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Abstract

In this paper we describe an intuitionistic
method for dependency parsing, where a
classifier is used to determine whether a
pair of words forms a dependency edge.
And we also propose an effective strategy
for dependency projection, where the de-
pendency relationships of the word pairs
in the source language are projected to the
word pairs of the target language, leading
to a set of classification instances rather
than a complete tree. Experiments show
that, the classifier trained on the projected
classification instances significantly out-
performs previous projected dependency
parsers. More importantly, when this clas-
sifier is integrated into a maximum span-
ning tree (MST) dependency parser, ob-
vious improvement is obtained over the
MST baseline.

1 Introduction

Supervised dependency parsing achieves the state-
of-the-art in recent years (McDonald et al., 2005a;
McDonald and Pereira, 2006; Nivre et al., 2006).
Since it is costly and difficult to build human-
annotated treebanks, a lot of works have also been
devoted to the utilization of unannotated text. For
example, the unsupervised dependency parsing
(Klein and Manning, 2004) which is totally based
on unannotated data, and the semisupervised de-
pendency parsing (Koo et al., 2008) which is
based on both annotated and unannotated data.
Considering the higher complexity and lower per-
formance in unsupervised parsing, and the need of
reliable priori knowledge in semisupervised pars-
ing, it is a promising strategy to project the de-
pendency structures from a resource-rich language
to a resource-scarce one across a bilingual corpus
(Hwa et al., 2002; Hwa et al., 2005; Ganchev et al.,
2009; Smith and Eisner, 2009; Jiang et al., 2009).

For dependency projection, the relationship be-
tween words in the parsed sentences can be sim-
ply projected across the word alignment to words
in the unparsed sentences, according to the DCA
assumption (Hwa et al., 2005). Such a projec-
tion procedure suffers much from the word align-
ment errors and syntactic isomerism between lan-
guages, which usually lead to relationship projec-
tion conflict and incomplete projected dependency
structures. To tackle this problem, Hwa et al.
(2005) use some filtering rules to reduce noise,
and some hand-designed rules to handle language
heterogeneity. Smith and Eisner (2009) perform
dependency projection and annotation adaptation
with quasi-synchronous grammar features. Jiang
and Liu (2009) resort to a dynamic programming
procedure to search for a completed projected tree.
However, these strategies are all confined to the
same category that dependency projection must
produce completed projected trees. Because of the
free translation, the syntactic isomerism between
languages and word alignment errors, it would
be strained to completely project the dependency
structure from one language to another.

We propose an effective method for depen-
dency projection, which does not have to pro-
duce complete projected trees. Given a word-
aligned bilingual corpus with source language sen-
tences parsed, the dependency relationships of the
word pairs in the source language are projected to
the word pairs of the target language. A depen-
dency relationship is a boolean value that repre-
sents whether this word pair forms a dependency
edge. Thus a set of classification instances are ob-
tained. Meanwhile, we propose an intuitionistic
model for dependency parsing, which uses a clas-
sifier to determine whether a pair of words form
a dependency edge. The classifier can then be
trained on the projected classification instance set,
so as to build a projected dependency parser with-
out the need of complete projected trees.
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Figure 1: Illegal (a) and incomplete (b) dependency tree produced by the simple-collection method.

Experimental results show that, the classifier
trained on the projected classification instances
significantly outperforms the projected depen-
dency parsers in previous works. The classifier
trained on the Chinese projected classification in-
stances achieves a precision of 58.59% on the CTB
standard test set. More importantly, when this
classifier is integrated into a 2nd-ordered max-
imum spanning tree (MST) dependency parser
(McDonald and Pereira, 2006) in a weighted aver-
age manner, significant improvement is obtained
over the MST baselines. For the 2nd-order MST
parser trained on Penn Chinese Treebank (CTB)
5.0, the classifier give an precision increment of
0.5 points. Especially for the parser trained on the
smaller CTB 1.0, more than 1 points precision in-
crement is obtained.

In the rest of this paper, we first describe
the word-pair classification model for dependency
parsing (section 2) and the generation method
of projected classification instances (section 3).
Then we describe an application of the projected
parser: boosting a state-of-the-art 2nd-ordered
MST parser (section 4). After the comparisons
with previous works on dependency parsing and
projection, we finally five the experimental results.

2 Word-Pair Classification Model

2.1 Model Definition

Following (McDonald et al., 2005a),x is used to
denote the sentence to be parsed, andxi to denote
the i-th word in the sentence.y denotes the de-
pendency tree for sentencex, and(i, j) ∈ y rep-
resents a dependency edge from wordxi to word
xj, wherexi is the parent ofxj .

The task of the word-pair classification model
is to determine whether any candidate word pair,
xi andxj s.t. 1 ≤ i, j ≤ |x| andi 6= j, forms a
dependency edge. The classification resultC(i, j)

can be a boolean value:

C(i, j) = p p ∈ {0, 1} (1)

as produced by a support vector machine (SVM)
classifier (Vapnik, 1998).p = 1 indicates that the
classifier supports the candidate edge(i, j), and
p = 0 the contrary. C(i, j) can also be a real-
valued probability:

C(i, j) = p 0 ≤ p ≤ 1 (2)

as produced by an maximum entropy (ME) classi-
fier (Berger et al., 1996).p is a probability which
indicates the degree the classifier support the can-
didate edge(i, j). Ideally, given the classifica-
tion results for all candidate word pairs, the depen-
dency parse tree can be composed of the candidate
edges with higher score (1 for the boolean-valued
classifier, and largep for the real-valued classi-
fier). However, more robust strategies should be
investigated since the ambiguity of the language
syntax and the classification errors usually lead to
illegal or incomplete parsing result, as shown in
Figure 1.

Follow the edge based factorization method
(Eisner, 1996), we factorize the score of a de-
pendency trees(x,y) into its dependency edges,
and design a dynamic programming algorithm
to search for the candidate parse with maximum
score. This strategy alleviate the classification er-
rors to some degree and ensure a valid, complete
dependency parsing tree. If a boolean-valued clas-
sifier is used, the search algorithm can be formal-
ized as:

ỹ = argmax
y

s(x,y)

= argmax
y

∑

(i,j)∈y

C(i, j)
(3)

And if a probability-valued classifier is used in-
stead, we replace the accumulation with cumula-
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Type Features
Unigram wordi ◦ posi wordi posi

wordj ◦ posj wordj posj

Bigram wordi ◦ posi ◦ wordj ◦ posj posi ◦ wordj ◦ posj wordi ◦ wordj ◦ posj

wordi ◦ posi ◦ posj wordi ◦ posi ◦ wordj wordi ◦ wordj

posi ◦ posj wordi ◦ posj posi ◦ wordj

Surrounding posi ◦ posi+1 ◦ posj−1 ◦ posj posi−1 ◦ posi ◦ posj−1 ◦ posj posi ◦ posi+1 ◦ posj ◦ posj+1

posi−1 ◦ posi ◦ posj ◦ posj+1 posi−1 ◦ posi ◦ posj−1 posi−1 ◦ posi ◦ posj+1

posi ◦ posi+1 ◦ posj−1 posi ◦ posi+1 ◦ posj+1 posi−1 ◦ posj−1 ◦ posj

posi−1 ◦ posj ◦ posj+1 posi+1 ◦ posj−1 ◦ posj posi+1 ◦ posj ◦ posj+1

posi ◦ posj−1 ◦ posj posi ◦ posj ◦ posj+1 posi−1 ◦ posi ◦ posj

posi ◦ posi+1 ◦ posj

Table 1: Feature templates for the word-pair classificationmodel.

tive product:

ỹ = argmax
y

s(x,y)

= argmax
y

∏

(i,j)∈y

C(i, j)
(4)

Wherey is searched from the set of well-formed
dependency trees.

In our work we choose a real-valued ME clas-
sifier. Here we give the calculation of dependency
probabilityC(i, j). We usew to denote the param-
eter vector of the ME model, andf(i, j, r) to de-
note the feature vector for theassumption that the
word pairi andj has a dependency relationshipr.
The symbolr indicates the supposed classification
result, wherer = + means we suppose it as a de-
pendency edge andr = − means the contrary. A
featurefk(i, j, r) ∈ f(i, j, r) equals 1 if it is ac-
tivated by the assumption and equals 0 otherwise.
The dependency probability can then be defined
as:

C(i, j) =
exp(w · f(i, j,+))

∑

r exp(w · f(i, j, r))

=
exp(

∑

k wk × fk(i, j,+))
∑

r exp(
∑

k wk × fk(i, j, r))

(5)

2.2 Features for Classification

The feature templates for the classifier are simi-
lar to those of 1st-ordered MST model (McDon-
ald et al., 2005a).1 Each feature is composed
of some words and POS tags surrounded wordi
and/or wordj, as well as an optional distance rep-
resentations between this two words. Table shows
the feature templates we use.

Previous graph-based dependency models usu-
ally use the index distance of wordi and wordj

1We exclude thein between features of McDonald et al.
(2005a) since preliminary experiments show that these fea-
tures bring no improvement to the word-pair classification
model.

to enrich the features with word distance infor-
mation. However, in order to utilize some syntax
information between the pair of words, we adopt
the syntactic distance representation of (Collins,
1996), namedCollins distance for convenience. A
Collins distance comprises the answers of 6 ques-
tions:

• Does wordi precede or follow wordj?

• Are wordi and wordj adjacent?

• Is there a verb between wordi and wordj?

• Are there 0, 1, 2 or more than 2 commas be-
tween wordi and wordj?

• Is there a comma immediately following the
first of wordi and wordj?

• Is there a comma immediately preceding the
second of wordi and wordj?

Besides the original features generated according
to the templates in Table 1, the enhanced features
with Collins distance as postfixes are also used in
training and decoding of the word-pair classifier.

2.3 Parsing Algorithm

We adopt logarithmic dependency probabilities
in decoding, therefore the cumulative product of
probabilities in formula 6 can be replaced by ac-
cumulation of logarithmic probabilities:

ỹ = argmax
y

s(x,y)

= argmax
y

∏

(i,j)∈y

C(i, j)

= argmax
y

∑

(i,j)∈y

log(C(i, j))

(6)

Thus, the decoding algorithm for 1st-ordered MST
model, such as the Chu-Liu-Edmonds algorithm
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Algorithm 1 Dependency Parsing Algorithm.
1: Input : sentencex to be parsed
2: for 〈i, j〉 ⊆ 〈1, |x|〉 in topological orderdo
3: buf ← ∅
4: for k ← i..j − 1 do ⊲ all partitions
5: for l ∈ V[i, k] andr ∈ V[k + 1, j] do
6: insert DERIV(l, r) into buf

7: insert DERIV(r, l) into buf

8: V[i, j]← topK derivations ofbuf

9: Output: the best derivation ofV[1, |x|]
10: function DERIV(p, c)
11: d← p ∪ c ∪ {(p · root, c · root)} ⊲ new derivation
12: d · evl← EVAL (d) ⊲ evaluation function
13: return d

used in McDonald et al. (2005b), is also appli-
cable here. In this work, however, we still adopt
the more general, bottom-up dynamic program-
ming algorithm Algorithm 1 in order to facilitate
the possible expansions. Here,V[i, j] contains the
candidate parsing segments of the span[i, j], and
the function EVAL (d) accumulates the scores of
all the edges in dependency segmentd. In prac-
tice, the cube-pruning strategy (Huang and Chi-
ang, 2005) is used to speed up the enumeration of
derivations (loops started by line 4 and 5).

3 Projected Classification Instance

After the introduction of the word-pair classifica-
tion model, we now describe the extraction of pro-
jected dependency instances. In order to allevi-
ate the effect of word alignment errors, we base
the projection on the alignment matrix, a compact
representation of multiple GIZA++ (Och and Ney,
2000) results, rather than a single word alignment
in previous dependency projection works. Figure
2 shows an example.

Suppose a bilingual sentence pair, composed of
a source sentencee and its target translationf . ye

is the parse tree of the source sentence.A is the
alignment matrix between them, and each element
Ai,j denotes the degree of the alignment between
word ei and wordfj. We define a boolean-valued
functionδ(y, i, j, r) to investigate the dependency
relationship of wordi and wordj in parse treey:

δ(y, i, j, r) =























1
(i, j) ∈ y and r = +

or

(i, j) /∈ y and r = −

0 otherwise

(7)

Then the score that wordi and wordj in the target
sentencey forms a projected dependency edge,

Figure 2: The word alignment matrix between a
Chinese sentence and its English translation. Note
that probabilities need not to be normalized across
rows or columns.

s+(i, j), can be defined as:

s+(i, j) =
∑

i′,j′

Ai,i′ ×Aj,j′ × δ(ye, i
′, j′,+) (8)

The score that they do not form a projected depen-
dency edge can be defined similarly:

s−(i, j) =
∑

i′,j′

Ai,i′ ×Aj,j′ × δ(ye, i
′, j′,−) (9)

Note that for simplicity, the condition factorsye

andA are omitted from these two formulas. We
finally define the probability of the supposed pro-
jected dependency edge as:

Cp(i, j) =
exp(s+(i, j))

exp(s+(i, j)) + exp(s−(i, j))
(10)

The probabilityCp(i, j) is a real value between
0 and 1. Obviously,Cp(i, j) = 0.5 indicates the
most ambiguous case, where we can not distin-
guish between positive and negative at all. On the
other hand, there are as many as2|f |(|f |−1) candi-
date projected dependency instances for the target
sentencef . Therefore, we need choose a threshold
b for Cp(i, j) to filter out the ambiguous instances:
the instances withCp(i, j) > b are selected as the
positive, and the instances withCp(i, j) < 1 − b
are selected as the negative.

4 Boosting an MST Parser

The classifier can be used to boost a existing parser
trained on human-annotated trees. We first estab-
lish a unified framework for the enhanced parser.
For a sentence to be parsed,x, the enhanced parser
selects the best parseỹ according to both the base-
line modelB and the projected classifierC.

ỹ = argmax
y

[sB(x,y) + λsC(x,y)] (11)
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Here, sB and sC denote the evaluation functions
of the baseline model and the projected classi-
fier, respectively. The parameterλ is the relative
weight of the projected classifier against the base-
line model.

There are several strategies to integrate the two
evaluation functions. For example, they can be in-
tegrated deeply at each decoding step (Carreras et
al., 2008; Zhang and Clark, 2008; Huang, 2008),
or can be integrated shallowly in a reranking man-
ner (Collins, 2000; Charniak and Johnson, 2005).
As described previously, the score of a depen-
dency tree given by a word-pair classifier can be
factored into each candidate dependency edge in
this tree. Therefore, the projected classifier can
be integrated with a baseline model deeply at each
dependency edge, if the evaluation score given by
the baseline model can also be factored into de-
pendency edges.

We choose the 2nd-ordered MST model (Mc-
Donald and Pereira, 2006) as the baseline. Es-
pecially, the effect of the Collins distance in the
baseline model is also investigated. The relative
weightλ is adjusted to maximize the performance
on the development set, using an algorithm similar
to minimum error-rate training (Och, 2003).

5 Related Works

5.1 Dependency Parsing

Both the graph-based (McDonald et al., 2005a;
McDonald and Pereira, 2006; Carreras et al.,
2006) and the transition-based (Yamada and Mat-
sumoto, 2003; Nivre et al., 2006) parsing algo-
rithms are related to our word-pair classification
model.

Similar to the graph-based method, our model
is factored on dependency edges, and its decod-
ing procedure also aims to find a maximum span-
ning tree in a fully connected directed graph. From
this point, our model can be classified into the
graph-based category. On the training method,
however, our model obviously differs from other
graph-based models, that we only need a set of
word-pair dependency instances rather than a reg-
ular dependency treebank. Therefore, our model is
more suitable for the partially bracketed or noisy
training corpus.

The most apparent similarity between our
model and the transition-based category is that
they all need a classifier to perform classification
conditioned on a certain configuration. However,

they differ from each other in the classification re-
sults. The classifier in our model predicates a de-
pendency probability for each pair of words, while
the classifier in a transition-based model gives a
possible next transition operation such asshift or
reduce. Another difference lies in the factoriza-
tion strategy. For our method, the evaluation score
of a candidate parse is factorized into each depen-
dency edge, while for the transition-based models,
the score is factorized into each transition opera-
tion.

Thanks to the reminding of the third reviewer
of our paper, we find that the pairwise classifica-
tion schema has also been used in Japanese de-
pendency parsing (Uchimoto et al., 1999; Kudo
and Matsumoto, 2000). However, our work shows
more advantage in feature engineering, model
training and decoding algorithm.

5.2 Dependency Projection

Many works try to learn parsing knowledge from
bilingual corpora. Lü et al. (2002) aims to
obtain Chinese bracketing knowledge via ITG
(Wu, 1997) alignment. Hwa et al. (2005) and
Ganchev et al. (2009) induce dependency gram-
mar via projection from aligned bilingual cor-
pora, and use some thresholds to filter out noise
and some hand-written rules to handle heterogene-
ity. Smith and Eisner (2009) perform depen-
dency projection and annotation adaptation with
Quasi-Synchronous Grammar features. Jiang and
Liu (2009) refer to alignment matrix and a dy-
namic programming search algorithm to obtain
better projected dependency trees.

All previous works for dependency projection
(Hwa et al., 2005; Ganchev et al., 2009; Smith and
Eisner, 2009; Jiang and Liu, 2009) need complete
projected trees to train the projected parsers. Be-
cause of the free translation, the word alignment
errors, and the heterogeneity between two lan-
guages, it is reluctant and less effective to project
the dependency tree completely to the target lan-
guage sentence. On the contrary, our dependency
projection strategy prefer to extract a set of depen-
dency instances, which coincides our model’s de-
mand for training corpus. An obvious advantage
of this strategy is that, we can select an appropriate
filtering threshold to obtain dependency instances
of good quality.

In addition, our word-pair classification model
can be integrated deeply into a state-of-the-art
MST dependency model. Since both of them are
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Corpus Train Dev Test
WSJ (section) 2-21 22 23
CTB 5.0 (chapter) others 301-325 271-300

Table 2: The corpus partition for WSJ and CTB
5.0.

factorized into dependency edges, the integration
can be conducted at each dependency edge, by
weightedly averaging their evaluation scores for
this dependency edge. This strategy makes better
use of the projected parser while with faster de-
coding, compared with the cascaded approach of
Jiang and Liu (2009).

6 Experiments

In this section, we first validate the word-pair
classification model by experimenting on human-
annotated treebanks. Then we investigate the ef-
fectiveness of the dependency projection by eval-
uating the projected classifiers trained on the pro-
jected classification instances. Finally, we re-
port the performance of the integrated dependency
parser which integrates the projected classifier and
the 2nd-ordered MST dependency parser. We
evaluate the parsing accuracy by the precision of
lexical heads, which is the percentage of the words
that have found their correct parents.

6.1 Word-Pair Classification Model

We experiment on two popular treebanks, the Wall
Street Journal (WSJ) portion of the Penn English
Treebank (Marcus et al., 1993), and the Penn Chi-
nese Treebank (CTB) 5.0 (Xue et al., 2005). The
constituent trees in the two treebanks are trans-
formed to dependency trees according to the head-
finding rules of Yamada and Matsumoto (2003).
For English, we use the automatically-assigned
POS tags produced by an implementation of the
POS tagger of Collins (2002). While for Chinese,
we just use the gold-standard POS tags following
the tradition. Each treebank is splitted into three
partitions, for training, development and testing,
respectively, as shown in Table 2.

For a dependency tree withn words, onlyn −
1 positive dependency instances can be extracted.
They account for only a small proportion of all the
dependency instances. As we know, it is important
to balance the proportions of the positive and the
negative instances for a batched-trained classifier.
We define a new parameterr to denote the ratio of
the negative instances relative to the positive ones.
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Figure 3: Performance curves of the word-pair
classification model on the development sets of
WSJ and CTB 5.0, with respect to a series of ratio
r.

Corpus System P %
WSJ Yamada and Matsumoto (2003) 90.3

Nivre and Scholz (2004) 87.3
1st-ordered MST 90.7
2nd-ordered MST 91.5
our model 86.8

CTB 5.0 1st-ordered MST 86.53
2nd-ordered MST 87.15
our model 82.06

Table 3: Performance of the word-pair classifica-
tion model on WSJ and CTB 5.0, compared with
the current state-of-the-art models.

For example,r = 2 means we reserve negative
instances two times as many as the positive ones.

The MaxEnt toolkit by Zhang2 is adopted to
train the ME classifier on extracted instances. We
set the gaussian prior as 1.0 and the iteration limit
as 100, leaving other parameters as default values.
We first investigate the impact of the ratior on
the performance of the classifier. Curves in Fig-
ure 3 show the performance of the English and
Chinese parsers, each of which is trained on an in-
stance set corresponding to a certainr. We find
that for both English and Chinese, maximum per-
formance is achieved at aboutr = 2.5. 3 The
English and Chinese classifiers trained on the in-
stance sets withr = 2.5 are used in the final eval-
uation phase. Table 3 shows the performances on
the test sets of WSJ and CTB 5.0.

We also compare them with previous works on
the same test sets. On both English and Chinese,
the word-pair classification model falls behind of
the state-of-the-art. We think that it is probably

2http://homepages.inf.ed.ac.uk/s0450736/
maxenttoolkit.html.

3We did not investigate more fine-grained ratios, since the
performance curves show no dramatic fluctuation along with
the alteration ofr.
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Figure 4: The performance curve of the word-
pair classification model on the development set
of CTB 5.0, with respect to a series of thresholdb.

due to the local optimization of the training pro-
cedure. Given complete trees as training data, it
is easy for previous models to utilize structural,
global and linguistical information in order to ob-
tain more powerful parameters. The main advan-
tage of our model is that it doesn’t need complete
trees to tune its parameters. Therefore, if trained
on instances extracted from human-annotated tree-
banks, the word-pair classification model would
not demonstrate its advantage over existed state-
of-the-art dependency parsing methods.

6.2 Dependency Projection

In this work we focus on the dependency projec-
tion from English to Chinese. We use the FBIS
Chinese-English bitext as the bilingual corpus for
dependency projection. It contains 239K sen-
tence pairs with about 6.9M/8.9M words in Chi-
nese/English. Both English and Chinese sentences
are tagged by the implementations of the POS tag-
ger of Collins (2002), which trained on WSJ and
CTB 5.0 respectively. The English sentences are
then parsed by an implementation of 2nd-ordered
MST model of McDonald and Pereira (2006),
which is trained on dependency trees extracted
from WSJ. The alignment matrixes for sentence
pairs are generated according to (Liu et al., 2009).

Similar to the ratior, the thresholdb need also
be assigned an appropriate value to achieve a bet-
ter performance. Larger thresholds result in better
but less classification instances, the lower cover-
age of the instances would hurt the performance of
the classifier. On the other hand, smaller thresh-
olds lead to worse but more instances, and too
much noisy instances will bring down the classi-
fier’s discriminating power.

We extract a series of classification instance sets

Corpus System P %
CTB 2.0 Hwa et al. (2005) 53.9

our model 56.9
CTB 5.0 Jiang and Liu (2009) 53.28

our model 58.59

Table 4: The performance of the projected classi-
fier on the test sets of CTB 2.0 and CTB 5.0, com-
pared with the performance of previous works on
the corresponding test sets.

Corpus Baseline P% Integrated P%
CTB 1.0 82.23 83.70
CTB 5.0 87.15 87.65

Table 5: Performance improvement brought by
the projected classifier to the baseline 2nd-ordered
MST parsers trained on CTB 1.0 and CTB 5.0, re-
spectively.

with different thresholds. Then, on each instance
set we train a classifier and test it on the develop-
ment set of CTB 5.0. Figure 4 presents the ex-
perimental results. The curve shows that the max-
imum performance is achieved at the threshold of
about 0.85. The classifier corresponding to this
threshold is evaluated on the test set of CTB 5.0,
and the test set of CTB 2.0 determined by Hwa et
al. (2005). Table 4 shows the performance of the
projected classifier, as well as the performance of
previous works on the corresponding test sets. The
projected classifier significantly outperforms pre-
vious works on both test sets, which demonstrates
that the word-pair classification model, although
falling behind of the state-of-the-art on human-
annotated treebanks, performs well in projected
dependency parsing. We give the credit to its good
collaboration with the word-pair classification in-
stance extraction for dependency projection.

6.3 Integrated Dependency Parser

We integrate the word-pair classification model
into the state-of-the-art 2nd-ordered MST model.
First, we implement a chart-based dynamic pro-
gramming parser for the 2nd-ordered MST model,
and develop a training procedure based on the
perceptron algorithm with averaged parameters
(Collins, 2002). On the WSJ corpus, this parser
achieves the same performance as that of McDon-
ald and Pereira (2006). Then, at each derivation
step of this 2nd-ordered MST parser, we weight-
edly add the evaluation score given by the pro-
jected classifier to the original MST evaluation
score. Such a weighted summation of two eval-
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uation scores provides better evaluation for can-
didate parses. The weight parameterλ is tuned
by a minimum error-rate training algorithm (Och,
2003).

Given a 2nd-ordered MST parser trained on
CTB 5.0 as the baseline, the projected classi-
fier brings an accuracy improvement of about 0.5
points. For the baseline trained on the smaller
CTB 1.0, whose training set is chapters 1-270 of
CTB 5.0, the accuracy improvement is much sig-
nificant, about 1.5 points over the baseline. It
indicates that, the smaller the human-annotated
treebank we have, the more significant improve-
ment we can achieve by integrating the project-
ing classifier. This provides a promising strategy
for boosting the parsing performance of resource-
scarce languages. Table 5 summarizes the experi-
mental results.

7 Conclusion and Future Works

In this paper, we first describe an intuitionis-
tic method for dependency parsing, which re-
sorts to a classifier to determine whether a word
pair forms a dependency edge, and then propose
an effective strategy for dependency projection,
which produces a set of projected classification in-
stances rather than complete projected trees. Al-
though this parsing method falls behind of pre-
vious models, it can collaborate well with the
word-pair classification instance extraction strat-
egy for dependency projection, and achieves the
state-of-the-art in projected dependency parsing.
In addition, when integrated into a 2nd-ordered
MST parser, the projected parser brings signifi-
cant improvement to the baseline, especially for
the baseline trained on smaller treebanks. This
provides a new strategy for resource-scarce lan-
guages to train high-precision dependency parsers.
However, considering its lower performance on
human-annotated treebanks, the dependency pars-
ing method itself still need a lot of investigations,
especially on the training method of the classifier.
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