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Abstract roles are more predicate-specific, e.g., [on his col-

league] has a different meaning with the verbs ‘op-
The core-adjunct argument distinctionisa  grate’ and ‘count'.
basic one in the theory of argument struc- Sometimes the same argument plays a different
ture. The task of distinguishing between  (q|e in different sentences. In (3), [in the park]
the two has strong relations to various ba-  paces a well-defined situation (Yuri playing foot-
sic NLP tasks such as syntactic parsing,  pa|)in a certain location. However, in “The troops
semantic role labeling and subcategoriza- 516 pased in the park]’, the same argument is

tion acquisition. This paper presents &  gpjigatory, since being based requires a place to
novel unsupervised algorithm for the task o pased in.

that uses no supervised models, utilizing
instead state-of-the-art syntactic induction
algorithms. This is the first work to tackle
this task in a fully unsupervised scenario.

Distinguishing between the two argument types
has been discussed extensively in various formu-
lations in the NLP literature, notably in PP attach-
ment, semantic role labeling (SRL) and subcatego-
rization acquisition. However, no work has tack-
led it yet in a fully unsupervised scenario. Unsu-
The distinction between core arguments (hencepervised models reduce reliance on the costly and
forth, cores) and adjuncts is included in most the-error prone manual multi-layer annotation (POS
ories on argument structure (Dowty, 2000). Thetagging, parsing, core-adjunct tagging) commonly
distinction can be viewed syntactically, as oneused for this task. They also allow to examine the
between obligatory and optional arguments, omnature of the distinction and to what extent it is
semantically, as one between arguments whosa&ccounted for in real data in a theory-independent
meanings are predicate dependent and indepemanner.
dent. The latter (cores) are those whose functionin In this paper we present a fully unsupervised al-
the described event is to a large extent determinegorithm for core-adjunct classification. We utilize
by the predicate, and are obligatory. Adjuncts argeading fully unsupervised grammar induction and
optional arguments which, like adverbs, modify POS induction algorithms. We focus on preposi-
the meaning of the described event in a predictabléonal arguments, since non-prepositional ones are
or predicate-independent manner. generally cores. The algorithm uses three mea-

Consider the following examples: sures based on different characterizations of the

1. The surgeon operated [on his colleague]. ~ core-adjunct distinction, and combines them us-
ing an ensemble method followed by self-training.
The measures used are based on selectional prefer-

3. Yuri played football [in the park]. ence, predicate-slot collocation and argument-slot

The marked argument is a core in 1 and an adeollocation.
junct in 2 and 3. Adjuncts form an independent We evaluate against PropBank (Palmer et al.,
semantic unit and their semantic role can often b@005), obtaining roughly 70% accuracy when
inferred independently of the predicate (e.g., [af-evaluated on the prepositional arguments and
ter lunch] is usually a temporal modifier). Core more than 80% for the entire argument set. These
T~ Omri Abend is grateful to the Azrieli Foundation for "€SUlts are substantially better than those obtained
the award of an Azrieli Fellowship. by a non-trivial baseline.

1 Introduction

2. Ron will drop by [after lunch].
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Section 2 discusses the core-adjunct distinctionframe allows a ‘Duration’ non-core argument, the
Section 3 describes the algorithm. Sections 4 ant\ctive Perception’ frame does not.

5 present our experimental setup and results. PB and FN tend to agree in clear (prototypical)
_ _ _ cases, but to differ in others. For instance, both
2 Core-Adjunct in Previous Work schemes would tag “Yuri played football [in the

PropBank. PropBank (PB) (Palmer et al., 2005) park]” as an adjunct and “The commander_placed
is a widely used corpus, providing SRL annotation® 9uard [in the park]” as a core. However, in *He

for the entire WSJ Penn Treebank. Its core label¥/alked [into his office]", the marked argument is
are predicate specific, while adjunct (or modifierst2g9€d as a directional adjunct in PB but as a "Di-

under their terminology) labels are shared acrosEction’ core in FN.
predicates. The adjuncts are subcategorized into Under both schemes, non-cores are usually con-
several classes, the most frequent of which aréned to a few specific semantic domains, no-
locative, temporal and manrer tably time, place gnd manner, in contrast to cores
The organization of PropBank is based onthat are not restricted in their scope of applica-
the notion of diathesis alternations, which arePility. This approach is quite common, e.g,, the
(roughly) defined to be alternations between twoCOBUILD English grammar (Willis, 2004) cate-
subcategorization frames that preserve meaning §0rizes adjuncts to be of manner, aspect, opinion,
change it systematically. The frames in whichPlace, time, frequency, duration, degree, extent,
each verb appears were collected and sets of a@mphasis, focus and probability.
ternating frames were defined. Each such set WaS.mantic Role Labeling. Work in SRL does
assumed to have a unique set of roles, named ‘ro"?fot tackle the core-adjunct task separately but as
set’. These roles include all roles gppearing .in aMYart of general argument classification. Super-
of thg frames, excep tofthose def!ned as adjunct ised approaches obtain an almost perfect score
Adjuncts are deflned t(_) be optional arguments, distinguishing between the two in an in-domain
appearing W'th awide vquety of.verbs- and framesScenario. For instance, the confusion matrix in
They can be \./'eWEd as fixed points with respect t?Toutanova et al., 2008) indicates that their model
alte_rnatlons, i.e., as arguments that do not Changsecores 99.5% accuracy on this task. However,
their pla_lce or .SIOt when the frgme undergoeg al%\daptation results are lower, with the best two
alternation. ThIS fqllows the n_otlons_ of optionality models in the CONLL 2005 shared task (Carreras
and composm(_)nallty-that deflne_z adjuncts. _ and Marquez, 2005) achieving 95.3% (Pradhan et
' D.et'ectlng diathesis alternatlon.s.autom'at.lgallyal_’ 2008) and 95.6% (Punyakanok et al., 2008) ac-
is difficult (McCarthy, 2001), requiring an initial curacy in an adaptation between the relatively sim-
acquisition of a subcategorization lexicon. Thisilar corpora WSJ and Brown.
alone is a challenging task tackled in the past us- Despite the hiah performance in supervised sce-
[ ised parsers (see below). eSp! ehighp : pen
ng supervised p narios, tackling the task in an unsupervised man-
FrameNet. FrameNet (FN) (Baker et al., 1998) ner is not easy. The success of supervised methods
is a large-scale lexicon based on frame semanticstems from the fact that the predicate-slot com-
It takes a different approach from PB to semantiddination (slot is represented in this paper by its
roles. Like PB, it distinguishes between core andoreposition) strongly determines whether a given
non-core arguments, but it does so for each ang@rgument is an adjunct or a core (see Section 3.4).
every frame separately. It does not commit that &upervised models are provided with an anno-
semantic role is consistently tagged as a core dited corpus from which they can easily learn the
a non-core across frames. For example, the sénapping between predicate-slot pairs and their
mantic role ‘path’ is considered core in the ‘Self core/adjunct label. However, induction of the
Motion’ frame, but as non-core in the ‘Placing’ Mmapping in an unsupervised manner must be based
frame. Another difference is that FN does not al-on inherent core-adjunct properties. In addition,
low any type of non-core argument to attach tosupervised models utilize supervised parsers and
a given frame. For instance, while the ‘Getting’ POS taggers, while the current state-of-the-art in
T ——— _ unsupervised parsing and POS tagging is consid-
PropBank annotates modals and negation words as mo

ifiers. Since these are not arguments in the common usage%!abl_y worse than their superwsed counterparts.
the term, we exclude them from the discussion in this paper. This challenge has some resemblance to un-
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supervised detection of multiword expressiondormulation models the core-adjunct distinction
(MWESs). An important MWE sub-class is that explicitly. Therefore, any CCG parser can be used
of phrasal verbs, which are also characterized bws a core-adjunct classifier (Hockenmaier, 2003).
verb-preposition pairs (Li et al., 2003; Sporleder
and Li, 2009) (see also (Boukobza and Rappoport,

2009)). Both tasks aim to determine semantic o o )
compositionality, which is a highly challenging Subcategorization Acquisition. This task spec-
task. ifies for each predicate the number, type and order
Few works addressed unsupervised SRL—reIateaf obligatory arg_umc_ents. Determining _the allow—_
tasks. The setup of (Grenager and Manning?ble subcateg_orl_zatlon frames fqr a given predi-
ate necessarily involves separating its cores from

2006), who presented a Bayesian Network modeY

for argument classification, is perhaps closest tﬂ)ts allowable adjuncts (which are not framed). No-

ours. Their work relied on a supervised parse}able works in the field include (Briscoe and Car-

and arule-based argument identification (both dur[O”’ 1997; Sarkar and Zeman, 2000; Korhonen,

ing training and testing). Swier and Stevensonzooz)' All these works used a parsed corpus in
rder to collect, for each predicate, a set of hy-

(2004, 2005), while addressing an unsupervise8 ) . .
SRL task, greatly differ from us as their algorithm pothesized subcategorization frames, to be filtered

uses the VerbNet (Kipper et al., 2000) verb Iex—by hypothesis testing methods.

icon, in addition to supervised parses. Finally, This line of work differs from ours in a few
Abend et al. (2009) tackled the argument identi-gspects. First, all works use manual or super-
fication task alone and did not perform argumenyjised syntactic annotations, usually including a
classification of any sort. POS tagger. Second, the common approach to the
_ task focuses on syntax and tries to identify the en-
PP attachment. PP attachmentis the task of de- e frame, rather than to tag each argument sep-
termining whether a prepositional phrase WhICharately. Finally, most works address the task at
immediately follows a noun phrase attaches to th‘?he verb type level, trying to detect the allowable
latter or to the preceding verb. This task’s relation. o < for each type. Consequently, the common
to the core-adjunct distinction was addressed i o1 ation focuses on the quality of the allowable
several works. Fo_r |n§tance, the rgsults of (Hindl& 5 mes acquired for each verb type, and not on the
and Rooth, 1993) indicate that their PP attachment,sification of specific arguments in a given cor-
system works better for cores than for adjuncts. s - 5ych a token level evaluation was conducted

Merlo ?‘n_d Esteve Ferrer (2006) suggest a sysy, g few works (Briscoe and Carroll, 1997; Sarkar
tem that jointly tackles the PP attachment and theng zeman, 2000), but often with a small num-
core-adjunct distinction tasks. Unlike in this work, per of verbs or a small number of frames. A dis-

their classifier requires extensive supervision inssion of the differences between type and token
cluding WordNet, language-specific features andeye| evaluation can be found in (Reichart et al.,
a supervised parser. Their features are generallyom)_

motivated by common linguistic considerations.
Features found adaptable to a completely unsuper- The core-adjunct distinction task was tackled in
vised scenario are used in this work as well. the context of child language acquisition. Villav-

. . . o icencio (2002) developed a classifier based on
Syntactic Parsing. The core-adjunct distinction ( ) P

o . . i reposition selection and frequency information
is included in many syntactic annotation schemes? P d y

.. “for modeling the distinction for locative preposi-
Although the Penn Treebank does not eXpIICItIytional phrases. Her approach is not entirely corpus

annotate adjuncts and cores, a few works sug- . . .
o ) : . ased, as it assumes the input sentences are given
gested mapping its annotation (including func-in a basic logical form
tion tags) to core-adjunct labels. Such a mapping '
was presented in (Collins, 1999). In his Model The study of prepositions is a vibrant research
2, Collins modifies his parser to provide a core-areain NLP. A special issue Gomputational Lin-
adjunct prediction, thereby improving its perfor- guistics which includes an extensive survey of re-
mance. lated work, was recently devoted to the field (Bald-

The Combinatory Categorial Grammar (CCG)win et al., 2009).
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3 Algorithm (PSH) joint distribution. This section details the

Wi _ gi . process of extracting samples from this joint dis-
e are given a (predicate, argumer_wt) pair in a testiy tion given a raw text corpus.

sentence, and we need to determine whether the

; : We start by parsing the corpus using the Seginer
argument is a core or an adjunct. Test argumentE yp 9 P 9 g

arser (Seginer, 2007). This parser is unique in its
a-bility to induce a bracketing (unlabeled parsing)
from raw text (without even using POS tags) with
strong results. Its high speed (thousands of words

i N o per second) allows us to use millions of sentences,
Our algorithm utilizes statistics based on thea prohibitive number for other parsers.

(predicate, slot, argument head) (PSH) joint dis- We continue by tagging the corpus using

tributiqn @ SlOt. is_rgpres_en_t ed _by its prepOSition)'CIark’s unsupervised POS tagger (Clark, 2003)
To estimate this joint dlsjm_butlon, PSH §amplesand the unsupervised Prototype Tagger (Abend et
are e_:xtracted from the training corpus using unsug, - 2010. The classes corresponding to preposi-
pervised POS taggers _(Clark, 2003, Ab_end et al. ions and to verbs are manually selected from the
2010) and an unsupervised parser (Seginer, 2007.

i ifiduced clustes A preposition is defined to be
As current performance of unsupervised parsergmy word which is the first word of an argument
for long sentences is low, we use only short sen

‘ 0 10 q udi tuati and belongs to a prepositions cluster. A verb is
ences (up to words, excluding punctua Ion)'any word belonging to a verb cluster. This manual
The length of test sentences is not bounded. O

its will show that the training dat t'“gelection requires only a minute, since the number
resufts will show that the training data accountSye o55qeg js very small (34 in our experiments).
well for the argument realization phenomena in

In addition, knowing what is considered a prepo-
the test set, despite the length bound on its sen; g prep

) . _ c’jtion is part of the task definition itself.
tences. The sample extraction process is detaile ) e
in Section 3.2 Argument identification is hard even for super-

vised models and is considerably more so for un-

_O_ur z_;\pproach_ mak(_as use of both aspgpts O].c thgupervised ones (Abend et al., 2009). We there-
distinction — obligatoriness and composmonallty.fore confine ourselves to sentences of length not

We. deﬂne three measures, one quan'glfylng th%reater than 10 (excluding punctuation) which
obligatoriness of the slot, another quantifying the

. contain a single verb. A sequence of words will
selectional preference of the verb to the argumerge marked as an argument of the verb if it is a con-

ﬁ]ndha trl;rd thc?t qléaf[ﬂt'f'elstth € asso;:_latlo;ltﬁetwezgtituem that does not contain the verb (according
the head word and Ihe slotirrespective ottn€ predi, 1he unsupervised parse tree), whose parent is
icate (Section 3.3).

an ancestor of the verb. This follows the pruning

_ Th_e measures’ predictions are expected to CO'r}ieuristic of (Xue and Palmer, 2004) often used by
cide in clear cases, but may be less successful i8R algorithms

others. Therefore, an ensemble-based method Is . . .
. . . The corpus is now tagged using an unsupervised
used to combine the three measures into a singl

i . . . ...~ POS tagger. Since the sentences in question are
classifier. This results in a high accuracy classifier . :
. . - short, we consider every word which does not be-
with relatively low coverage. A self-training step

. : : long to a closed class cluster as a head word (an
is now performed to increase coverage with only a

. . o . argument can have several head words). A closed
minor deterioration in accuracy (Section 3.4).

We f itional s, N class is a class of function words with relatively

€ E[)_cuslon prepos;l |o_naEargf_urr11qetn Sd i oS'few word types, each of which is very frequent.

prepositional argumen's n =nglish tend 1o b ypical examples include determiners, preposi-
cores (e.g., in more than 85% of the cases in;

PB " 521}, whil itional i ons and conjunctions. A class which is not closed
sections 2-21), while prepositional argumen s open. In this paper, we define closed classes to

tend to be equally divided between cores and a be clusters in which the ratio between the number

Juncts._ The difficulty of _the task thus lies in the of word tokens and the number of word types ex-
classification of prepositional arguments.

are assumed to be correctly bracketed. We are
lowed to utilize a training corpus of raw text.

3.1 Overview

. 2Clark's tagger was replaced by the Prototype Tagger
3.2 Data Collection where the latter gave a significant improvement. See Sec-

- ... tion 4.
The statistical measurgs used by our classifier We also explore a scenario in which they are identified
are based on the (predicate, slot, argument heady a supervised tagger. See Section 4.
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ceeds a threshold*. This is a natural extension of the naive (and sparse)

Using these annotation layers, we traverse thenaximum likelihood estimatoPr(h/|p, s), which
corpus and extract every (predicate, slot, argumens obtained by takingim(h, h’) to be 1 ifh = 1’/
head) triplet. In case an argument has several heahd 0 otherwise.
words, each of them is considered as an inde- The similarity measure we use is based on the
pendent sample. We denote the nhumber of timeslot distributions of the arguments. That is, two
that a triplet occurred in the training corpus byarguments are considered similar if they tend to
N(p,s,h). appear in the same slots. Each head worsl as-
signed a vector where each coordinate corresponds
to a slots. The value of the coordinate is the num-
In this section we present the three types of meaber of timesh appeared irs, i.e. £, N(p', s, h)
sures used by the algorithm and the rationale b’ is summed over all predicates). The similarity
hind each of them. These measures are all basefleasure between two head words is then defined
on the PSH joint distribution. as the cosine measure of their vectors.

Given a (predicate, prepositional argument) pair  Since arguments in the test set can be quite long,
from the test set, we first tag and parse the arguaot every open class word in the argument is taken
ment using the unsupervised tools abbv&ach  to be a head word. Instead, only those appearing in
word in the argument is now represented by itshe top level (depth = 1) of the argument under its
word form (without lemmatization), its unsuper- unsupervised parse tree are taken. In case there are
vised POS tag and its depth in the parse tree of theo such open class words, we take those appearing
argument. The last two will be used to determinein depth 2. The selectional preference of the whole
which are the head words of the argument (see beargument is then defined to be the arithmetic mean
low). The head words themselves, once chosemf this measure over all of its head words. If the ar-
are represented by the lemma. We now computgument has no head words under this definition or
the following measures. if none of the head words appeared in the training
corpus, the selectional preference is undefined.

3.3 Collocation Measures

Selectional Preference (SP). Since the seman-
tics of cores is more predicate dependent than theredicate-Slot Collocation. Since cores are
semantics of adjuncts, we expect arguments foobligatory, when a predicate persistently appears
which the predicate has a strong preference (in @ith an argument in a certain slot, the arguments
specific slot) to be cores. in this slot tends to be cores. This notion can be
Selectional preference induction is a well-captured by thgpredicate, slot) joint distribu-
established task in NLP. It aims to quantify thetion. We use the Pointwise Mutual Information
likelihood that a certain argument appears in aneasure (PMI) to capture the slot and the predi-
certain slot of a predicate. Several methods haveate’s collocation tendency. Letbe a predicate
been suggested (Resnik, 1996; Li and Abe, 1998nds a slot, then:
Schulte im Walde et al., 2008). Pr(p. )
We use the paradigm of (Erk, 2007). Foragiven PS(p,s) = PMI(p,s) = log$ =
predicate slot paifp, s), we define its preference Pr(s) - Pr(p)
to the argument heddto be: N(p,s)Ey ¢ N(p',s")

= log ; NS -
SP(p,s,h) = Z Pr(h'|p, s) - sim(h,h) _ . T N(p,s)Zp NP, s) |
W e Heads Since there is only a meager number of possi-
ble slots (that is, of prepositions), estimating the
Pr(hlp, s) = _Nlp,s,h) (predicate, slot) distribution can be made by the
N (p, s, h') maximum likelihood estimator with manageable

sim(h, h') is a similarity measure between argu-sparsity.
ment heads.Heads is the set of all head words.  In order not to bias the counts towards predi-
“We use sections 2—21 of the PTB WSJ for these counts(,'t"’lt(:"S which tend to take more argumepts, we de-
containing 0.95M words. OUF was set to 50. fine hereN(p, s) to be the number of times the
°Note that while current unsupervised parsers have lowy, s) pair occurred in the training corpus, irre-
performance on long sentences, arguments, even in long sen- .
spective of the number of head words the argu-

tences, are usually still short enough for them to operate well
Their average length in the test set is 5.1 words. ment had (and not e.g%,N(p,s,h)). Argu-
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ments with no prepositions are included in thesdhe classifiers abstained, i.e., when sufficient infor-
counts as well (witns = NULL), so not to bias mation was available to make all three predictions.
against predicates which tend to have less nonfhe prediction is determined by the majority vote.
prepositional arguments. The ensemble classifier has high precision but
_ _ low coverage. In order to increase its coverage, a
Argument-Slot Collocation. Adjuncts tend 10 gt raining step is performed. We observe that a
belong to one of a few specific semantic domaing, g jicate and a slot generally determine whether
(see Section 2). Therefore, if an argument tends t4, ar0ument is a core or an adjunct. For instance,
appear in a certain slot in many of its instances, if, o development data, a classifier which assigns
is an indication that this argument tends to have & 5rguments that share a predicate and a slot their
cons_lstent semantic flavor in most of its ms_t_ancesmost common label, yields 94.3% accuracy on the
In this case, the argument and the preposition CaBairs appearing at least 5 times. This property of

be viewed as forming a unit on their own, indepensy,q ore_adjunct distinction greatly simplifies the
dent of the predicate with which they appear. We, for supervised algorithms (see Section 2).

therefore expect such arguments to be adjuncts. We therefore apply the following procedure: (1)

We formalize this notion using the following (54 the training data with the ensemble classifier:
measure. Lep, s, h be a predicate, a slot and a (o) tor each test sample if more than a ratio of:
head word respectively. We then fise of the training samples sharing the same predicate

Yy N, s, h) and slot withx are labeled as cores, tagas core.
S, e N(p, s, h) Otherwise, tag: as adjunct.

Test samples which do not share a predicate and

We select the head words of the argument aa slot with any training sample are considered out
we did with the selectional preference measureof coverage. The parameteris chosen so half
Again, the AS of the whole argument is definedof the arguments are tagged as cores and half as
to be the arithmetic mean of the measure over alhdjuncts. In our experimentswas about 0.25.
of its head words.

AS(s,h) =1—Pr(slh) =1—

_ 4 Experimental Setup
Thresholding. In order to turn these measures

into classifiers, we set a threshold below which arExperiments were conducted in two scenarios. In
guments are marked as adjuncts and above whidhe ‘SID (supervised identification of prepositions
as cores. In order to avoid tuning a parameter foand verbs) scenario, a gold standard list of prepo-
each of the measures, we set the threshold as tisgions was provided. The list was generated by
median value of this measure in the test set. Thataking every word tagged by the preposition tag
is, we find the threshold which tags half of the ar-('IN") in at least one of its instances under the
guments as cores and half as adjuncts. This religgold standard annotation of the WSJ sections 2—
on the prior knowledge that prepositional argu-21. Verbs were identified using MXPOST (Ratna-
ments are roughly equally divided between coregarkhi, 1996). Words tagged with any of the verb

and adjuncts tags, except of the auxiliary verbs (‘have’, ‘be’ and
o ‘do’) were considered predicates. This scenario
3.4 Combination Model decouples the accuracy of the algorithm from the

The algorithm proceeds to integrate the predicAuality of the unsupervised POS tagging.

tions of the weak classifiers into a single classi- In the ‘Fully Unsupervisetdscenario, preposi-
fier. We use an ensemble method (Breiman, 1996}ions and verbs were identified using Clark’s tag-
Each of the classifiers may either classify an arguger (Clark, 2003). It was asked to produce a tag-
ment as an adjunct, classify it as a core, or abging into 34 classes. The classes corresponding
stain. In order to obtain a high accuracy classifiert0 prepositions and to verbs were manually identi-
to be used for self-training below, the ensembldied. Prepositions in the test set were detected with

classifier only tags arguments for which none of84.2% precision and 91.6% recall.
The prediction of whether a word belongs to an

®The conditional probability is subtracted from 1 so thatopen class or a closed was based on the output of
higher values correspond to cores, as with the other measur

€s.
"In case the test data is small, we can use the median vaIJz]e Prototype tagger _(Aben(_j e_t_al-’ 2010)- The
on the training data instead. Prototype tagger provided significantly more ac-
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curate predictions in this context than Clark’s.  in which the ensemble is used to tag arguments
The 39832 sentences of PropBank’s sections 2for which all three measures give a prediction
21 were used as a test set without bounding theifthe ‘Ensemble(Intersectionylassifier) and one
length$. Cores were defined to be any argumenin which the ensemble tags all arguments for
bearing the labels ‘A0’ — ‘A5’, ‘C-A0’ — ‘C-A5’  which at least one classifier gives a prediction (the
or ‘R-A0" — ‘R-A5’. Adjuncts were defined to ‘Ensemble(Union)lassifier). For the latter, a tie
be arguments bearing the labels ‘AM’, ‘C-AM’ or is broken in favor of the core label. ThEnsem-
‘R-AM’. Modals (‘AM-MOD’) and negation mod- ble(Union) classifier is not a part of our model
ifiers (AM-NEG’) were omitted since they do not and is evaluated only as a reference.
represent adjuncts. In order to provide a broader perspective on the
The test set includes 213473 arguments, 4593task, we compare the measures in the basis of our
(21.5%) are prepositional. Of the latter, 22442algorithm to simplified or alternative measures.
(48.9%) are cores and 23497 (51.1%) are adjunctyVe experiment with the following measures:
The non-prepositional arguments include 145767 1.Simple SR-a selectional preference measure
(87%) cores and 21767 (13%) adjuncts. The averdefined to bePr(head|slot, predicate).
age number of words per argument is 5.1. 2. Vast Corpus SR- similar to ‘Simple SP
The NANC (Graff, 1995) corpus was used as aout with a much larger corpus. It uses roughly
training set. Only sentences of length not greatetOOM arguments which were extracted from the
than 10 excluding punctuation were used (see Setveb-crawling based corpus of (Gabrilovich and
tion 3.2), totaling 4955181 sentences. 767387#arkovitch, 2005) and the British National Cor-
(5635810) arguments were identified in tig4D’  pus (Burnard, 2000).
(‘Fully Unsupervisetl scenario. The average 3. Thesaurus SPaselectional preference mea-
number of words per argument is 1.6 (1.7). sure which follows the paradigm of (Erk, 2007)
Since this is the first work to tackle this task (Section 3.3) and defines the similarity between
using neither manual nor supervised syntactic antwo heads to be the Jaccard affinity between their
notation, there is no previous work to comparetwo entries in Lin's automatically compiled the-
to. However, we do compare against a non-triviasaurus (Lin, 19985
baseline, which closely follows the rationale of 4. Pr(slotpredicate)- an alternative to the used
cores as obligatory arguments. predicate-slot collocation measure.
Our Window Baselingags a corpus using MX-  9- PMI(slot, head)- an alternative to the used
POST and computes, for each predicate an@'gument-siot collocation measure.
preposition, the ratio between the number of times 6. Head Dependence the entropy of the pred-
that the preposition appeared in a windowlgf  icate distribution given the slot and the head (fol-
words after the verb and the total number oflowing (Merlo and Esteve Ferrer, 2006)):
times that the verb appeared. If this number ex- HD(s,h) = —S,Pr(p|s, h) - log(Pr(pls, h))
ceeds a certain threshojg all arguments hav-
ing that predicate and preposition are tagged akow entropy implies a core.
cores. Otherwise, they are tagged as adjuncts. We For each of the scenarios and the algorithms,
used 18.7M sentences from NANC of unboundedve report accuracy, coverage and effective accu-
length for this baselinell” and3 were fine-tuned racy. Effective accuracy is defined to be the ac-
against the test sét curacy obtained when all out of coverage argu-
We also report results for partial versions ofments are tagged as adjuncts. This procedure al-
the algorithm, starting with the three measuresvays yields a classifier with 100% coverage and
used (selectional preference, predicate-slot coltherefore provides an even ground for comparing
location and argument-slot collocation). Resultghe algorithms’ performance.
for the ensemble classifier (prior to the bootstrap- We see accuracy as important on its own right
ping stage) are presented in two variants: onaince increasing coverage is often straightforward

— _ given easily obtainable larger training corpora.
The first 15K arguments were used for the algorithm’s

development and therefore excluded from the evaluation. 1Since we aim for a minimally supervised scenario,
9Their optimal value was found to B&=2, 3=0.03. The we used the proximity-based version of his thesaurus

low optimal value of5 is an indication of the noisiness of this which does not require parsing as pre-processing.

technique. http://webdocs.cs.ualberta.edihdek/Downloads/sims.Isp.gz
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Collocation Measures Ensemble + Cov.
Sel. Preferencg Pred-Slot| Arg-Slot || Ensemble(l)|| Ensemble(U)] E(I) + ST
SID Scenario Accuracy 65.6 64.5 72.4 74.1 68.7 70.6
Coverage 35.6 77.8 44.7 33.2 88.1 74.2
Eff. Acc. 56.7 64.8 58.8 58.8 67.8 68.4
Fully Unsupervised| Accuracy 62.6 61.1 69.4 70.6 64.8 68.8
Scenario Coverage 24.8 59.0 38.7 22.8 74.2 56.9
Eff. Acc. 52.6 575 55.8 53.8 61.0 61.4

Table 1: Results for the various models. Accuracy, coverage and effeativeracy are presented in percents. Effective
accuracy is defined to be the accuracy resulting from labeling eachf maverage argument with an adjunct label. The
rows represent the following models (left to right): selectional prefegepredicate-slot collocation, argument-slot collocation,
‘Ensemble(Intersection) Ensemble(Uniorand the Ensemble(Intersectiorfpllowed by self-training (see Section 3.4En-
semble(Intersectiohpbtains the highest accuracy. The ensemble + self-training obtainsghesh effective accuracy.

Selectional Preference Measurgs  Pred-Slot Measures Arg-Slot Measures
SP | S.SP] VC.SP| LinSP || PS | Pr(dp) | Window || AS™ [ PMI(s, h) HD
Acc. 65.6 | 41.6 44.8 49.9 64.5| 58.9 64.1 72.4 67.5 67.4
Cov. 35.6| 36.9 45.3 36.7 778 77.8 92.6 44.7 44.7 44.7
Eff. Acc. || 56.7 | 48.2 47.7 51.3 || 64.8] 60.5 65.0 58.8 56.6 56.6

Table 2:Comparison of the measures used by our model to alternative meéstite SID’ scenario. Results are in percents.
The sections of the table are (from left to right): selectional preferaere@sures, predicate-slot measures, argument-slot mea-
sures and head dependence. The measures are (left to righf)Si8Hle SP, Vast Corpus SP, Lin SP,"PBr(slotpredicate),
Window Baseline, AS, PMI(slot, head) and Head Dependence. The measures marked avitithe ones used by our model.
See Section 4.

Another reason is that a high accuracy classifiethe number of unlabeled matchés
may provide training data to be used by subse-
guent supervised algorithms. 5 Results

For completeness, we also provide results fofrapie 1 presents the results of our main experi-

the entire set of arguments. The great majority Ofnents. In hoth scenarios, the most accurate of the
non-prepositional arguments are cores (87% in thg,ree hasic classifiers was the argument-slot col-

test set). We therefore tag all non-prepositional ag,.ation classifier. This is an indication that the

cores and tag prepositional arguments using oY jiocation between the argument and the prepo-
model. In order to minimize supervision, we dis- gjsion is more indicative of the core/adjunct label
tinguish between the prepositional and the nong, 4y the obligatoriness of the slot (as expressed by
prepositional arguments using Clark's tagger.  he predicate-slot collocation).

Finally, we experiment on a scenario where Indeed, we can find examples where adjuncts,
even argument identification on the test set islthough optional, appear very often with a certain
not provided, but performed by the algorithm of verb. An example is ‘meet’, which often takes a
(Abend et al., 2009), which uses neither syntacti@emporal adjunct, as in ‘Let’s meet [in July]'. This
nor SRL annotation but does utilize a superviseds a semantic property of ‘meet’, whose syntactic
POS tagger. We therefore run it in th8lD’' sce-  expression is not obligatory.
nario. We apply it to the sentences of length at All measures suffered from a comparable dete-
most 10 contained in sections 2-21 of PB (1158Gioration of accuracy when moving from th8ID
arguments in 6007 sentences). Non-prepositionab the ‘Fully Unsupervisedscenario. The dete-
arguments are invariably tagged as cores and ouioration in coverage, however, was considerably
of coverage prepositional arguments as adjuncts.lower for the argument-slot collocation.

We report labeled and unlabeled recall, preci- The ‘Ensemble(Intersection)nodel in both
sion and F-scores for this experiment. An un-cases is more accurate than each of the basic clas-
labeled match is defined to be an argument thasifiers alone. This is to be expected as it combines
agrees in its boundaries with a gold standard arthe predictions of all three. The self-training step
gument and a labeled match requires in additiorsignificantly increases the ensemble model’s cov-

that the arguments agree in their core/adjunct la—; _
Note that the reported unlabeled scores are slightly lower

be'_' We also report labeling accuracy which is thethan those reported in the 2009 paper, due to the exclusion of
ratio between the number of labeled matches anthe modals and negation modifiers.
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— Prgg‘?"” %%Cg” F;Cgre IAcc. somewhat higher than the score on the entire test
[abeled o7 554 [ 480 | 836 set (‘SID' scenario), which was 83.0% (68.4%),

probably due to the bounded length of the test sen-
Table 3: Unlabeled and labeled scores for the experi-tences in this case.

ments using the unsupervised argument identification system

of (Abend et al., 2009). Precision, recall, F-score and label :

ing accuracy are given in percents. 6 Conclusion

We presented a fully unsupervised algorithm for

erage (with some loss in accuracy), thus obtaininéhe classification of arguments into cores and ad-

the highest effective accuracy. Itis also more acculUncts. Since most non-preposi_ti_onal arguments
rate than the simpler classifiEnsemble(Uniont) ~ &re cores, we focused on prepositional arguments,

(although the latter's coverage is higher). which are roughly equally divided between cores

Table 2 presents results for the comparison t&Nd adjuncts. The algorithm computes three sta-
simpler or alternative measures. Results indicatdiStical measures and utilizes ensemble-based and

that the three measures used by our a|gorithrﬁelf—training methods to combine their predictions.

(leftmost column in each section) obtain superior 1N€ algorithm applies state-of-the-art unsuper-
results. The only case in which performance ivised parser and POS tagger to coI_Iect statistics
comparable is the window baseline compared td'om & large raw t((a)xt corpus. It obtains an accu-
the Pred-Slot measure. However, the baseline8CY Of roughly 70%. We also show that (some-

score was obtained by using a much larger corpu‘é’hat surprisingly) an argument-slot collocation
and a careful hand-tuning of the parameters measure gives more accurate predictions than a

The poor performance @imple SRcan be as- predicate-slot collocation measure on this task.
cribed to sparsity. This is demonstrated by theWVe speculate the reason is that the head word dis-

median value of 0, which this measure obtainedMpPiguates the preposition and that this disam-
on the test set. Accuracy is only somewhat bettePiguation generally determines whether a preposi-
with a much larger corpus/ast Corpus SP The tional argument is a core or an adjunct (somewhat

Thesaurus SPost probably failed due to insuffi- I"dependently of the predicate). This calls for
cient coverage, despite its applicability in a similar@ future study into the semantics of prepositions
supervised task (Zapirain et al., 2009). and their relation to the core-adjunct distinction.

The Head Dependence measure achieves a rd[! thiS context two recent project$he Preposi-
atively high accuracy of 67.4%. We therefore at.tion Project(Litkowski and Hargraves, 2005) and

tempted to incorporate it into our model, but failed P"ePNet (Saint-Dizier, 2006), which attempt to

to achieve a significant improvement to the overalfaracterize and categorize the complex syntactic

result. We expect a further study of the relations2d Semantic behavior of prepositions, may be of

between the measures will suggest better ways dflevance. _ , _
combining their predictions. Itis our hope that this work will provide a better

The obtained effective accuracy for the entire!derstanding of core-adjunct phenomena. Cur-
set of arguments, where the prepositional argu[entsgperwsed SRL models tend to perform worse
ments are automatically identified, was 81.6%. °N adjuncts than on cores (Pradhan et al., 2008;

Table 3 presents results of our experiments WithTouta_nova etal, _2008)' We believe a better under-
the unsupervised argument identification modeiStandlng of the differences between cores and ad-

of (Abend et al., 2009). The unlabeled scoreduncts may contribute to the development of better
. ' SRL techniques, in both its supervised and unsu-

reflect performance on argument identification . |
pervised variants.

alone, while the labeled scores reflect the joint per
formance of both the 2009 and our algorithms.
These results, albeit low, are potentially benefiReferences

cial for unsupervised subcategorization acquisi-O  Abend. Roi Reichart and Ari R ¢ 2009
. . mri end, ROl reichart an I kKappoport, .
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2\We tried about 150 parameter pairs for the baseline. The Improved Unsupervised POS Induction through Pro-
average of the five best effective accuracies was 64.3%. totype DiscoveryACL '10.
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