
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 445–453,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Improving the Use of Pseudo-Words for Evaluating
Selectional Preferences

Nathanael Chambers and Dan Jurafsky
Department of Computer Science

Stanford University
{natec,jurafsky}@stanford.edu

Abstract

This paper improves the use of pseudo-
words as an evaluation framework for
selectional preferences. While pseudo-
words originally evaluated word sense
disambiguation, they are now commonly
used to evaluate selectional preferences. A
selectional preference model ranks a set of
possible arguments for a verb by their se-
mantic fit to the verb. Pseudo-words serve
as a proxy evaluation for these decisions.
The evaluation takes an argument of a verb
like drive (e.g. car), pairs it with an al-
ternative word (e.g. car/rock), and asks a
model to identify the original. This pa-
per studies two main aspects of pseudo-
word creation that affect performance re-
sults. (1) Pseudo-word evaluations often
evaluate only a subset of the words. We
show that selectional preferences should
instead be evaluated on the data in its en-
tirety. (2) Different approaches to select-
ing partner words can produce overly op-
timistic evaluations. We offer suggestions
to address these factors and present a sim-
ple baseline that outperforms the state-of-
the-art by 13% absolute on a newspaper
domain.

1 Introduction

For many natural language processing (NLP)
tasks, particularly those involving meaning, cre-
ating labeled test data is difficult or expensive.
One way to mitigate this problem is with pseudo-
words, a method for automatically creating test
corpora without human labeling, originally pro-
posed for word sense disambiguation (Gale et al.,

1992; Schutze, 1992). While pseudo-words are
now less often used for word sense disambigation,
they are a common way to evaluate selectional
preferences, models that measure the strength of
association between a predicate and its argument
filler, e.g., that the noun lunch is a likely object
of eat. Selectional preferences are useful for NLP
tasks such as parsing and semantic role labeling
(Zapirain et al., 2009). Since evaluating them in
isolation is difficult without labeled data, pseudo-
word evaluations can be an attractive evaluation
framework.

Pseudo-word evaluations are currently used to
evaluate a variety of language modeling tasks
(Erk, 2007; Bergsma et al., 2008). However,
evaluation design varies across research groups.
This paper studies the evaluation itself, showing
how choices can lead to overly optimistic results
if the evaluation is not designed carefully. We
show in this paper that current methods of apply-
ing pseudo-words to selectional preferences vary
greatly, and suggest improvements.

A pseudo-word is the concatenation of two
words (e.g. house/car). One word is the orig-
inal in a document, and the second is the con-
founder. Consider the following example of ap-
plying pseudo-words to the selectional restrictions
of the verb focus:

Original: This story focuses on the campaign.

Test: This story/part focuses on the campaign/meeting.

In the original sentence, focus has two arguments:
a subject story and an object campaign. In the test
sentence, each argument of the verb is replaced by
pseudo-words. A model is evaluated by its success
at determining which of the two arguments is the
original word.

Two problems exist in the current use of

445

pseudo-words to evaluate selectional preferences.
First, selectional preferences historically focus on
subsets of data such as unseen words or words in
certain frequency ranges. While work on unseen
data is important, evaluating on the entire dataset
provides an accurate picture of a model’s overall
performance. Most other NLP tasks today evalu-
ate all test examples in a corpus. We will show
that seen arguments actually dominate newspaper
articles, and thus propose creating test sets that in-
clude all verb-argument examples to avoid artifi-
cial evaluations.

Second, pseudo-word evaluations vary in how
they choose confounders. Previous work has at-
tempted to maintain a similar corpus frequency
to the original, but it is not clear how best to do
this, nor how it affects the task’s difficulty. We
argue in favor of using nearest-neighbor frequen-
cies and show how using random confounders pro-
duces overly optimistic results.

Finally, we present a surprisingly simple base-
line that outperforms the state-of-the-art and is far
less memory and computationally intensive. It
outperforms current similarity-based approaches
by over 13% when the test set includes all of the
data. We conclude with a suggested backoff model
based on this baseline.

2 History of Pseudo-Word
Disambiguation

Pseudo-words were introduced simultaneously by
two papers studying statistical approaches to word
sense disambiguation (WSD). Schütze (1992)
simply called the words, ‘artificial ambiguous
words’, but Gale et al. (1992) proposed the suc-
cinct name, pseudo-word. Both papers cited the
sparsity and difficulty of creating large labeled
datasets as the motivation behind pseudo-words.
Gale et al. selected unambiguous words from the
corpus and paired them with random words from
different thesaurus categories. Schütze paired his
words with confounders that were ‘comparable in
frequency’ and ‘distinct semantically’. Gale et
al.’s pseudo-word term continues today, as does
Schütze’s frequency approach to selecting the con-
founder.

Pereira et al. (1993) soon followed with a selec-
tional preference proposal that focused on a lan-
guage model’s effectiveness on unseen data. The
work studied clustering approaches to assist in
similarity decisions, predicting which of two verbs

was the correct predicate for a given noun object.
One verb v was the original from the source doc-
ument, and the other v′ was randomly generated.
This was the first use of such verb-noun pairs, as
well as the first to test only on unseen pairs.

Several papers followed with differing methods
of choosing a test pair (v, n) and its confounder
v′. Dagan et al. (1999) tested all unseen (v, n)
occurrences of the most frequent 1000 verbs in
his corpus. They then sorted verbs by corpus fre-
quency and chose the neighboring verb v′ of v
as the confounder to ensure the closest frequency
match possible. Rooth et al. (1999) tested 3000
random (v, n) pairs, but required the verbs and
nouns to appear between 30 and 3000 times in
training. They also chose confounders randomly
so that the new pair was unseen.

Keller and Lapata (2003) specifically addressed
the impact of unseen data by using the web to first
‘see’ the data. They evaluated unseen pseudo-
words by attempting to first observe them in a
larger corpus (the Web). One modeling difference
was to disambiguate the nouns as selectional pref-
erences instead of the verbs. Given a test pair
(v, n) and its confounder (v, n′), they used web
searches such as “v Det n” to make the decision.
Results beat or matched current results at the time.
We present a similarly motivated, but new web-
based approach later.

Very recent work with pseudo-words (Erk,
2007; Bergsma et al., 2008) further blurs the lines
between what is included in training and test data,
using frequency-based and semantic-based rea-
sons for deciding what is included. We discuss
this further in section 5.

As can be seen, there are two main factors when
devising a pseudo-word evaluation for selectional
preferences: (1) choosing (v, n) pairs from the test
set, and (2) choosing the confounding n′ (or v′).
The confounder has not been looked at in detail
and as best we can tell, these factors have var-
ied significantly. Many times the choices are well
motivated based on the paper’s goals, but in other
cases the motivation is unclear.

3 How Frequent is Unseen Data?

Most NLP tasks evaluate their entire datasets, but
as described above, most selectional preference
evaluations have focused only on unseen data.
This section investigates the extent of unseen ex-
amples in a typical training/testing environment

446

of newspaper articles. The results show that even
with a small training size, seen examples dominate
the data. We argue that, absent a system’s need for
specialized performance on unseen data, a repre-
sentative test set should include the dataset in its
entirety.

3.1 Unseen Data Experiment

We use the New York Times (NYT) and Associ-
ated Press (APW) sections of the Gigaword Cor-
pus (Graff, 2002), as well as the British National
Corpus (BNC) (Burnard, 1995) for our analysis.
Parsing and SRL evaluations often focus on news-
paper articles and Gigaword is large enough to
facilitate analysis over varying amounts of train-
ing data. We parsed the data with the Stan-
ford Parser1 into dependency graphs. Let (vd, n)
be a verb v with grammatical dependency d ∈
{subject, object, prep} filled by noun n. Pairs
(vd, n) are chosen by extracting every such depen-
dency in the graphs, setting the head predicate as
v and the head word of the dependent d as n. All
prepositions are condensed into prep.

We randomly selected documents from the year
2001 in the NYT portion of the corpus as devel-
opment and test sets. Training data for APW and
NYT include all years 1994-2006 (minus NYT de-
velopment and test documents). We also identified
and removed duplicate documents2. The BNC in
its entirety is also used for training as a single data
point. We then record every seen (vd, n) pair dur-
ing training that is seen two or more times3 and
then count the number of unseen pairs in the NYT
development set (1455 tests).

Figure 1 plots the percentage of unseen argu-
ments against training size when trained on either
NYT or APW (the APW portion is smaller in total
size, and the smaller BNC is provided for com-
parison). The first point on each line (the high-
est points) contains approximately the same num-
ber of words as the BNC (100 million). Initially,
about one third of the arguments are unseen, but
that percentage quickly falls close to 10% as ad-
ditional training is included. This suggests that an
evaluation focusing only on unseen data is not rep-
resentative, potentially missing up to 90% of the
data.

1http://nlp.stanford.edu/software/lex-parser.shtml
2Any two documents whose first two paragraphs in the

corpus files are identical.
3Our results are thus conservative, as including all single

occurrences would achieve even smaller unseen percentages.

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

45

Number of Tokens in Training (hundred millions)

Pe
rc

en
t U

ns
ee

n

Unseen Arguments in NYT Dev

 BNC
 AP
 NYT
 Google

Figure 1: Percentage of NYT development set
that is unseen when trained on varying amounts of
data. The two lines represent training with NYT or
APW data. The APW set is smaller in size from
the NYT. The dotted line uses Google n-grams as
training. The x-axis represents tokens × 108.

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

Number of Tokens in Training (hundred millions)

Pe
rc

en
t U

ns
ee

n

Unseen Arguments by Type

 Preps
 Subjects
 Objects

Figure 2: Percentage of subject/object/preposition
arguments in the NYT development set that is un-
seen when trained on varying amounts of NYT
data. The x-axis represents tokens × 108.

447

The third line across the bottom of the figure is
the number of unseen pairs using Google n-gram
data as proxy argument counts. Creating argu-
ment counts from n-gram counts is described in
detail below in section 5.2. We include these Web
counts to illustrate how an openly available source
of counts affects unseen arguments. Finally, fig-
ure 2 compares which dependency types are seen
the least in training. Prepositions have the largest
unseen percentage, but not surprisingly, also make
up less of the training examples overall.

In order to analyze why pairs are unseen, we an-
alyzed the distribution of rare words across unseen
and seen examples. To define rare nouns, we order
head words by their individual corpus frequencies.
A noun is rare if it occurs in the lowest 10% of the
list. We similarly define rare verbs over their or-
dered frequencies (we count verb lemmas, and do
not include the syntactic relations). Corpus counts
covered 2 years of the AP section, and we used
the development set of the NYT section to extract
the seen and unseen pairs. Figure 3 shows the per-
centage of rare nouns and verbs that occur in un-
seen and seen pairs. 24.6% of the verbs in un-
seen pairs are rare, compared to only 4.5% in seen
pairs. The distribution of rare nouns is less con-
trastive: 13.3% vs 8.9%. This suggests that many
unseen pairs are unseen mainly because they con-
tain low-frequency verbs, rather than because of
containing low-frequency argument heads.

Given the large amount of seen data, we be-
lieve evaluations should include all data examples
to best represent the corpus. We describe our full
evaluation results and include a comparison of dif-
ferent training sizes below.

4 How to Select a Confounder

Given a test set S of pairs (vd, n) ∈ S, we now ad-
dress how best to select a confounder n′. Work in
WSD has shown that confounder choice can make
the pseudo-disambiguation task significantly eas-
ier. Gaustad (2001) showed that human-generated
pseudo-words are more difficult to classify than
random choices. Nakov and Hearst (2003) further
illustrated how random confounders are easier to
identify than those selected from semantically am-
biguous, yet related concepts. Our approach eval-
uates selectional preferences, not WSD, but our re-
sults complement these findings.

We identified three methods of confounder se-
lection based on varying levels of corpus fre-

verbs nouns

Unseen Tests
Seen Tests

Distribution of Rare Verbs and Nouns in Tests

P
er

ce
nt

 R
ar

e
W

or
ds

0
5

10
15

20
25

30

Figure 3: Comparison between seen and unseen
tests (verb,relation,noun). 24.6% of unseen tests
have rare verbs, compared to just 4.5% in seen
tests. The rare nouns are more evenly distributed
across the tests.

quency: (1) choose a random noun, (2) choose a
random noun from a frequency bucket similar to
the original noun’s frequency, and (3) select the
nearest neighbor, the noun with frequency clos-
est to the original. These methods evaluate the
range of choices used in previous work. Our ex-
periments compare the three.

5 Models

5.1 A New Baseline

The analysis of unseen slots suggests a baseline
that is surprisingly obvious, yet to our knowledge,
has not yet been evaluated. Part of the reason
is that early work in pseudo-word disambiguation
explicitly tested only unseen pairs4. Our evalua-
tion will include seen data, and since our analysis
suggests that up to 90% is seen, a strong baseline
should address this seen portion.

4Recent work does include some seen data. Bergsma et
al. (2008) test pairs that fall below a mutual information
threshold (might include some seen pairs), and Erk (2007)
selects a subset of roles in FrameNet (Baker et al., 1998) to
test and uses all labeled instances within this subset (unclear
what portion of subset of data is seen). Neither evaluates all
of the seen data, however.

448

We propose a conditional probability baseline:

P (n|vd) =

{
C(vd,n)
C(vd,∗) if C(vd, n) > 0

0 otherwise

where C(vd, n) is the number of times the head
word n was seen as an argument to the pred-
icate v, and C(vd, ∗) is the number of times
vd was seen with any argument. Given a test
(vd, n) and its confounder (vd, n

′), choose n if
P (n|vd) > P (n′|vd), and n′ otherwise. If
P (n|vd) = P (n′|vd), randomly choose one.

Lapata et al. (1999) showed that corpus fre-
quency and conditional probability correlate with
human decisions of adjective-noun plausibility,
and Dagan et al. (1999) appear to propose a very
similar baseline for verb-noun selectional prefer-
ences, but the paper evaluates unseen data, and so
the conditional probability model is not studied.

We later analyze this baseline against a more
complicated smoothing approach.

5.2 A Web Baseline
If conditional probability is a reasonable baseline,
better performance may just require more data.
Keller and Lapata (2003) proposed using the web
for this task, querying for specific phrases like
‘Verb Det N’ to find syntactic objects. Such a web
corpus would be attractive, but we’d like to find
subjects and prepositional objects as well as ob-
jects, and also ideally we don’t want to limit our-
selves to patterns. Since parsing the web is unre-
alistic, a reasonable compromise is to make rough
counts when pairs of words occur in close proxim-
ity to each other.

Using the Google n-gram corpus, we recorded
all verb-noun co-occurrences, defined by appear-
ing in any order in the same n-gram, up to and
including 5-grams. For instance, the test pair
(throwsubject, ball) is considered seen if there ex-
ists an n-gram such that throw and ball are both
included. We count all such occurrences for all
verb-noun pairs. We also avoided over-counting
co-occurrences in lower order n-grams that appear
again in 4 or 5-grams. This crude method of count-
ing has obvious drawbacks. Subjects are not dis-
tinguished from objects and nouns may not be ac-
tual arguments of the verb. However, it is a simple
baseline to implement with these freely available
counts.

Thus, we use conditional probability as de-
fined in the previous section, but define the count

C(vd, n) as the number of times v and n (ignoring
d) appear in the same n-gram.

5.3 Smoothing Model

We implemented the current state-of-the-art
smoothing model of Erk (2007). The model is
based on the idea that the arguments of a particular
verb slot tend to be similar to each other. Given
two potential arguments for a verb, the correct
one should correlate higher with the arguments ob-
served with the verb during training.

Formally, given a verb v and a grammatical de-
pendency d, the score for a noun n is defined:

Svd
(n) =

∑
w∈Seen(vd)

sim(n, w) ∗ C(vd, w) (1)

where sim(n, w) is a noun-noun similarity score,
Seen(vd) is the set of seen head words filling the
slot vd during training, and C(vd, n) is the num-
ber of times the noun n was seen filling the slot vd

The similarity score sim(n, w) can thus be one of
many vector-based similarity metrics5. We eval-
uate both Jaccard and Cosine similarity scores in
this paper, but the difference between the two is
small.

6 Experiments

Our training data is the NYT section of the Gi-
gaword Corpus, parsed into dependency graphs.
We extract all (vd, n) pairs from the graph, as de-
scribed in section 3. We randomly chose 9 docu-
ments from the year 2001 for a development set,
and 41 documents for testing. The test set con-
sisted of 6767 (vd, n) pairs. All verbs and nouns
are stemmed, and the development and test docu-
ments were isolated from training.

6.1 Varying Training Size

We repeated the experiments with three different
training sizes to analyze the effect data size has on
performance:

• Train x1: Year 2001 of the NYT portion of
the Gigaword Corpus. After removing du-
plicate documents, it contains approximately
110 million tokens, comparable to the 100
million tokens in the BNC corpus.

5A similar type of smoothing was proposed in earlier
work by Dagan et al. (1999). A noun is represented by a
vector of verb slots and the number of times it is observed
filling each slot.

449

• Train x2: Years 2001 and 2002 of the NYT
portion of the Gigaword Corpus, containing
approximately 225 million tokens.

• Train x10: The entire NYT portion of Giga-
word (approximately 1.2 billion tokens). It is
an order of magnitude larger than Train x1.

6.2 Varying the Confounder
We generated three different confounder sets
based on word corpus frequency from the 41 test
documents. Frequency was determined by count-
ing all tokens with noun POS tags. As motivated
in section 4, we use the following approaches:

• Random: choose a random confounder from
the set of nouns that fall within some broad
corpus frequency range. We set our range to
eliminate (approximately) the top 100 most
frequent nouns, but otherwise arbitrarily set
the lower range as previous work seems to
do. The final range was [30, 400000].

• Buckets: all nouns are bucketed based on
their corpus frequencies6. Given a test pair
(vd, n), choose the bucket in which n belongs
and randomly select a confounder n′ from
that bucket.

• Neighbor: sort all seen nouns by frequency
and choose the confounder n′ that is the near-
est neighbor of n with greater frequency.

6.3 Model Implementation
None of the models can make a decision if they
identically score both potential arguments (most
often true when both arguments were not seen with
the verb in training). As a result, we extend all
models to randomly guess (50% performance) on
pairs they cannot answer.

The conditional probability is reported as Base-
line. For the web baseline (reported as Google),
we stemmed all words in the Google n-grams and
counted every verb v and noun n that appear in
Gigaword. Given two nouns, the noun with the
higher co-occurrence count with the verb is cho-
sen. As with the other models, if the two nouns
have the same counts, it randomly guesses.

The smoothing model is named Erk in the re-
sults with both Jaccard and Cosine as the simi-
larity metric. Due to the large vector representa-
tions of the nouns, it is computationally wise to

6We used frequency buckets of 4, 10, 25, 200, 1000,
>1000. Adding more buckets moves the evaluation closer
to Neighbor, less is closer to Random.

trim their vectors, but also important to do so for
best performance. A noun’s representative vector
consists of verb slots and the number of times the
noun was seen in each slot. We removed any verb
slot not seen more than x times, where x varied
based on all three factors: the dataset, confounder
choice, and similarity metric. We optimized x
on the development data with a linear search, and
used that cutoff on each test. Finally, we trimmed
any vectors over 2000 in size to reduce the com-
putational complexity. Removing this strict cutoff
appears to have little effect on the results.

Finally, we report backoff scores for Google and
Erk. These consist of always choosing the Base-
line if it returns an answer (not a guessed unseen
answer), and then backing off to the Google/Erk
result for Baseline unknowns. These are labeled
Backoff Google and Backoff Erk.

7 Results

Results are given for the two dimensions: con-
founder choice and training size. Statistical sig-
nificance tests were calculated using the approx-
imate randomization test (Yeh, 2000) with 1000
iterations.

Figure 4 shows the performance change over the
different confounder methods. Train x2 was used
for training. Each model follows the same pro-
gression: it performs extremely well on the ran-
dom test set, worse on buckets, and the lowest on
the nearest neighbor. The conditional probability
Baseline falls from 91.5 to 79.5, a 12% absolute
drop from completely random to neighboring fre-
quency. The Erk smoothing model falls 27% from
93.9 to 68.1. The Google model generally per-
forms the worst on all sets, but its 74.3% perfor-
mance with random confounders is significantly
better than a 50-50 random choice. This is no-
table since the Google model only requires n-gram
counts to implement. The Backoff Erk model is
the best, using the Baseline for the majority of
decisions and backing off to the Erk smoothing
model when the Baseline cannot answer.

Figure 5 (shown on the next page) varies the
training size. We show results for both Bucket Fre-
quencies and Neighbor Frequencies. The only dif-
ference between columns is the amount of training
data. As expected, the Baseline improves as the
training size is increased. The Erk model, some-
what surprisingly, shows no continual gain with
more training data. The Jaccard and Cosine simi-

450

Varying the Confounder Frequency

Random Buckets Neighbor
Baseline 91.5 89.1 79.5
Erk-Jaccard 93.9* 82.7* 68.1*
Erk-Cosine 91.2 81.8* 65.3*
Google 74.3* 70.4* 59.4*
Backoff Erk 96.6* 91.8* 80.8*
Backoff Goog 92.7† 89.7 79.8

Figure 4: Trained on two years of NYT data (Train
x2). Accuracy of the models on the same NYT test
documents, but with three different ways of choos-
ing the confounders. * indicates statistical signifi-
cance with the column’s Baseline at the p < 0.01
level, † at p < 0.05. Random is overly optimistic,
reporting performance far above more conserva-
tive (selective) confounder choices.

Baseline Details
Train Train x2 Train x10

Precision 96.1 95.5* 95.0†
Accuracy 78.2 82.0* 88.1*
Accuracy +50% 87.5 89.1* 91.7*

Figure 6: Results from the buckets confounder test
set. Baseline precision, accuracy (the same as re-
call), and accuracy when you randomly guess the
tests that Baseline does not answer. All numbers
are statistically significant * with p-value < 0.01
from the number to their left.

larity scores perform similarly in their model. The
Baseline achieves the highest accuracies (91.7%
and 81.2%) with Train x10, outperforming the best
Erk model by 5.2% and 13.1% absolute on buck-
ets and nearest neighbor respectively. The back-
off models improve the baseline by just under 1%.
The Google n-gram backoff model is almost as
good as backing off to the Erk smoothing model.

Finally, figure 6 shows the Baseline’s precision
and overall accuracy. Accuracy is the same as
recall when the model does not guess between
pseudo words that have the same conditional prob-
abilities. Accuracy +50% (the full Baseline in
all other figures) shows the gain from randomly
choosing one of the two words when uncertain.
Precision is extremely high.

8 Discussion

Confounder Choice: Performance is strongly in-
fluenced by the method used when choosing con-

founders. This is consistent with findings for
WSD that corpus frequency choices alter the task
(Gaustad, 2001; Nakov and Hearst, 2003). Our
results show the gradation of performance as one
moves across the spectrum from completely ran-
dom to closest in frequency. The Erk model
dropped 27%, Google 15%, and our baseline 12%.
The overly optimistic performance on random data
suggests using the nearest neighbor approach for
experiments. Nearest neighbor avoids evaluating
on ‘easy’ datasets, and our baseline (at 79.5%)
still provides room for improvement. But perhaps
just as important, the nearest neighbor approach
facilitates the most reproducibile results in exper-
iments since there is little ambiguity in how the
confounder is selected.

Realistic Confounders: Despite its over-
optimism, the random approach to confounder se-
lection may be the correct approach in some cir-
cumstances. For some tasks that need selectional
preferences, random confounders may be more re-
alistic. It’s possible, for example, that the options
in a PP-attachment task might be distributed more
like the random rather than nearest neighbor mod-
els. In any case, this is difficult to decide without
a specific application in mind. Absent such spe-
cific motiviation, a nearest neighbor approach is
the most conservative, and has the advantage of
creating a reproducible experiment, whereas ran-
dom choice can vary across design.

Training Size: Training data improves the con-
ditional probability baseline, but does not help the
smoothing model. Figure 5 shows a lack of im-
provement across training sizes for both jaccard
and cosine implementations of the Erk model. The
Train x1 size is approximately the same size used
in Erk (2007), although on a different corpus. We
optimized argument cutoffs for each training size,
but the model still appears to suffer from addi-
tional noise that the conditional probability base-
line does not. This may suggest that observing a
test argument with a verb in training is more re-
liable than a smoothing model that compares all
training arguments against that test example.

High Precision Baseline: Our conditional
probability baseline is very precise. It outper-
forms the smoothed similarity based Erk model
and gives high results across tests. The only com-
bination when Erk is better is when the training
data includes just one year (one twelfth of the
NYT section) and the confounder is chosen com-

451

Varying the Training Size

Bucket Frequency Neighbor Frequency
Train x1 Train x2 Train x10 Train x1 Train x2 Train x10

Baseline 87.5 89.1 91.7 78.4 79.5 81.2
Erk-Jaccard 86.5* 82.7* 83.1* 66.8* 68.1* 65.5*
Erk-Cosine 82.1* 81.8* 81.1* 66.1* 65.3* 65.7*
Google - - 70.4* - - 59.4*
Backoff Erk 92.6* 91.8* 92.6* 79.4* 80.8* 81.7*
Backoff Google 88.6 89.7 91.9† 78.7 79.8 81.2

Figure 5: Accuracy of varying NYT training sizes. The left and right tables represent two confounder
choices: choose the confounder with frequency buckets, and choose by nearest frequency neighbor.
Trainx1 starts with year 2001 of NYT data, Trainx2 doubles the size, and Trainx10 is 10 times larger. *
indicates statistical significance with the column’s Baseline at the p < 0.01 level, † at p < 0.05.

pletely randomly. These results appear consistent
with Erk (2007) because that work used the BNC
corpus (the same size as one year of our data) and
Erk chose confounders randomly within a broad
frequency range. Our reported results include ev-
ery (vd, n) in the data, not a subset of particu-
lar semantic roles. Our reported 93.9% for Erk-
Jaccard is also significantly higher than their re-
ported 81.4%, but this could be due to the random
choices we made for confounders, or most likely
corpus differences between Gigaword and the sub-
set of FrameNet they evaluated.

Ultimately we have found that complex models
for selectional preferences may not be necessary,
depending on the task. The higher computational
needs of smoothing approaches are best for back-
ing off when unseen data is encountered. Condi-
tional probability is the best choice for seen exam-
ples. Further, analysis of the data shows that as
more training data is made available, the seen ex-
amples make up a much larger portion of the test
data. Conditional probability is thus a very strong
starting point if selectional preferences are an in-
ternal piece to a larger application, such as seman-
tic role labeling or parsing.

Perhaps most important, these results illustrate
the disparity in performance that can come about
when designing a pseudo-word disambiguation
evaluation. It is crucially important to be clear
during evaluations about how the confounder was
generated. We suggest the approach of sorting
nouns by frequency and using a neighbor as the
confounder. This will also help avoid evaluations
that produce overly optimistic results.

9 Conclusion

Current performance on various natural language
tasks is being judged and published based on
pseudo-word evaluations. It is thus important
to have a clear understanding of the evaluation’s
characteristics. We have shown that the evalu-
ation is strongly affected by confounder choice,
suggesting a nearest frequency neighbor approach
to provide the most reproducible performance and
avoid overly optimistic results. We have shown
that evaluating entire documents instead of sub-
sets of the data produces vastly different results.
We presented a conditional probability baseline
that is both novel to the pseudo-word disambigua-
tion task and strongly outperforms state-of-the-art
models on entire documents. We hope this pro-
vides a new reference point to the pseudo-word
disambiguation task, and enables selectional pref-
erence models whose performance on the task
similarly transfers to larger NLP applications.

Acknowledgments

This work was supported by the National Science
Foundation IIS-0811974, and the Air Force Re-
search Laboratory (AFRL) under prime contract
no. FA8750-09-C-0181. Any opinions, ndings,
and conclusion or recommendations expressed in
this material are those of the authors and do not
necessarily reect the view of the AFRL. Thanks
to Sebastian Padó, the Stanford NLP Group, and
the anonymous reviewers for very helpful sugges-
tions.

452

References

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. In Christian
Boitet and Pete Whitelock, editors, ACL-98, pages
86–90, San Francisco, California. Morgan Kauf-
mann Publishers.

Shane Bergsma, Dekang Lin, and Randy Goebel.
2008. Discriminative learning of selectional prefer-
ence from unlabeled text. In Empirical Methods in
Natural Language Processing, pages 59–68, Hon-
olulu, Hawaii.

Lou Burnard. 1995. User Reference Guide for the
British National Corpus. Oxford University Press,
Oxford.

Ido Dagan, Lillian Lee, and Fernando C. N. Pereira.
1999. Similarity-based models of word cooccur-
rence probabilities. Machine Learning, 34(1):43–
69.

Katrin Erk. 2007. A simple, similarity-based model
for selectional preferences. In 45th Annual Meet-
ing of the Association for Computational Linguis-
tics, Prague, Czech Republic.

William A. Gale, Kenneth W. Church, and David
Yarowsky. 1992. Work on statistical methods for
word sense disambiguation. In AAAI Fall Sympo-
sium on Probabilistic Approaches to Natural Lan-
guage, pages 54–60.

Tanja Gaustad. 2001. Statistical corpus-based word
sense disambiguation: Pseudowords vs. real am-
biguous words. In 39th Annual Meeting of the Asso-
ciation for Computational Linguistics - Student Re-
search Workshop.

David Graff. 2002. English Gigaword. Linguistic
Data Consortium.

Frank Keller and Mirella Lapata. 2003. Using the web
to obtain frequencies for unseen bigrams. Computa-
tional Linguistics, 29(3):459–484.

Maria Lapata, Scott McDonald, and Frank Keller.
1999. Determinants of adjective-noun plausibility.
In European Chapter of the Association for Compu-
tational Linguistics (EACL).

Preslav I. Nakov and Marti A. Hearst. 2003. Category-
based pseudowords. In Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology,
pages 67–69, Edmonton, Canada.

Fernando Pereira, Naftali Tishby, and Lillian Lee.
1993. Distributional clustering of english words. In
31st Annual Meeting of the Association for Com-
putational Linguistics, pages 183–190, Columbus,
Ohio.

Mats Rooth, Stefan Riezler, Detlef Prescher, Glenn
Carroll, and Franz Beil. 1999. Inducing a semanti-
cally annotated lexicon via em-based clustering. In
37th Annual Meeting of the Association for Compu-
tational Linguistics, pages 104–111.

Hinrich Schutze. 1992. Context space. In AAAI Fall
Symposium on Probabilistic Approaches to Natural
Language, pages 113–120.

Alexander Yeh. 2000. More accurate tests for the sta-
tistical significance of result differences. In Inter-
national Conference on Computational Linguistics
(COLING).

Beat Zapirain, Eneko Agirre, and Llus Mrquez. 2009.
Generalizing over lexical features: Selectional pref-
erences for semantic role classification. In Joint
Conference of the 47th Annual Meeting of the As-
sociation for Computational Linguistics and the
4th International Joint Conference on Natural Lan-
guage Processing, Singapore.

453

