
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 1–11,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Efficient Third-order Dependency Parsers

Terry Koo and Michael Collins
MIT CSAIL, Cambridge, MA, 02139, USA
{maestro,mcollins}@csail.mit.edu

Abstract

We present algorithms for higher-order de-
pendency parsing that are “third-order”
in the sense that they can evaluate sub-
structures containing three dependencies,
and “efficient” in the sense that they re-
quire only O(n4) time. Importantly, our
new parsers can utilize both sibling-style
and grandchild-style interactions. We
evaluate our parsers on the Penn Tree-
bank and Prague Dependency Treebank,
achieving unlabeled attachment scores of
93.04% and 87.38%, respectively.

1 Introduction

Dependency grammar has proven to be a very use-
ful syntactic formalism, due in no small part to the
development of efficient parsing algorithms (Eis-
ner, 2000; McDonald et al., 2005b; McDonald
and Pereira, 2006; Carreras, 2007), which can be
leveraged for a wide variety of learning methods,
such as feature-rich discriminative models (Laf-
ferty et al., 2001; Collins, 2002; Taskar et al.,
2003). These parsing algorithms share an impor-
tant characteristic: they factor dependency trees
into sets of parts that have limited interactions. By
exploiting the additional constraints arising from
the factorization, maximizations or summations
over the set of possible dependency trees can be
performed efficiently and exactly.

A crucial limitation of factored parsing algo-
rithms is that the associated parts are typically
quite small, losing much of the contextual in-
formation within the dependency tree. For the
purposes of improving parsing performance, it is
desirable to increase the size and variety of the
parts used by the factorization.1 At the same
time, the need for more expressive factorizations

1For examples of how performance varies with the degree
of the parser’s factorization see, e.g., McDonald and Pereira
(2006, Tables 1 and 2), Carreras (2007, Table 2), Koo et al.
(2008, Tables 2 and 4), or Suzuki et al. (2009, Tables 3–6).

must be balanced against any resulting increase in
the computational cost of the parsing algorithm.
Consequently, recent work in dependency pars-
ing has been restricted to applications of second-
order parsers, the most powerful of which (Car-
reras, 2007) requires O(n4) time and O(n3) space,
while being limited to second-order parts.

In this paper, we present new third-order pars-
ing algorithms that increase both the size and vari-
ety of the parts participating in the factorization,
while simultaneously maintaining computational
requirements of O(n4) time and O(n3) space. We
evaluate our parsers on the Penn WSJ Treebank
(Marcus et al., 1993) and Prague Dependency
Treebank (Hajič et al., 2001), achieving unlabeled
attachment scores of 93.04% and 87.38%. In sum-
mary, we make three main contributions:

1. Efficient new third-order parsing algorithms.

2. Empirical evaluations of these parsers.

3. A free distribution of our implementation.2

The remainder of this paper is divided as follows:
Sections 2 and 3 give background, Sections 4 and
5 describe our new parsing algorithms, Section 6
discusses related work, Section 7 presents our ex-
perimental results, and Section 8 concludes.

2 Dependency parsing

In dependency grammar, syntactic relationships
are represented as head-modifier dependencies:
directed arcs between a head, which is the more
“essential” word in the relationship, and a modi-
fier, which supplements the meaning of the head.
For example, Figure 1 contains a dependency be-
tween the verb “report” (the head) and its object
“sales” (the modifier). A complete analysis of a
sentence is given by a dependency tree: a set of de-
pendencies that forms a rooted, directed tree span-
ning the words of the sentence. Every dependency
tree is rooted at a special “*” token, allowing the

2http://groups.csail.mit.edu/nlp/dpo3/

1



Insiders must report purchases and immediatelysales * 

Figure 1: An example dependency structure.

selection of the sentential head to be modeled as if
it were a dependency.

For a sentence x, we define dependency parsing
as a search for the highest-scoring analysis of x:

y∗(x) = argmax
y∈Y(x)

SCORE(x, y) (1)

Here, Y(x) is the set of all trees compatible with
x and SCORE(x, y) evaluates the event that tree y
is the analysis of sentence x. Since the cardinal-
ity of Y(x) grows exponentially with the length of
the sentence, directly solving Eq. 1 is impractical.
A common strategy, and one which forms the fo-
cus of this paper, is to factor each dependency tree
into small parts, which can be scored in isolation.
Factored parsing can be formalized as follows:

SCORE(x, y) =
∑
p∈y

SCOREPART(x, p)

That is, we treat the dependency tree y as a set
of parts p, each of which makes a separate contri-
bution to the score of y. For certain factorizations,
efficient parsing algorithms exist for solving Eq. 1.

We define the order of a part according to the
number of dependencies it contains, with analo-
gous terminology for factorizations and parsing al-
gorithms. In the remainder of this paper, we focus
on factorizations utilizing the following parts:

g

g

hh

h h h

mm

m mm

ss

s

t

dependency sibling grandchild

tri-siblinggrand-sibling

Specifically, Sections 4.1, 4.2, and 4.3 describe
parsers that, respectively, factor trees into grand-
child parts, grand-sibling parts, and a mixture of
grand-sibling and tri-sibling parts.

3 Existing parsing algorithms

Our new third-order dependency parsers build on
ideas from existing parsing algorithms. In this
section, we provide background on two relevant
parsers from previous work.

(a) +=

h h mm ee

(b) +=

h h mm r r+1

Figure 2: The dynamic-programming structures
and derivations of the Eisner (2000) algorithm.
Complete spans are depicted as triangles and in-
complete spans as trapezoids. For brevity, we elide
the symmetric right-headed versions.

3.1 First-order factorization

The first type of parser we describe uses a “first-
order” factorization, which decomposes a depen-
dency tree into its individual dependencies. Eis-
ner (2000) introduced a widely-used dynamic-
programming algorithm for first-order parsing; as
it is the basis for many parsers, including our new
algorithms, we summarize its design here.

The Eisner (2000) algorithm is based on two
interrelated types of dynamic-programming struc-
tures: complete spans, which consist of a head-
word and its descendents on one side, and incom-
plete spans, which consist of a dependency and the
region between the head and modifier.

Formally, we denote a complete span as Ch,e

where h and e are the indices of the span’s head-
word and endpoint. An incomplete span is de-
noted as Ih,m where h and m are the index of the
head and modifier of a dependency. Intuitively,
a complete span represents a “half-constituent”
headed by h, whereas an incomplete span is only
a partial half-constituent, since the constituent can
be extended by adding more modifiers to m.

Each type of span is created by recursively
combining two smaller, adjacent spans; the con-
structions are specified graphically in Figure 2.
An incomplete span is constructed from a pair
of complete spans, indicating the division of the
range [h, m] into constituents headed by h and
m. A complete span is created by “complet-
ing” an incomplete span with the other half of
m’s constituent. The point of concatenation in
each construction—m in Figure 2(a) or r in Fig-
ure 2(b)—is the split point, a free index that must
be enumerated to find the optimal construction.

In order to parse a sentence x, it suffices to
find optimal constructions for all complete and
incomplete spans defined on x. This can be

2



(a) +=

h h mm ee

(b) +=

h h mm ss

(c) +=

mms s r r+1

Figure 3: The dynamic-programming structures
and derivations of the second-order sibling parser;
sibling spans are depicted as boxes. For brevity,
we elide the right-headed versions.

accomplished by adapting standard chart-parsing
techniques (Cocke and Schwartz, 1970; Younger,
1967; Kasami, 1965) to the recursive derivations
defined in Figure 2. Since each derivation is de-
fined by two fixed indices (the boundaries of the
span) and a third free index (the split point), the
parsing algorithm requires O(n3) time and O(n2)
space (Eisner, 1996; McAllester, 1999).

3.2 Second-order sibling factorization
As remarked by Eisner (1996) and McDonald
and Pereira (2006), it is possible to rearrange the
dynamic-programming structures to conform to an
improved factorization that decomposes each tree
into sibling parts—pairs of dependencies with a
shared head. Specifically, a sibling part consists
of a triple of indices (h, m, s) where (h, m) and
(h, s) are dependencies, and where s and m are
successive modifiers to the same side of h.

In order to parse this factorization, the second-
order parser introduces a third type of dynamic-
programming structure: sibling spans, which rep-
resent the region between successive modifiers of
some head. Formally, we denote a sibling span
as Ss,m where s and m are a pair of modifiers in-
volved in a sibling relationship. Modified versions
of sibling spans will play an important role in the
new parsing algorithms described in Section 4.

Figure 3 provides a graphical specification of
the second-order parsing algorithm. Note that in-
complete spans are constructed in a new way: the
second-order parser combines a smaller incom-
plete span, representing the next-innermost depen-
dency, with a sibling span that covers the region
between the two modifiers. Sibling parts (h, m, s)
can thus be obtained from Figure 3(b). Despite
the use of second-order parts, each derivation is

(a) = +

gg hhh mm ee

(b) = +

g gh h hm mr r+1

(c) = +

gg hh hm me e

(d) = +

gg hh hm mr r+1

Figure 4: The dynamic-programming structures
and derivations of Model 0. For brevity, we elide
the right-headed versions. Note that (c) and (d)
differ from (a) and (b) only in the position of g.

still defined by a span and split point, so the parser
requires O(n3) time and O(n2) space.

4 New third-order parsing algorithms

In this section we describe our new third-order de-
pendency parsing algorithms. Our overall method
is characterized by the augmentation of each span
with a “grandparent” index: an index external to
the span whose role will be made clear below. This
section presents three parsing algorithms based on
this idea: Model 0, a second-order parser, and
Models 1 and 2, which are third-order parsers.

4.1 Model 0: all grandchildren

The first parser, Model 0, factors each dependency
tree into a set of grandchild parts—pairs of de-
pendencies connected head-to-tail. Specifically,
a grandchild part is a triple of indices (g, h, m)
where (g, h) and (h, m) are dependencies.3

In order to parse this factorization, we augment
both complete and incomplete spans with grand-
parent indices; for brevity, we refer to these aug-
mented structures as g-spans. Formally, we denote
a complete g-span as Cg

h,e, where Ch,e is a normal
complete span and g is an index lying outside the
range [h, e], with the implication that (g, h) is a
dependency. Incomplete g-spans are defined anal-
ogously and are denoted as Ig

h,m.
Figure 4 depicts complete and incomplete g-

spans and provides a graphical specification of the
3The Carreras (2007) parser also uses grandchild parts but

only in restricted cases; see Section 6 for details.

3



OPTIMIZEALLSPANS(x)
1. ∀ g, i Cg

i,i = 0 / base case
2. for w = 1 . . . (n− 1) / span width
3. for i = 1 . . . (n− w) / span start index
4. j = i + w / span end index
5. for g < i or g > j / grandparent index
6. Ig

i,j = max i≤r<j {Cg
i,r + Ci

j,r+1} +
SCOREG(x, g, i, j)

7. Ig
j,i = max i≤r<j {Cg

j,r+1 + Cj
i,r} +

SCOREG(x, g, j, i)
8. Cg

i,j = max i<m≤j {Ig
i,m + Ci

m,j}
9. Cg

j,i = max i≤m<j {Ig
j,m + Cj

m,i}
10. endfor
11. endfor
12. endfor

Figure 5: A bottom-up chart parser for Model 0.
SCOREG is the scoring function for grandchild
parts. We use the g-span identities as shorthand
for their chart entries (e.g., Ig

i,j refers to the entry
containing the maximum score of that g-span).

Model 0 dynamic-programming algorithm. The
algorithm resembles the first-order parser, except
that every recursive construction must also set the
grandparent indices of the smaller g-spans; for-
tunately, this can be done deterministically in all
cases. For example, Figure 4(a) depicts the de-
composition of Cg

h,e into an incomplete half and
a complete half. The grandparent of the incom-
plete half is copied from Cg

h,e while the grandpar-
ent of the complete half is set to h, the head of m
as defined by the construction. Clearly, grandchild
parts (g, h, m) can be read off of the incomplete
g-spans in Figure 4(b,d). Moreover, since each
derivation copies the grandparent index g into suc-
cessively smaller g-spans, grandchild parts will be
produced for all grandchildren of g.

Model 0 can be parsed by adapting standard
top-down or bottom-up chart parsing techniques.
For concreteness, Figure 5 provides a pseudocode
sketch of a bottom-up chart parser for Model 0;
although the sketch omits many details, it suf-
fices for the purposes of illustration. The algo-
rithm progresses from small widths to large in
the usual manner, but after defining the endpoints
(i, j) there is an additional loop that enumerates
all possible grandparents. Since each derivation is
defined by three fixed indices (the g-span) and one
free index (the split point), the complexity of the
algorithm is O(n4) time and O(n3) space.

Note that the grandparent indices cause each g-

(a) = +

gg hhh mm ee

(b) = +

g gh h hm mss

(c) = +

hh hm mss r r+1

Figure 6: The dynamic-programming structures
and derivations of Model 1. Right-headed and
right-grandparented versions are omitted.

span to have non-contiguous structure. For ex-
ample, in Figure 4(a) the words between g and h
will be controlled by some other g-span. Due to
these discontinuities, the correctness of the Model
0 dynamic-programming algorithm may not be
immediately obvious. While a full proof of cor-
rectness is beyond the scope of this paper, we note
that each structure on the right-hand side of Fig-
ure 4 lies completely within the structure on the
left-hand side. This nesting of structures implies,
in turn, that the usual properties required to ensure
the correctness of dynamic programming hold.

4.2 Model 1: all grand-siblings

We now describe our first third-order parsing al-
gorithm. Model 1 decomposes each tree into a
set of grand-sibling parts—combinations of sib-
ling parts and grandchild parts. Specifically, a
grand-sibling is a 4-tuple of indices (g, h, m, s)
where (h, m, s) is a sibling part and (g, h, m) and
(g, h, s) are grandchild parts. For example, in Fig-
ure 1, the words “must,” “report,” “sales,” and
“immediately” form a grand-sibling part.

In order to parse this factorization, we intro-
duce sibling g-spans Sh

m,s, which are composed of
a normal sibling span Sm,s and an external index
h, with the implication that (h, m, s) forms a valid
sibling part. Figure 6 provides a graphical specifi-
cation of the dynamic-programming algorithm for
Model 1. The overall structure of the algorithm re-
sembles the second-order sibling parser, with the
addition of grandparent indices; as in Model 0, the
grandparent indices can be set deterministically in
all cases. Note that the sibling g-spans are crucial:
they allow grand-sibling parts (g, h, m, s) to be
read off of Figure 6(b), while simultaneously prop-
agating grandparent indices to smaller g-spans.

4



(a) = +

gg hhh mm ee

(b) =

g hh mm s

(c) = +

hh hm ms sst

(d) = +

hh hm mss r r+1

Figure 7: The dynamic-programming structures
and derivations of Model 2. Right-headed and
right-grandparented versions are omitted.

Like Model 0, Model 1 can be parsed via adap-
tations of standard chart-parsing techniques; we
omit the details for brevity. Despite the move to
third-order parts, each derivation is still defined by
a g-span and a split point, so that parsing requires
only O(n4) time and O(n3) space.

4.3 Model 2: grand-siblings and tri-siblings

Higher-order parsing algorithms have been pro-
posed which extend the second-order sibling fac-
torization to parts containing multiple siblings
(McDonald and Pereira, 2006, also see Section 6
for discussion). In this section, we show how our
g-span-based techniques can be combined with a
third-order sibling parser, resulting in a parser that
captures both grand-sibling parts and tri-sibling
parts—4-tuples of indices (h, m, s, t) such that
both (h, m, s) and (h, s, t) are sibling parts.

In order to parse this factorization, we intro-
duce a new type of dynamic-programming struc-
ture: sibling-augmented spans, or s-spans. For-
mally, we denote an incomplete s-span as Ih,m,s

where Ih,m is a normal incomplete span and s is an
index lying in the strict interior of the range [h, m],
such that (h, m, s) forms a valid sibling part.

Figure 7 provides a graphical specification of
the Model 2 parsing algorithm. An incomplete
s-span is constructed by combining a smaller in-
complete s-span, representing the next-innermost
pair of modifiers, with a sibling g-span, covering
the region between the outer two modifiers. As
in Model 1, sibling g-spans are crucial for propa-
gating grandparent indices, while allowing the re-
covery of tri-sibling parts (h, m, s, t). Figure 7(b)

shows how an incomplete s-span can be converted
into an incomplete g-span by exchanging the in-
ternal sibling index for an external grandparent in-
dex; in the process, grand-sibling parts (g, h, m, s)
are enumerated. Since every derivation is defined
by an augmented span and a split point, Model 2
can be parsed in O(n4) time and O(n3) space.

It should be noted that unlike Model 1, Model
2 produces grand-sibling parts only for the outer-
most pair of grandchildren,4 similar to the behav-
ior of the Carreras (2007) parser. In fact, the re-
semblance is more than passing, as Model 2 can
emulate the Carreras (2007) algorithm by “demot-
ing” each third-order part into a second-order part:

SCOREGS(x, g, h, m, s) = SCOREG(x, g, h, m)
SCORETS(x, h,m, s, t) = SCORES(x, h,m, s)

where SCOREG, SCORES, SCOREGS and
SCORETS are the scoring functions for grand-
children, siblings, grand-siblings and tri-siblings,
respectively. The emulated version has the same
computational complexity as the original, so there
is no practical reason to prefer it over the original.
Nevertheless, the relationship illustrated above
highlights the efficiency of our approach: we
are able to recover third-order parts in place of
second-order parts, at no additional cost.

4.4 Discussion
The technique of grandparent-index augmentation
has proven fruitful, as it allows us to parse ex-
pressive third-order factorizations while retaining
an efficient O(n4) runtime. In fact, our third-
order parsing algorithms are “optimally” efficient
in an asymptotic sense. Since each third-order part
is composed of four separate indices, there are
Θ(n4) distinct parts. Any third-order parsing al-
gorithm must at least consider the score of each
part, hence third-order parsing is Ω(n4) and it fol-
lows that the asymptotic complexity of Models 1
and 2 cannot be improved.

The key to the efficiency of our approach is a
fundamental asymmetry in the structure of a di-
rected tree: a head can have any number of mod-
ifiers, while a modifier always has exactly one
head. Factorizations like that of Carreras (2007)
obtain grandchild parts by augmenting spans with
the indices of modifiers, leading to limitations on

4The reason for the restriction is that in Model 2, grand-
siblings can only be derived via Figure 7(b), which does not
recursively copy the grandparent index for reuse in smaller
g-spans as Model 1 does in Figure 6(b).

5



the grandchildren that can participate in the fac-
torization. Our method, by “inverting” the modi-
fier indices into grandparent indices, exploits the
structural asymmetry.

As a final note, the parsing algorithms described
in this section fall into the category of projective
dependency parsers, which forbid crossing depen-
dencies. If crossing dependencies are allowed, it
is possible to parse a first-order factorization by
finding the maximum directed spanning tree (Chu
and Liu, 1965; Edmonds, 1967; McDonald et al.,
2005b). Unfortunately, designing efficient higher-
order non-projective parsers is likely to be chal-
lenging, based on recent hardness results (McDon-
ald and Pereira, 2006; McDonald and Satta, 2007).

5 Extensions

We briefly outline a few extensions to our algo-
rithms; we hope to explore these in future work.

5.1 Probabilistic inference

Many statistical modeling techniques are based on
partition functions and marginals—summations
over the set of possible trees Y(x). Straightfor-
ward adaptations of the inside-outside algorithm
(Baker, 1979) to our dynamic-programming struc-
tures would suffice to compute these quantities.

5.2 Labeled parsing

Our parsers are easily extended to labeled depen-
dencies. Direct integration of labels into Models 1
and 2 would result in third-order parts composed
of three labeled dependencies, at the cost of in-
creasing the time and space complexities by fac-
tors of O(L3) and O(L2), respectively, where L
bounds the number of labels per dependency.

5.3 Word senses

If each word in x has a set of possible “senses,”
our parsers can be modified to recover the best
joint assignment of syntax and senses for x, by
adapting methods in Eisner (2000). Complex-
ity would increase by factors of O(S4) time and
O(S3) space, where S bounds the number of
senses per word.

5.4 Increased context

If more vertical context is desired, the dynamic-
programming structures can be extended with ad-
ditional ancestor indices, resulting in a “spine” of

ancestors above each span. Each additional an-
cestor lengthens the vertical scope of the factor-
ization (e.g., from grand-siblings to “great-grand-
siblings”), while increasing complexity by a factor
of O(n). Horizontal context can also be increased
by adding internal sibling indices; each additional
sibling widens the scope of the factorization (e.g.,
from grand-siblings to “grand-tri-siblings”), while
increasing complexity by a factor of O(n).

6 Related work

Our method augments each span with the index
of the head that governs that span, in a manner
superficially similar to parent annotation in CFGs
(Johnson, 1998). However, parent annotation is
a grammar transformation that is independent of
any particular sentence, whereas our method an-
notates spans with indices into the current sen-
tence. These indices allow the use of arbitrary fea-
tures predicated on the position of the grandparent
(e.g., word identity, POS tag, contextual POS tags)
without affecting the asymptotic complexity of the
parsing algorithm. Efficiently encoding this kind
of information into a sentence-independent gram-
mar transformation would be challenging at best.

Eisner (2000) defines dependency parsing mod-
els where each word has a set of possible “senses”
and the parser recovers the best joint assignment
of syntax and senses. Our new parsing algorithms
could be implemented by defining the “sense” of
each word as the index of its head. However, when
parsing with senses, the complexity of the Eisner
(2000) parser increases by factors of O(S3) time
and O(S2) space (ibid., Section 4.2). Since each
word has n potential heads, a direct application
of the word-sense parser leads to time and space
complexities of O(n6) and O(n4), respectively, in
contrast to our O(n4) and O(n3).5

Eisner (2000) also uses head automata to score
or recognize the dependents of each head. An in-
teresting question is whether these automata could
be coerced into modeling the grandparent indices
used in our parsing algorithms. However, note
that the head automata are defined in a sentence-
independent manner, with two automata per word
in the vocabulary (ibid., Section 2). The automata
are thus analogous to the rules of a CFG and at-

5In brief, the reason for the inefficiency is that the word-
sense parser is unable to exploit certain constraints, such as
the fact that the endpoints of a sibling g-span must have the
same head. The word-sense parser would needlessly enumer-
ate all possible pairs of heads in this case.

6



tempts to use them to model grandparent indices
would face difficulties similar to those already de-
scribed for grammar transformations in CFGs.

It should be noted that third-order parsers
have previously been proposed by McDonald and
Pereira (2006), who remarked that their second-
order sibling parser (see Figure 3) could easily
be extended to capture m > 1 successive modi-
fiers in O(nm+1) time (ibid., Section 2.2). To our
knowledge, however, Models 1 and 2 are the first
third-order parsing algorithms capable of model-
ing grandchild parts. In our experiments, we find
that grandchild interactions make important con-
tributions to parsing performance (see Table 3).

Carreras (2007) presents a second-order parser
that can score both sibling and grandchild parts,
with complexities of O(n4) time and O(n3) space.
An important limitation of the parser’s factoriza-
tion is that it only defines grandchild parts for
outermost grandchildren: (g, h, m) is scored only
when m is the outermost modifier of h in some di-
rection. Note that Models 1 and 2 have the same
complexity as Carreras (2007), but strictly greater
expressiveness: for each sibling or grandchild part
used in the Carreras (2007) factorization, Model 1
defines an enclosing grand-sibling, while Model 2
defines an enclosing tri-sibling or grand-sibling.

The factored parsing approach we focus on is
sometimes referred to as “graph-based” parsing;
a popular alternative is “transition-based” parsing,
in which trees are constructed by making a se-
ries of incremental decisions (Yamada and Mat-
sumoto, 2003; Attardi, 2006; Nivre et al., 2006;
McDonald and Nivre, 2007). Transition-based
parsers do not impose factorizations, so they can
define arbitrary features on the tree as it is being
built. As a result, however, they rely on greedy or
approximate search algorithms to solve Eq. 1.

7 Parsing experiments

In order to evaluate the effectiveness of our parsers
in practice, we apply them to the Penn WSJ Tree-
bank (Marcus et al., 1993) and the Prague De-
pendency Treebank (Hajič et al., 2001; Hajič,
1998).6 We use standard training, validation, and
test splits7 to facilitate comparisons. Accuracy is

6For English, we extracted dependencies using Joakim
Nivre’s Penn2Malt tool with standard head rules (Yamada
and Matsumoto, 2003); for Czech, we “projectivized” the
training data by finding best-match projective trees.

7For Czech, the PDT has a predefined split; for English,
we split the Sections as: 2–21 training, 22 validation, 23 test.

measured with unlabeled attachment score (UAS):
the percentage of words with the correct head.8

7.1 Features for third-order parsing
Our parsing algorithms can be applied to scores
originating from any source, but in our experi-
ments we chose to use the framework of structured
linear models, deriving our scores as:

SCOREPART(x, p) = w · f(x, p)

Here, f is a feature-vector mapping and w is a
vector of associated parameters. Following stan-
dard practice for higher-order dependency parsing
(McDonald and Pereira, 2006; Carreras, 2007),
Models 1 and 2 evaluate not only the relevant
third-order parts, but also the lower-order parts
that are implicit in their third-order factoriza-
tions. For example, Model 1 defines feature map-
pings for dependencies, siblings, grandchildren,
and grand-siblings, so that the score of a depen-
dency parse is given by:

MODEL1SCORE(x, y) =∑
(h,m)∈y

wdep · fdep(x, h,m)

∑
(h,m,s)∈y

wsib · fsib(x, h,m, s)

∑
(g,h,m)∈y

wgch · fgch(x, g, h, m)

∑
(g,h,m,s)∈y

wgsib · fgsib(x, g, h, m, s)

Above, y is simultaneously decomposed into sev-
eral different types of parts; trivial modifications
to the Model 1 parser allow it to evaluate all of
the necessary parts in an interleaved fashion. A
similar treatment of Model 2 yields five feature
mappings: the four above plus ftsib(x, h,m, s, t),
which represents tri-sibling parts.

The lower-order feature mappings fdep, fsib, and
fgch are based on feature sets from previous work
(McDonald et al., 2005a; McDonald and Pereira,
2006; Carreras, 2007), to which we added lexical-
ized versions of several features. For example, fdep

contains lexicalized “in-between” features that de-
pend on the head and modifier words as well as a
word lying in between the two; in contrast, pre-
vious work has generally defined in-between fea-
tures for POS tags only. As another example, our

8As in previous work, English evaluation ignores any to-
ken whose gold-standard POS tag is one of {‘‘ ’’ : , .}.

7



second-order mappings fsib and fgch define lexical
trigram features, while previous work has gener-
ally used POS trigrams only.

Our third-order feature mappings fgsib and ftsib

consist of four types of features. First, we define
4-gram features that characterize the four relevant
indices using words and POS tags; examples in-
clude POS 4-grams and mixed 4-grams with one
word and three POS tags. Second, we define 4-
gram context features consisting of POS 4-grams
augmented with adjacent POS tags: for exam-
ple, fgsib(x, g, h, m, s) includes POS 7-grams for
the tags at positions (g, h, m, s, g+1, h+1, m+1).
Third, we define backed-off features that track bi-
gram and trigram interactions which are absent
in the lower-order feature mappings: for exam-
ple, ftsib(x, h,m, s, t) contains features predicated
on the trigram (m, s, t) and the bigram (m, t),
neither of which exist in any lower-order part.
Fourth, noting that coordinations are typically an-
notated as grand-siblings (e.g., “report purchases
and sales” in Figure 1), we define coordination
features for certain grand-sibling parts. For exam-
ple, fgsib(x, g, h, m, s) contains features examin-
ing the implicit head-modifier relationship (g,m)
that are only activated when the POS tag of s is a
coordinating conjunction.

Finally, we make two brief remarks regarding
the use of POS tags. First, we assume that input
sentences have been automatically tagged in a pre-
processing step.9 Second, for any feature that de-
pends on POS tags, we include two copies of the
feature: one using normal POS tags and another
using coarsened versions10 of the POS tags.

7.2 Averaged perceptron training

There are a wide variety of parameter estima-
tion methods for structured linear models, such
as log-linear models (Lafferty et al., 2001) and
max-margin models (Taskar et al., 2003). We
chose the averaged structured perceptron (Freund
and Schapire, 1999; Collins, 2002) as it combines
highly competitive performance with fast training
times, typically converging in 5–10 iterations. We
train each parser for 10 iterations and select pa-

9For Czech, the PDT provides automatic tags; for English,
we used MXPOST (Ratnaparkhi, 1996) to tag validation and
test data, with 10-fold cross-validation on the training set.
Note that the reliance on POS-tagged input can be relaxed
slightly by treating POS tags as word senses; see Section 5.3
and McDonald (2006, Table 6.1).

10For Czech, we used the first character of the tag; for En-
glish, we used the first two characters, except PRP and PRP$.

Beam Pass Orac Acc1 Acc2 Time1 Time2
0.0001 26.5 99.92 93.49 93.49 49.6m 73.5m

0.001 16.7 99.72 93.37 93.29 25.9m 24.2m
0.01 9.1 99.19 93.26 93.16 6.7m 7.9m

Table 1: Effect of the marginal-probability beam
on English parsing. For each beam value, parsers
were trained on the English training set and evalu-
ated on the English validation set; the same beam
value was applied to both training and validation
data. Pass = %dependencies surviving the beam in
training data, Orac = maximum achievable UAS
on validation data, Acc1/Acc2 = UAS of Models
1/2 on validation data, and Time1/Time2 = min-
utes per perceptron training iteration for Models
1/2, averaged over all 10 iterations. For perspec-
tive, the English training set has a total of 39,832
sentences and 950,028 words. A beam of 0.0001
was used in all experiments outside this table.

rameters from the iteration that achieves the best
score on the validation set.

7.3 Coarse-to-fine pruning

In order to decrease training times, we follow
Carreras et al. (2008) and eliminate unlikely de-
pendencies using a form of coarse-to-fine pruning
(Charniak and Johnson, 2005; Petrov and Klein,
2007). In brief, we train a log-linear first-order
parser11 and for every sentence x in training, val-
idation, and test data we compute the marginal
probability P (h, m |x) of each dependency. Our
parsers are then modified to ignore any depen-
dency (h, m) whose marginal probability is below
0.0001×maxh′ P (h′, m |x). Table 1 provides in-
formation on the behavior of the pruning method.

7.4 Main results

Table 2 lists the accuracy of Models 1 and 2 on the
English and Czech test sets, together with some
relevant results from related work.12 The mod-
els marked “†” are not directly comparable to our
work as they depend on additional sources of in-
formation that our models are trained without—
unlabeled data in the case of Koo et al. (2008) and

11For English, we generate marginals using a projective
parser (Baker, 1979; Eisner, 2000); for Czech, we generate
marginals using a non-projective parser (Smith and Smith,
2007; McDonald and Satta, 2007; Koo et al., 2007). Param-
eters for these models are obtained by running exponentiated
gradient training for 10 iterations (Collins et al., 2008).

12Model 0 was not tested as its factorization is a strict sub-
set of the factorization of Model 1.

8



Parser Eng Cze
McDonald et al. (2005a,2005b) 90.9 84.4
McDonald and Pereira (2006) 91.5 85.2
Koo et al. (2008), standard 92.02 86.13
Model 1 93.04 87.38
Model 2 92.93 87.37
Koo et al. (2008), semi-sup† 93.16 87.13
Suzuki et al. (2009)† 93.79 88.05
Carreras et al. (2008)† 93.5

Table 2: UAS of Models 1 and 2 on test data, with
relevant results from related work. Note that Koo
et al. (2008) is listed with standard features and
semi-supervised features. †: see main text.

Suzuki et al. (2009) and phrase-structure annota-
tions in the case of Carreras et al. (2008). All three
of the “†” models are based on versions of the Car-
reras (2007) parser, so modifying these methods to
work with our new third-order parsing algorithms
would be an interesting topic for future research.
For example, Models 1 and 2 obtain results com-
parable to the semi-supervised parsers of Koo et
al. (2008), and additive gains might be realized by
applying their cluster-based feature sets to our en-
riched factorizations.

7.5 Ablation studies

In order to better understand the contributions of
the various feature types, we ran additional abla-
tion experiments; the results are listed in Table 3,
in addition to the scores of Model 0 and the emu-
lated Carreras (2007) parser (see Section 4.3). In-
terestingly, grandchild interactions appear to pro-
vide important information: for example, when
Model 2 is used without grandchild-based features
(“Model 2, no-G” in Table 3), its accuracy suffers
noticeably. In addition, it seems that grandchild
interactions are particularly useful in Czech, while
sibling interactions are less important: consider
that Model 0, a second-order grandchild parser
with no sibling-based features, can easily outper-
form “Model 2, no-G,” a third-order sibling parser
with no grandchild-based features.

8 Conclusion

We have presented new parsing algorithms that are
capable of efficiently parsing third-order factoriza-
tions, including both grandchild and sibling inter-
actions. Due to space restrictions, we have been
necessarily brief at some points in this paper; some
additional details can be found in Koo (2010).

Parser Eng Cze
Model 0 93.07 87.39
Carreras (2007) emulation 93.14 87.25
Model 1 93.49 87.64
Model 1, no-3rd 93.17 87.57
Model 2 93.49 87.46
Model 2, no-3rd 93.20 87.43
Model 2, no-G 92.92 86.76

Table 3: UAS for modified versions of our parsers
on validation data. The term no-3rd indicates a
parser that was trained and tested with the third-
order feature mappings fgsib and ftsib deactivated,
though lower-order features were retained; note
that “Model 2, no-3rd” is not identical to the Car-
reras (2007) parser as it defines grandchild parts
for the pair of grandchildren. The term no-G indi-
cates a parser that was trained and tested with the
grandchild-based feature mappings fgch and fgsib

deactivated; note that “Model 2, no-G” emulates
the third-order sibling parser proposed by McDon-
ald and Pereira (2006).

There are several possibilities for further re-
search involving our third-order parsing algo-
rithms. One idea would be to consider extensions
and modifications of our parsers, some of which
have been suggested in Sections 5 and 7.4. A sec-
ond area for future work lies in applications of de-
pendency parsing. While we have evaluated our
new algorithms on standard parsing benchmarks,
there are a wide variety of tasks that may bene-
fit from the extended context offered by our third-
order factorizations; for example, the 4-gram sub-
structures enabled by our approach may be useful
for dependency-based language modeling in ma-
chine translation (Shen et al., 2008). Finally, in
the hopes that others in the NLP community may
find our parsers useful, we provide a free distribu-
tion of our implementation.2

Acknowledgments

We would like to thank the anonymous review-
ers for their helpful comments and suggestions.
We also thank Regina Barzilay and Alexander
Rush for their much-appreciated input during the
writing process. The authors gratefully acknowl-
edge the following sources of support: Terry
Koo and Michael Collins were both funded by
a DARPA subcontract under SRI (#27-001343),
and Michael Collins was additionally supported
by NTT (Agmt. dtd. 06/21/98).

9



References
Giuseppe Attardi. 2006. Experiments with a Multilan-

guage Non-Projective Dependency Parser. In Pro-
ceedings of the 10th CoNLL, pages 166–170. Asso-
ciation for Computational Linguistics.

James Baker. 1979. Trainable Grammars for Speech
Recognition. In Proceedings of the 97th meeting of
the Acoustical Society of America.

Xavier Carreras, Michael Collins, and Terry Koo.
2008. TAG, Dynamic Programming, and the Per-
ceptron for Efficient, Feature-rich Parsing. In Pro-
ceedings of the 12th CoNLL, pages 9–16. Associa-
tion for Computational Linguistics.

Xavier Carreras. 2007. Experiments with a Higher-
Order Projective Dependency Parser. In Proceed-
ings of the CoNLL Shared Task Session of EMNLP-
CoNLL, pages 957–961. Association for Computa-
tional Linguistics.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine N -best Parsing and MaxEnt Discriminative
Reranking. In Proceedings of the 43rd ACL.

Y.J. Chu and T.H. Liu. 1965. On the Shortest Ar-
borescence of a Directed Graph. Science Sinica,
14:1396–1400.

John Cocke and Jacob T. Schwartz. 1970. Program-
ming Languages and Their Compilers: Preliminary
Notes. Technical report, New York University.

Michael Collins, Amir Globerson, Terry Koo, Xavier
Carreras, and Peter L. Bartlett. 2008. Exponenti-
ated Gradient Algorithms for Conditional Random
Fields and Max-Margin Markov Networks. Journal
of Machine Learning Research, 9:1775–1822, Aug.

Michael Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Exper-
iments with Perceptron Algorithms. In Proceedings
of the 7th EMNLP, pages 1–8. Association for Com-
putational Linguistics.

Jack R. Edmonds. 1967. Optimum Branchings. Jour-
nal of Research of the National Bureau of Standards,
71B:233–240.

Jason Eisner. 1996. Three New Probabilistic Models
for Dependency Parsing: An Exploration. In Pro-
ceedings of the 16th COLING, pages 340–345. As-
sociation for Computational Linguistics.

Jason Eisner. 2000. Bilexical Grammars and Their
Cubic-Time Parsing Algorithms. In Harry Bunt
and Anton Nijholt, editors, Advances in Probabilis-
tic and Other Parsing Technologies, pages 29–62.
Kluwer Academic Publishers.

Yoav Freund and Robert E. Schapire. 1999. Large
Margin Classification Using the Perceptron Algo-
rithm. Machine Learning, 37(3):277–296.

Jan Hajič, Eva Hajičová, Petr Pajas, Jarmila Panevova,
and Petr Sgall. 2001. The Prague Dependency Tree-
bank 1.0, LDC No. LDC2001T10. Linguistics Data
Consortium.

Jan Hajič. 1998. Building a Syntactically Annotated
Corpus: The Prague Dependency Treebank. In Eva
Hajičová, editor, Issues of Valency and Meaning.
Studies in Honor of Jarmila Panevová, pages 12–19.

Mark Johnson. 1998. PCFG Models of Linguistic
Tree Representations. Computational Linguistics,
24(4):613–632.

Tadao Kasami. 1965. An Efficient Recognition and
Syntax-analysis Algorithm for Context-free Lan-
guages. Technical Report AFCRL-65-758, Air
Force Cambridge Research Lab.

Terry Koo, Amir Globerson, Xavier Carreras, and
Michael Collins. 2007. Structured Prediction Mod-
els via the Matrix-Tree Theorem. In Proceedings
of EMNLP-CoNLL, pages 141–150. Association for
Computational Linguistics.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple Semi-supervised Dependency Pars-
ing. In Proceedings of the 46th ACL, pages 595–603.
Association for Computational Linguistics.

Terry Koo. 2010. Advances in Discriminative Depen-
dency Parsing. Ph.D. thesis, Massachusetts Institute
of Technology, Cambridge, MA, USA, June.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Se-
quence Data. In Proceedings of the 18th ICML,
pages 282–289. Morgan Kaufmann.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

David A. McAllester. 1999. On the Complexity
Analysis of Static Analyses. In Proceedings of
the 6th Static Analysis Symposium, pages 312–329.
Springer-Verlag.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the Errors of Data-Driven Dependency Parsers.
In Proceedings of EMNLP-CoNLL, pages 122–131.
Association for Computational Linguistics.

Ryan McDonald and Fernando Pereira. 2006. Online
Learning of Approximate Dependency Parsing Al-
gorithms. In Proceedings of the 11th EACL, pages
81–88. Association for Computational Linguistics.

Ryan McDonald and Giorgio Satta. 2007. On the
Complexity of Non-Projective Data-Driven Depen-
dency Parsing. In Proceedings of IWPT.

10



Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005a. Online Large-Margin Training of
Dependency Parsers. In Proceedings of the 43rd

ACL, pages 91–98. Association for Computational
Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005b. Non-Projective Dependency
Parsing using Spanning Tree Algorithms. In Pro-
ceedings of HLT-EMNLP, pages 523–530. Associa-
tion for Computational Linguistics.

Ryan McDonald. 2006. Discriminative Training and
Spanning Tree Algorithms for Dependency Parsing.
Ph.D. thesis, University of Pennsylvania, Philadel-
phia, PA, USA, July.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen
Eryiǧit, and Svetoslav Marinov. 2006. Labeled
Pseudo-Projective Dependency Parsing with Sup-
port Vector Machines. In Proceedings of the 10th

CoNLL, pages 221–225. Association for Computa-
tional Linguistics.

Slav Petrov and Dan Klein. 2007. Improved Inference
for Unlexicalized Parsing. In Proceedings of HLT-
NAACL, pages 404–411. Association for Computa-
tional Linguistics.

Adwait Ratnaparkhi. 1996. A Maximum Entropy
Model for Part-Of-Speech Tagging. In Proceedings
of the 1st EMNLP, pages 133–142. Association for
Computational Linguistics.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008.
A New String-to-Dependency Machine Translation
Algorithm with a Target Dependency Language
Model. In Proceedings of the 46th ACL, pages 577–
585. Association for Computational Linguistics.

David A. Smith and Noah A. Smith. 2007. Proba-
bilistic Models of Nonprojective Dependency Trees.
In Proceedings of EMNLP-CoNLL, pages 132–140.
Association for Computational Linguistics.

Jun Suzuki, Hideki Isozaki, Xavier Carreras, and
Michael Collins. 2009. An Empirical Study of
Semi-supervised Structured Conditional Models for
Dependency Parsing. In Proceedings of EMNLP,
pages 551–560. Association for Computational Lin-
guistics.

Ben Taskar, Carlos Guestrin, and Daphne Koller. 2003.
Max margin markov networks. In Sebastian Thrun,
Lawrence K. Saul, and Bernhard Schölkopf, editors,
NIPS. MIT Press.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical Dependency Analysis with Support Vector Ma-
chines. In Proceedings of the 8th IWPT, pages 195–
206. Association for Computational Linguistics.

David H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 10(2):189–208.

11


