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Abstract

We propose a novel approach for improv-
ing Feature Selection for Word Sense Dis-
ambiguation by incorporating a feature
relevance prior for each word indicating
which features are more likely to be se-
lected. We use transfer of knowledge from
similar words to learn this prior over the
features, which permits us to learn higher
accuracy models, particularly for the rarer
word senses. Results on the ONTONOTES

verb data show significant improvement
over the baseline feature selection algo-
rithm and results that are comparable to or
better than other state-of-the-art methods.

1 Introduction

The task of WSD has been mostly studied in
a supervised learning setting e.g. (Florian and
Yarowsky, 2002) and feature selection has always
been an important component of high accuracy
word sense disambiguation, as one often has thou-
sands of features but only hundreds of observa-
tions of the words (Florian and Yarowsky, 2002).

The main problem that arises with supervised
WSD techniques, including ones that do feature
selection, is the paucity of labeled data. For ex-
ample, the training set of SENSEVAL-2 English
lexical sample task has only10 labeled examples
per sense (Florian and Yarowsky, 2002), which
makes it difficult to build high accuracy models
using only supervised learning techniques. It is
thus an attractive alternative to use transfer learn-
ing (Ando and Zhang, 2005), which improves per-
formance by generalizing from solutions to “sim-
ilar” learning problems. (Ando, 2006) (abbrevi-
ated as Ando[CoNLL’06]) have successfully ap-
plied the ASO (Alternating Structure Optimiza-
tion) technique proposed by (Ando and Zhang,
2005), in its transfer learning configuration, to the
problem of WSD by doing joint empirical risk
minimization of a set of related problems (words

in this case). In this paper, we show how a novel
form of transfer learning that learns a feature rel-
evance prior from similar word senses, aids in the
process of feature selection and hence benefits the
task of WSD.

Feature selection algorithms usually put a uni-
form prior over the features. I.e., they consider
each feature to have the same probability of being
selected. In this paper we relax this overly sim-
plistic assumption by transferring a prior for fea-
ture relevance of a given word sense from “simi-
lar” word senses. Learning this prior for feature
relevance of a test word sense makes those fea-
tures that have been selected in the models of other
“similar” word senses become more likely to be
selected.

We learn the feature relevance prior only from
distributionally similar wordsenses, rather than
“all” senses of each word, as it is difficult to find
words which are similar in “all” the senses. We
can, however, often find words which have one or
a few similar senses. For example, one sense of
“fire” (as in “fire someone”) should share features
with one sense of “dismiss” (as in “dismiss some-
one”), but other senses of “fire” (as in “fire the
gun”) do not. Similarly, other meanings of “dis-
miss” (as in “dismiss an idea”) should not share
features with “fire”.

As just mentioned, knowledge can only be
fruitfully transfered between the shared senses of
different words, even though the models being
learned are for disambiguating different senses of
a single word. To address this problem, we cluster
similar word senses of different words, and then
use the models learned for all but one of the word
senses in the cluster (called the “training word
senses”) to put a feature relevance prior on which
features will be more predictive for the held out
test word sense. We hold out each word sense in
the cluster once and learn a prior from the remain-
ing word senses in that cluster. For example, we
can use the models for discriminating the senses
of the words “kill” and the senses of “capture”, to
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put a prior on what features should be included in
a model to disambiguate corresponding senses of
the distributionally similar word “arrest”.

The remainder of the paper is organized as fol-
lows. In Section 2 we describe our “baseline” in-
formation theoretic feature selection method, and
extend it to our “TRANSFEAT” method. Section 3
contains experimental results comparing TRANS-
FEAT with the baseline and Ando[CoNLL’06] on
ONTONOTESdata. We conclude with a brief sum-
mary in Section 4.

2 Feature Selection for WSD

We use an information theoretic approach to fea-
ture selection based on the Minimum Description
Length (MDL) (Rissanen, 1999) principle, which
makes it easy to incorporate information about
feature relevance priors. These information theo-
retic models have a ‘dual’ Bayesian interpretation,
which provides a clean setting for feature selec-
tion.

2.1 Information Theoretic Feature Selection

The state-of-the-art feature selection methods in
WSD use either anℓ0 or anℓ1 penalty on the coef-
ficients. ℓ1 penalty methods such as Lasso, being
convex, can be solved by optimization and give
guaranteed optimal solutions. On the other hand,
ℓ0 penalty methods, like stepwise feature selec-
tion, give approximate solutions but produce mod-
els that are much sparser than the models given by
ℓ1 methods, which is quite crucial in WSD (Flo-
rian and Yarowsky, 2002).ℓ0 models are also more
amenable to theoretical analysis for setting thresh-
olds, and hence for incorporating priors.

Penalized likelihood methods which are widely
used for feature selection minimize a score:

Score = −2log(likelihood) + Fq (1)

whereF is a function designed to penalize model
complexity, andq represents the number of fea-
tures currently included in the model at a given
point. The first term in the above equation repre-
sents a measure of the in-sample error given the
model, while the second term is a model complex-
ity penalty.

As is obvious from Eq. 1, the description length
of the MDL (Minimum Description Length) mes-
sage is composed of two parts:SE, the num-
ber of bits for encoding the residual errors given
the models andSM , the number of bits for en-
coding the model. Hence the description length

can be written as:S = SE + SM . Now, when
we evaluate a feature for possible addition to our
model, we want tomaximize the reduction of “de-
scription length” incurred by adding this feature
to the model. This change in description length
is: ∆S = ∆SE − ∆SM ; where∆SE ≥ 0 is the
number of bits saved in describing residual error
due to increase in the likelihood of the data given
the new feature and∆SM > 0 is the extra bits
used for coding this new feature.

In our baseline feature selection model, we use
the following coding schemes:

Coding Scheme for SE :
The termSE represents the cost of coding the

residual errors given the models and can be written
as:

SE = − log(P (y|w, x))
∆SE represents the increase in likelihood (in

bits) of the data by adding this new feature to the
model. We assume a Gaussian model, giving:

P (y|w, x) ∼ exp
(
−

(∑n
i=1(yi − w · xi)2

2σ2

))
wherey is the response (word senses in our case),
x’s are the features,w’s are the regression weights
andσ2 is the variance of the Gaussian noise.

Coding Scheme for ∆SM : For describingSM ,
the number of bits for encoding the model, we
need the bits to code the index of the feature (i.e.,
which feature from amongst the totalm candidate
features) and the bits to code the coefficient of this
feature.

The total cost can be represented as:

SM = lf + lθ

wherelf is the cost to code the index of the feature
and lθ is the number of bits required to code the
coefficient of the selected feature.

In our baseline feature selection algorithm, we
code lf by using log(m) bits (wherem is the
total number of candidate features), which is
equivalent to the standard RIC (or the Bonferroni
penalty) (Foster and George, 1994) commonly
used in information theory. The above coding
scheme1 corresponds to putting a uniform prior
over all the features; I.e., each feature is equally
likely to get selected.

For coding the coefficients of the selected fea-
ture we use2 bits, which is quite similar to the AIC

1There is a duality between Information Theory and
Bayesian terminology: If there is1

k
probability of a fact being

true, then we need−log( 1
k
) = log(k) bits to code it.
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(Akaike Information Criterion) (Rissanen, 1999).
Our final equation forSM is therefore:

SM = log(m) + 2 (2)

2.2 Extension to TRANSFEAT

We now extend the baseline feature selection al-
gorithm to include the feature relevance prior. We
define a binary random variablefi ∈ {0,1} that
denotes the event of theith feature being in or not
being in the model for the test word sense. We can
parameterize the distribution asp(fi = 1|θi) = θi.
I.e., we have a Bernoulli Distribution over the fea-
tures.

Given the data for theith feature for all the
training word senses, we can write:Di =
{fi1, ..., fiv , ..., fit}. We then construct the like-
lihood functions from the data (under the i.i.d as-
sumption) as:

p(Dfi
|θi) =

t∏
v=1

p(fiv|θi) =
t∏

v=1

θfiv(1− θi)1−fiv

The posteriors can be calculated by putting a prior
over the parametersθi and using Bayes rule as fol-
lows:

p(θi|Dfi
) = p(Dfi

|θi)× p(θi|a, b)

wherea andb are the hyperparameters of the Beta
Prior (conjugate of Bernoulli). The predictive dis-
tribution of θi is:

p(fi = 1|Dfi
) =

∫ 1

0
θip(θi|Dfi

)dθi = E[θi|Dfi
]

=
k + a

k + l + a + b
(3)

wherek is the number of times that theith feature
is selected andl is the complement ofk, i.e. the
number of times theith feature is not selected in
the training data.

In light of above, the coding scheme, which in-
corporates the prior information about the predic-
tive quality of the various features obtained from
similar word senses, can be formulated as follows:

SM = − log (p(fi = 1|Dfi
)) + 2

In the above equation, the first term repre-
sents the cost of coding the features, and the sec-
ond term codes the coefficients. The negative
signs appear due to the duality between Bayesian
and Information-Theoretic representation, as ex-
plained earlier.

3 Experimental Results

In this section we present the experimental results
of TRANSFEAT on ONTONOTES data.

3.1 Similarity Determination

To determine which verbs to transfer from, we
cluster verb senses into groups based on the
TF/IDF similarity of the vector of features se-
lected for that verb sense in the baseline (non-
transfer learning) model. We use only those
features that are positively correlated with the
given sense; they are the features most closely
associated with the given sense. We cluster
senses using a “foreground-background” cluster-
ing algorithm (Kandylas et al., 2007) rather than
the more common k-means clustering because
many word senses are not sufficiently similar to
any other word sense to warrant putting into a
cluster. Foreground-background clustering gives
highly cohesive clusters of word senses (the “fore-
ground”) and puts all the remaining word senses
in the “background”. The parameters that it takes
as input are the% of data points to put in “back-
ground” (i.e., what would be the singleton clus-
ters) and a similarity threshold which impacts
the number of “foreground” clusters. We exper-
imented with putting20% and33% data points in
background and adjusted the similarity threshold
to give us50 − 100 “foreground” clusters. The
results reported below have20% background and
50− 100 “foreground” clusters.

3.2 Description of Data and Results

We performed our experiments on ONTONOTES

data of 172 verbs (Hovy et al., 2006). The data
consists of a rich set of linguistic features which
have proven to be beneficial for WSD.

A sample feature vector for the word “add”,
given below, shows typical features.

word_added pos_vbd morph_normal
subj_use subjsyn_16993 dobj_money
dobjsyn_16993 pos+1+2+3_rp+to+cd
tp_account tp_accumulate tp_actual

The 172 verbs each had between 1,000 and 10,000
nonzero features. The number of senses varied
from 2 (For example, “add”) to 15 (For example,
“turn”).

We tested our transfer learning algorithm in
three slightly varied settings to tease apart the con-
tributions of different features to the overall per-
formance. In our main setting, we cluster the word
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senses based on the “semantic+ syntactic” fea-
tures. In Setting 2, we do clustering based only on
“semantic” features (topic features) and in Setting
3 we cluster based on only “syntactic” (pos, dobj
etc.) features.

Table 1: 10-fold CV (microaveraged) accuracies
of various methods for various Transfer Learning
settings.Note: These are true cross-validation ac-
curacies; No parameters have been tuned on them.

Method Setting 1 Setting 2 Setting 3
TRANSFEAT 85.75 85.11 85.37

Baseline Feat. Sel. 83.50 83.09 83.34
SVM (Poly. Kernel) 83.77 83.44 83.57
Ando[CoNLL’06] 85.94 85.00 85.51
Most Freq. Sense 76.59 77.14 77.24

We compare TRANSFEAT against Baseline Fea-
ture Selection, Ando[CoNLL’06], SVM (libSVM
package) with a cross-validated polynomial kernel
and a simple most frequent sense baseline. We
tuned the “d” parameter of the polynomial kernel
using a separate cross validation.

The results for the different settings are shown
in Table 1 and are significantly better at the5%
significance level (Paired t-test) than the base-
line feature selection algorithm and the SVM. It
is comparable in accuracy to Ando[CoNLL’06].
Settings 2 and 3, in which we cluster based on
only “semantic” or “syntactic” features, respec-
tively, also gave significant (5% level in a Paired
t-Test) improvement in accuracy over the baseline
and SVM model. But these settings performed
slightly worse than Setting 1, which suggests that
it is a good idea to have clusters in which the word
senses have “semantic” as well as “syntactic” dis-
tributional similarity.

Some examples will help to emphasize the point
that we made earlier that transfer helps the most in
cases in which the target word sense has much less
data than the word senses from which knowledge
is being transferred. “kill” had roughly6 times
more data than all other word senses in its cluster
(i.e., “arrest”, “capture”, “strengthen”, etc.) In this
case, TRANSFEAT gave3.19 − 8.67% higher ac-
curacies than competing methods2 on these three
words. Also, for the case of word “do,” which
had roughly10 times more data than the other
word senses in its cluster (E.g., “die” and “save”),
TRANSFEAT gave4.09−6.21% higher accuracies

2TRANSFEAT does better than Ando[CoNLL’06] on these
words even though on average over all 172 verbs, the differ-
ence is slender.

than other methods. Transfer makes the biggest
difference when the target words have much less
data than the word senses they are generalizing
from, but even in cases where the words have sim-
ilar amounts of data we still get a1.5 − 2.5% in-
crease in accuracy.

4 Summary

This paper presented a Transfer Learning formula-
tion which learns a prior suggesting which features
are most useful for disambiguating ambiguous
words. Successful transfer requires finding similar
word senses. We used “foreground/background”
clustering to find cohesive clusters for various
word senses in the ONTONOTES data, consider-
ing both “semantic” and “syntactic” similarity be-
tween the word senses. Learning priors on features
was found to give significant accuracy boosts,
with both syntactic and semantic features con-
tributing to successful transfer. Both feature sets
gave substantial benefits over the baseline meth-
ods that did not use any transfer and gave compa-
rable accuracy to recent Transfer Learning meth-
ods like Ando[CoNLL’06]. The performance im-
provement of our Transfer Learning becomes even
more pronounced when the word senses that we
are generalizing from have more observations than
the ones that are being learned.
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