; Champol-
lion, 2007), subsuming again UVG-dls.

4 Computational Complexity

We study in this section the complexity of sev-
eral decision problems on MLIGs, prominently
of emptiness and membership problems, in the
general (Section 4.2), k-bounded (Section 4.3),
and lexicalized cases (Section 4.4). Table 1 sums
up the known complexity results. Since by The-
orem 16 we can translate between MLIGs and
UVG-dls in logarithmic space, the complexity re-
sults on UVG-dls will be the same.

4.1 Decision Problems

Let us first review some decision problems of
interest. In the following, G denotes a MLIG
〈N,Σ, P, (S, x0)〉:
boundedness given 〈G〉, is G bounded? As seen

in Section 2.2, this is equivalent to ranked-
ness.

k-boundedness given 〈G, k〉, k in N, is G k-
bounded? As seen in Section 2.2, this is the
same as (kn)-rankedness. Here we will dis-
tinguish two cases depending on whether k is
encoded in unary or binary.

coverability given 〈G, F 〉, G ε-free in ETF and F
a finite subset ofN×Nn, does there exist α =
(A1, y1) · · · (Am, ym) in (N×Nn)∗ such that
(S, x0) ⇒∗ α and for each 0 < j ≤ m there
exists (Aj , xj) in F with xj ≤ yj?

reachability given 〈G, F 〉, G ε-free in ETF and F
a finite subset of N × Nn, does there exist
α = (A1, y1) · · · (Am, ym) in F ∗ such that
(S, x0)⇒∗ α?

non emptiness given 〈G〉, is L(G) non empty?

(uniform) membership given 〈G, w〉, w in Σ∗,
does w belong to L(G)?

Boundedness and k-boundedness are needed
in order to prove that a grammar is bounded,
and to apply the smaller complexities of Sec-
tion 4.3. Coverability is often considered for
Petri nets, and allows to derive lower bounds on
reachability. Emptiness is the most basic static
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analysis one might want to perform on a gram-
mar, and is needed for parsing as intersection
approaches (Lang, 1994), while membership re-
duces to parsing. Note that we only consider uni-
form membership, since grammars for natural lan-
guages are typically considerably larger than input
sentences, and their influence can hardly be ne-
glected.

There are several obvious reductions between
reachability, emptiness, and membership. Let
→log denote LOGSPACE reductions between de-
cision problems; we have:
Proposition 17.

coverability→log reachability (1)

↔log non emptiness (2)

↔log membership (3)
Proof sketch. For (1), construct a reachability in-
stance 〈G′, {(E, 0)}〉 from a coverability instance
〈G, F 〉 by adding to G a fresh nonterminal E and
the productions

{(A, x)→ (E, 0) | (A, x) ∈ F}
∪ {(E, ei)→ (E, 0) | 0 < i ≤ n} .

For (2), from a reachability instance 〈G, F 〉, re-
move all terminal productions from G and add in-
stead the productions {(A, x) → ε | (A, x) ∈ F};
the new grammar G′ has a non empty language iff
the reachability instance was positive. Conversely,
from a non emptiness instance 〈G〉, put the gram-
mar in ETF and define F to match all terminal pro-
ductions, i.e. F = {(A, x) | (A, x) → a ∈ P, a ∈
Σ∪{ε}}, and then remove all terminal productions
in order to obtain a reachability instance 〈G′, F 〉.

For (3), from a non emptiness instance 〈G〉, re-
place all terminals in G by ε to obtain an empty
word membership instance 〈G′, ε〉. Conversely,
from a membership instance 〈G, w〉, construct the
intersection grammar G′ withL(G′) = L(G)∩{w}
(Bar-Hillel et al., 1961), which serves as non
emptiness instance 〈G′〉.

4.2 General Case
Verma and Goubault-Larrecq (2005) were the first
to prove that coverability and boundedness were
decidable for BVASS, using a covering tree con-
struction à la Karp and Miller (1969), thus of
non primitive recursive complexity. Demri et al.
(2009, Theorems 7, 17, and 18) recently proved
tight complexity bounds for these problems, ex-
tending earlier results by Rackoff (1978) and Lip-
ton (1976) for Petri nets.

Theorem 18 (Demri et al., 2009). Coverabil-
ity and boundedness for MLIGs are 2EXPTIME-
complete.

Regarding reachability, emptiness, and mem-
bership, decidability is still open. A 2EXPSPACE

lower bound was recently found by Lazić (2010).
If a decision procedure exists, we can expect it to
be quite complex, as already in the Petri net case,
the complexity of the known decision procedures
(Mayr, 1981; Kosaraju, 1982) is not primitive re-
cursive (Cardoza et al., 1976, who attribute the
idea to Hack).

4.3 k-Bounded and k-Ranked Cases
Since k-bounded MLIGs can be converted into
CFGs (Lemma 8), emptiness and membership
problems are decidable, albeit at the expense of an
exponential blowup. We know from the Petri net
literature that coverability and reachability prob-
lems are PSPACE-complete for k-bounded right
linear MLIGs (Jones et al., 1977) by a reduc-
tion from linear bounded automaton (LBA) mem-
bership. We obtain the following for k-bounded
MLIGs, using a similar reduction from member-
ship in polynomially space bounded alternating
Turing machines (Chandra et al., 1981, ATM):
Theorem 19. Coverability and reachability for k-
bounded MLIGs are EXPTIME-complete, even for
fixed k ≥ 1.

The lower bound is obtained through an encod-
ing of an instance of the membership problem for
ATMs working in polynomial space into an in-
stance of the coverability problem for 1-bounded
MLIGs. The upper bound is a direct application
of Lemma 8, coverability and reachability being
reducible to the emptiness problem for a CFG of
exponential size. Theorem 19 also shows the EX-
PTIME-hardness of emptiness and membership in
minimalist grammars with SMC.
Corollary 20. Let k ≥ 1; k-boundedness for
MLIGs is EXPTIME-complete.

Proof. For the lower bound, consider an instance
〈G, F 〉 of coverability for a 1-bounded MLIG G,
which is EXPTIME-hard according to Theorem 19.
Add to the MLIG G a fresh nonterminal E and the
productions

{(A, x)→ (E, x) | (A, x) ∈ F}
∪ {(E, 0)→ (E, ei) | 0 < i ≤ n} ,

which make it non k-bounded iff the coverability
instance was positive.
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Problem Lower bound Upper bound

Petri net k-Boundedness PSPACE (Jones et al., 1977) PSPACE (Jones et al., 1977)
Petri net Boundedness EXPSPACE (Lipton, 1976) EXPSPACE (Rackoff, 1978)
Petri net {Emptiness, Membership} EXPSPACE (Lipton, 1976) Decidable, not primitive recursive

(Mayr, 1981; Kosaraju, 1982)

{MLIG, MLIG`} k-Boundedness EXPTIME (Corollary 20) EXPTIME (Corollary 20)
{MLIG, MLIG`} Boundedness 2EXPTIME (Demri et al., 2009) 2EXPTIME (Demri et al., 2009)
{MLIG, MLIG`} Emptiness

2EXPSPACE (Lazić, 2010) Not known to be decidable
MLIG Membership
{kb-MLIG, kb-MLIG`} Emptiness

EXPTIME (Theorem 19) EXPTIME (Theorem 19)
kb-MLIG Membership
{MLIG`, kb-MLIG`} Membership NPTIME (Koller and Rambow, 2007) NPTIME (trivial)
kr-MLIG {Emptiness, Membership} PTIME (Jones and Laaser, 1976) PTIME (Lemma 6)

Table 1: Summary of complexity results.

For the upper bound, apply Lemma 8 with k′ =
k + 1 to construct an O(|G| · 2n2 log2(k′+1))-sized
CFG, reduce it in polynomial time, and check
whether a nonterminal (A, x) with x(i) = k′ for
some 0 < i ≤ n occurs in the reduced grammar.

Note that the choice of the encoding of k is ir-
relevant, as k = 1 is enough for the lower bound,
and k only logarithmically influences the exponent
for the upper bound.

Corollary 20 also implies the EXPTIME-
completeness of k-rankedness, k encoded in
unary, if k can take arbitrary values. On the other
hand, if k is known to be small, for instance log-
arithmic in the size of G, then k-rankedness be-
comes polynomial by Lemma 6.

Observe finally that k-rankedness provides the
only tractable class of MLIGs for uniform mem-
bership, using again Lemma 6 to obtain a CFG
of polynomial size—actually exponential in k,
but k is assumed to be fixed for this problem.
An obvious lower bound is that of membership
in CFGs, which is PTIME-complete (Jones and
Laaser, 1976).

4.4 Lexicalized Case

Unlike the high complexity lower bounds of the
previous two sections, NPTIME-hardness results
for uniform membership have been proved for a
number of formalisms related to MLIGs, from the
commutative CFG viewpoint (Huynh, 1983; Bar-
ton, 1985; Esparza, 1995), or from more spe-
cialized models (Søgaard et al., 2007; Champol-
lion, 2007; Koller and Rambow, 2007). We fo-
cus here on this last proof, which reduces from
the normal dominance graph configurability prob-
lem (Althaus et al., 2003), as it allows to derive

NPTIME-hardness even in highly restricted gram-
mars.

Theorem 21 (Koller and Rambow, 2007). Uni-
form membership of 〈G, w〉 for G a 1-bounded,
lexicalized, UVG-dl with finite language is
NPTIME-hard, even for |w| = 1.

Proof sketch. Set S as start symbol and add a pro-
duction S → aA to the sole vector of the gram-
mar G constructed by Koller and Rambow (2007)
from a normal dominance graph, with dominance
links to all the other productions. Then G becomes
strict, lexicalized, with finite language {a} or ∅,
and 1-bounded, such that a belongs to L(G) iff the
normal dominance graph is configurable.

The fact that uniform membership is in
NPTIME in the lexicalized case is clear, as we
only need to guess nondeterministically a deriva-
tion of size linear in |w| and check its correctness.

The weakness of lexicalized grammars is how-
ever that their emptiness problem is not any eas-
ier to solve! The effect of lexicalization is indeed
to break the reduction from emptiness to member-
ship in Proposition 17, but emptiness is as hard as
ever, which means that static checks on the gram-
mar might even be undecidable.

5 Conclusion

Grammatical formalisms with dominance links,
introduced in particular to model scrambling phe-
nomena in computational linguistics, have deep
connections with several open questions in an un-
expected variety of fields in computer science.
We hope this survey to foster cross-fertilizing ex-
changes; for instance, is there a relation between
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Conjecture 11 and the decidability of reachabil-
ity in MLIGs? A similar question, whether the
language Lpal of even 2-letters palindromes was
a Petri net language, was indeed solved using the
decidability of reachability in Petri nets (Jantzen,
1979), and shown to be strongly related to the lat-
ter (Lambert, 1992).

A conclusion with a more immediate linguis-
tic value is that MLIGs and UVG-dls hardly qual-
ify as formalisms for mildly context-sensitive lan-
guages, claimed by Joshi (1985) to be adequate
for modeling natural languages, and “roughly” de-
fined as the extensions of context-free languages
that display

1. support for limited cross-serial dependen-
cies: seems doubtful, see Conjecture 11,

2. constant growth, a requisite nowadays re-
placed by semilinearity: does not hold, as
seen with Proposition 14, and

3. polynomial recognition algorithms: holds
only for restricted classes of grammars, as
seen in Section 4.

Nevertheless, variants such as k-ranked V-TAGs
are easily seen to fulfill all the three points above.

Acknowledgements Thanks to Pierre Cham-
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