
Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages 197–200,
Suntec, Singapore, 4 August 2009. c©2009 ACL and AFNLP

Extracting Paraphrases of Technical Terms
from Noisy Parallel Software Corpora

Xiaoyin Wang1,2, David Lo1, Jing Jiang1, Lu Zhang2, Hong Mei2
1School of Information Systems, Singapore Management University, Singapore, 178902

{xywang, davidlo, jingjiang}@smu.edu.sg
2Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education

Beijing, 100871, China
{zhanglu, meih}@sei.pku.edu.cn

Abstract

In this paper, we study the problem of ex-
tracting technical paraphrases from a par-
allel software corpus, namely, a collec-
tion of duplicate bug reports. Paraphrase
acquisition is a fundamental task in the
emerging area of text mining for software
engineering. Existing paraphrase extrac-
tion methods are not entirely suitable here
due to the noisy nature of bug reports. We
propose a number of techniques to address
the noisy data problem. The empirical
evaluation shows that our method signifi-
cantly improves an existing method by up
to 58%.

1 Introduction
Using natural language processing (NLP) tech-
niques to mine software corpora such as code com-
ments and bug reports to assist software engineer-
ing (SE) is an emerging and promising research
direction (Wang et al., 2008; Tan et al., 2007).
Paraphrase extraction is one of the fundamental
problems that have not been addressed in this area.
It has many applications including software ontol-
ogy construction and query expansion for retriev-
ing relevant technical documents.

In this paper, we study automatic paraphrase ex-
traction from a large collection of software bug re-
ports. Most large software projects have bug track-
ing systems, e.g., Bugzilla1, to help global users to
describe and report the bugs they encounter when
using the software. However, since the same bug
may be seen by many users, many duplicate bug
reports are sent to bug tracking systems. The du-
plicate bug reports are manually tagged and asso-
ciated to the original bug report by either the sys-
tem manager or software developers. These fam-
ilies of duplicate bug reports form a semi-parallel

1http://www.bugzilla.org/

Parallel bug reports with a pair of true paraphrases
1: connector extend with a straight line in full screen

mode
2: connector show straight line in presentation mode
Non-parallel bug reports referring to the same bug
1: Settle language for part of text and spellchecking

part of text
2: Feature requested to improve the management of a

multi-language document
Context-peculiar paraphrases (shown in italics)
1: status bar appear in the middle of the screen
2: maximizing window create phantom status bar in

middle of document

Table 1: Bug Report Examples

corpus and therefore a good candidate for extrac-
tion of paraphrases of technical terms. Hence, bug
reports interest us because (1) they are abundant
and freely available,(2) they naturally form a semi-
parallel corpus, and (3) they contain many techni-
cal terms.

However, bug reports have characteristics that
raise many new challenges. Different from many
other parallel corpora, bug reports are noisy. We
observe at least three types of noise common in
bug reports. First, many bug reports have many
spelling, grammatical and sentence structure er-
rors. To address this we extend a suitable state-
of-the-art technique that is robust to such cor-
pora, i.e. (Barzilay and McKeown, 2001). Sec-
ond, many duplicate bug report families contain
sentences that are not truly parallel. An exam-
ple is shown in Table 1 (middle). We handle this
by considering lexical similarity between dupli-
cate bug reports. Third, even if the bug reports are
parallel, we find many cases of context-peculiar
paraphrases, i.e., a pair of phrases that have the
same meaning in a very narrow context. An exam-
ple is shown in Table 1 (bottom). To address this,
we introduce two notions of global context-based
score and co-occurrence based score which take
into account all good and bad occurrences of the
phrases in a candidate paraphrase in the corpus.
These scores are then used to identify and remove

197

context-peculiar paraphrases.
The contributions of our work are twofold.

First, we studied the important problem of para-
phrase extraction from a noisy semi-parallel soft-
ware corpus, which has not been studied either in
the NLP or the SE community. Second, taking
into consideration the special characteristics of our
noisy data, we proposed several improvements to
an existing general paraphrase extraction method,
resulting in a significant performance gain – up to
58% relative improvement in precision.

2 Related Work
In the area of text mining for software engineer-
ing, paraphrases have been used in many tasks,
e.g., (Wang et al., 2008; Tan et al., 2007). How-
ever, most paraphrases used are obtained manu-
ally. A recent study using synonyms from Word-
Net highlights the fact that these are not effective
in software engineering tasks due to domain speci-
ficity (Sridhara et al., 2008). Therefore, an auto-
matic way to derive technical paraphrases specific
to software engineering is desired.

Paraphrases can be extracted from non-parallel
corpora using contextual similarity (Lin, 1998).
They can also be obtained from parallel corpora
if such data is available (Barzilay and McKeown,
2001; Ibrahim et al., 2003). Recently, there are
also a number of studies that extract paraphrases
from multilingual corpora (Bannard and Callison-
Burch, 2005; Zhao et al., 2008).

The approach in (Barzilay and McKeown,
2001) does not use deep linguistic analysis and
therefore is suitable to noisy corpora like ours.
Due to this reason, we build our technique on top
of theirs. The following provides a summary of
their technique.

Two types of paraphrase patterns are defined:
(1) Syntactic patterns which consist of the POS
tags of the phrases. For example, the paraphrases
“a VGA monitor” and “a monitor” are represented
as “DT1 JJ NN2” ↔ “DT1 NN2”, where the sub-
scripts denote common words. (2) Contextual pat-
terns which consist of the POS tags before and af-
ter the phrases. For example, the contexts “in the
middle of” and “in middle of” in Table 1 (bottom)
are represented as “IN1 DT NN2 IN3” ↔ “IN1

NN2 IN3”.
During pre-processing, the parallel corpus is

aligned to give a list of parallel sentence pairs.
The sentences are then processed by a POS tag-
ger and a chunker. The authors first used identi-

cal words and phrases as seeds to find and score
contextual patterns. The patterns are scored based
on the following formula: (n+)/n, in which, n+
refers to the number of positively labeled para-
phrases satisfying the patterns and n refers to the
number of all paraphrases satisfying the patterns.
Only patterns with scores above a threshold are
considered. More paraphrases are identified using
these contextual patterns, and more patterns are
then found and scored using the newly-discovered
paraphrases. This co-training algorithm is em-
ployed in an iterative fashion to find more patterns
and positively labeled paraphrases.

3 Methodology
Our paraphrase extraction method consists of
three components: sentence selection, global
context-based scoring and co-occurrence-based
scoring. We marry the three components together
into a holistic solution.
Selection of Parallel Sentences Our corpus con-
sists of short bug report summaries, each contain-
ing one or two sentences only, grouped by the
bugs they report. Each group corresponds to re-
ports pertaining to a single bug and are duplicate
of one another. Therefore, reports belonging to the
same group can be naturally regarded as parallel
sentences.

However, these sentences are only partially par-
allel because two users may describe the same bug
in very different ways. An example is shown in Ta-
ble 1 (middle). This kind of sentence pairs should
not be regarded as parallel. To address this prob-
lem, we take a heuristic approach and only select
sentence pairs that have strong similarities. Our
similarity score is based on the number of com-
mon words, bigrams and trigrams shared between
two parallel sentences. We use a threshold of 5 to
filter out non-parallel sentences.
Global Context-Based Scoring Our context-
based paraphrase scoring method is an extension
of (Barzilay and McKeown, 2001) described in
Sec. 2. Parallel bug reports are usually noisy.
At times, some words might be detected as para-
phrases incidentally due to the noise. In (Barzi-
lay and McKeown, 2001), a paraphrase is reported
as long as there is a single good supporting pair
of sentences. Although this works well for a rel-
atively clean parallel corpus considered in their
work, i.e., novels, this does not work well for bug
reports. Consider the context-peculiar example in
Table 1 (bottom). For a context-peculiar para-

198

phrase, there can be many sentences containing
the pair of phrases but very few support them to
be a paraphrase. We develop a technique to off-
set this noise by computing a global context-based
score for two phrases being a paraphrase over all
their parallel occurrences. This is defined by the
following formula: Sg = 1

nΣn
i=1si, where n is

the number of parallel bug reports with the two
phrases occurring in parallel, and si is the score
for the i’th occurrence. si is computed as follows:
1. We compute the set of patterns with affixed

pattern scores based on (Barzilay and McK-
eown, 2001).

2. For the i’th parallel occurrence of the pair of
phrases we want to score, we try to find a pat-
tern that matches the occurrence and assign
the pattern score to the pair of phrases as si.
If no such pattern exists, we set si to 0.

By taking the average of si as the global score
for a pair of phrases, we do not rely much on a sin-
gle si and can therefore prevent context-peculiar
paraphrases to some degree.
Co-occurrence-Based Scoring We also consider
another global co-occurrence-based score that is
commonly used for finding collocations. A gen-
eral observation is that noise tends to appear in
random but random things do not occur in the
same way often. It is less likely for randomly
paired words or paraphrases to co-occur together
many times. To compute the likelihood of two
phrases occurring together, we use the following
commonly used co-occurrence-based score:

Sc =
P (w1, w2)

P (w1)P (w2)
. (1)

The expression P (w1, w2) refers to the probability
of a pair of phrases w1 and w2 appearing together.
It is estimated based on the proportion of the cor-
pus containing both w1 and w2 in parallel. Sim-
ilarly, P (w1) and P (w2) each corresponds to the
probability of w1 and w2 appearing respectively.
We normalize the Sc score to the range of 0 to 1
by dividing it with the size of the corpus.
Holistic Solution We employ the parallel sen-
tence selection as a pre-processing step, and merge
co-occurrence-based scoring with global context-
based scoring. For each parallel sentence pairs, a
chunker is used to get chunks from each sentence.
All possible pairings of chunks are then formed.
This set of chunk pairs are later fed to the method
in (Barzilay and McKeown, 2001) to produce a
set of patterns with affixed scores. With this we

compute our global-context based scores. The co-
occurrence based scores are computed following
the approach described above.

Two thresholds are used and candidate para-
phrases whose scores are below the respective
thresholds are removed. Alternatively, one of the
score is used as a filter, while the other is used to
rank the candidates. The next section describes
our experimental results.

4 Evaluation
Data Set Our bug report corpus is built from
OpenOffice2. OpenOffice is a well-known open
source software which has similar functionalities
as Microsoft Office. We use the bug reports that
are submitted before Jan 1, 2008. Also, we only
use the summary part of the bug reports.

We build our corpus in the following steps. We
collect a total of 13,898 duplicate bug reports from
OpenOffice. Each duplicate bug report is associ-
ated to a master report—there is one master re-
port for each unique bug. From this information,
we create duplicate bug report groups where each
member of a group is a duplicate of all other mem-
bers in the same group. Finally, we extract dupli-
cate bug report pairs by pairing each two members
of each group. We get in total 53,363 duplicate
bug report pairs.

As the first step, we employ parallel sentence
selection, described in Sec. 3, to remove non-
parallel duplicate bug report pairs. After this step,
we find 5,935 parallel duplicate bug report pairs.

Experimental Setup The baseline method we
consider is the one in (Barzilay and McKeown,
2001) without sentence alignment – as the bug re-
ports are usually of one sentence long. We call it
BL. As described in Sec. 2, BL utilizes a threshold
to control the number of patterns mined. These
patterns are later used to select paraphrases. In the
experiment, we find that running BL using their
default threshold of 0.95 on the 5,935 parallel bug
reports only gives us 18 paraphrases. This num-
ber is too small for practical purposes. Therefore,
we reduce the threshold to get more paraphrases.
For each threshold in the range of 0.45-0.95 (step
size: 0.05), we extract paraphrases and compute
the corresponding precision.

In our approach, we first form chunk pairs from
the 5,935 pairs of parallel sentences and then use
the baseline approach at a low threshold to ob-

2http://www.openoffice.org/

199

tain patterns. Using these patterns we compute
the global context-based scores Sg. We also com-
pute the co-occurrence scores Sc. We rank and
extract top-k paraphrases based on these scores.
We consider 4 different methods: We can use ei-
ther Sg or Sc to rank the discovered paraphrases.
We call them Rk-Sg and Rk-Sc. We also consider
using one of the scores for ranking and the other
for filtering bad candidate paraphrases. A thresh-
old of 0.05 is used for filtering. We call these two
methods Rk-Sc+Ft-Sg and Rk-Sg+Ft-Sc. With
ranked lists from these 4 methods, we can com-
pute precision@k for the top-k paraphrases.
Results The comparison among these methods
is plotted in Figure 1. From the figure we can
see that our holistic approach using global-context
score to rank and co-occurrence score to filter
(i.e., Rk-Sg+Ft-Sc) has higher precision than the
baseline approach (i.e., BL) in all ks. In general,
the other holistic configuration (i.e., Rk-Sc+Ft-Sg)
also works well for most of the ks considered. In-
terestingly, the graph shows that using only one of
the scores alone (i.e., Rk-Sg and Rk-Sc) does not
result in a significantly higher precision than the
baseline approach. A holistic approach by merg-
ing global-context score and co-occurrence score
is needed to yield higher precision.

In Table 2, we show some examples of the para-
phrases our algorithm extracted from the bug re-
port corpus. As we can see, most of the para-
phrases are very technical and only make sense in
the software domain. It demonstrates the effec-
tiveness of our method.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 100 150 200 250 300 350 400 450

pr
ec

is
io

n
at

 k

k

BL
Rk-Sg
Rk-Sc

Rk-Sc+Ft-Sg
Rk-Sg+Ft-Sc

Figure 1: Precision@k for a range of k.

5 Conclusion
In this paper, we develop a new technique to ex-
tract paraphrases of technical terms from software
bug reports. Paraphrases of technical terms have
been shown to be useful for various software en-

the edit-field ↔ input line field
presentation mode ↔ full screen mode

word separator ↔ a word delimiter
application ↔ app

freeze ↔ crash
mru file list ↔ recent file list

multiple monitor ↔ extended desktop
xl file ↔ excel file

Table 2: Examples of paraphrases of technical
terms mined from bug reports.

gineering tasks. These paraphrases could not be
obtained via general purpose thesaurus e.g., Word-
Net. Interestingly, there is a wealth of text data,
in particular bug reports, available for analysis in
open-source software repositories. Despite their
availability, a good technique is needed to extract
paraphrases from these corpora as they are often
noisy. We develop several approaches to address
noisy data via parallel sentence selection, global-
context based scoring and co-occurrence based
scoring. To show the utility of our approach, we
experimented with many parallel bug reports from
a large software project. The preliminary exper-
iment result is promising as it could significantly
improves an existing method by up to 58%.

References
C. Bannard and C. Callison-Burch. 2005. Paraphras-

ing with bilingual parallel corpora. In ACL: Annual
Meet. of Assoc. of Computational Linguistics.

R. Barzilay and K. R. McKeown. 2001. Extracting
paraphrases from a parallel corpus. In ACL: Annual
Meet. of Assoc. of Computational Linguistics.

A. Ibrahim, B. Katz, and J. Lin. 2003. Extract-
ing structural paraphrases from aligned monolingual
corpora. In Int. Workshop on Paraphrasing.

D. Lin. 1998. Automatic retrieval and clustering of
similar words. In ACL: Annual Meet. of Assoc. of
Computational Linguistics.

G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shanker.
2008. Identifying word relations in software: A
comparative study of semantic similarity tools. In
ICPC: Int. Conf. on Program Comprehension.

L. Tan, D. Yuan, G. Krishna, and Y. Zhou. 2007.
/*icomment: bugs or bad comments?*/. In SOSP:
Symp. on Operating System Principles.

X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. 2008.
An approach to detecting duplicate bug reports us-
ing natural language and execution information. In
ICSE: Int. Conf. on Software Engineering.

S. Zhao, H. Wang, T. Liu, and S. Li. 2008. Pivot ap-
proach for extracting paraphrase patterns from bilin-
gual corpora. In ACL: Annual Meet. of Assoc. of
Computational Linguistics.

200

