
Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages 141–144,
Suntec, Singapore, 4 August 2009. c©2009 ACL and AFNLP

Asynchronous Binarization for Synchronous Grammars

John DeNero, Adam Pauls, and Dan Klein
Computer Science Division

University of California, Berkeley
{denero, adpauls, klein}@cs.berkeley.edu

Abstract

Binarization of n-ary rules is critical for the effi-
ciency of syntactic machine translation decoding.
Because the target side of a rule will generally
reorder the source side, it is complex (and some-
times impossible) to find synchronous rule bina-
rizations. However, we show that synchronous
binarizations are not necessary in a two-stage de-
coder. Instead, the grammar can be binarized one
way for the parsing stage, then rebinarized in a
different way for the reranking stage. Each indi-
vidual binarization considers only one monolin-
gual projection of the grammar, entirely avoid-
ing the constraints of synchronous binarization
and allowing binarizations that are separately op-
timized for each stage. Compared to n-ary for-
est reranking, even simple target-side binariza-
tion schemes improve overall decoding accuracy.

1 Introduction

Syntactic machine translation decoders search
over a space of synchronous derivations, scoring
them according to both a weighted synchronous
grammar and an n-gram language model. The
rewrites of the synchronous translation gram-
mar are typically flat, n-ary rules. Past work
has synchronously binarized such rules for effi-
ciency (Zhang et al., 2006; Huang et al., 2008).
Unfortunately, because source and target orders
differ, synchronous binarizations can be highly
constrained and sometimes impossible to find.

Recent work has explored two-stage decoding,
which explicitly decouples decoding into a source
parsing stage and a target language model inte-
gration stage (Huang and Chiang, 2007). Be-
cause translation grammars continue to increase
in size and complexity, both decoding stages re-
quire efficient approaches (DeNero et al., 2009).
In this paper, we show how two-stage decoding
enables independent binarizations for each stage.
The source-side binarization guarantees cubic-
time construction of a derivation forest, while an
entirely different target-side binarization leads to
efficient forest reranking with a language model.

Binarizing a synchronous grammar twice inde-
pendently has two principal advantages over syn-
chronous binarization. First, each binarization can
be fully tailored to its decoding stage, optimiz-
ing the efficiency of both parsing and language
model reranking. Second, the ITG constraint on
non-terminal reordering patterns is circumvented,
allowing the efficient application of synchronous
rules that do not have a synchronous binarization.
The primary contribution of this paper is to es-
tablish that binarization of synchronous grammars
need not be constrained by cross-lingual reorder-
ing patterns. We also demonstrate that even sim-
ple target-side binarization schemes improve the
search accuracy of forest reranking with a lan-
guage model, relative to n-ary forest reranking.

2 Asynchronous Binarization

Two-stage decoding consists of parsing and lan-
guage model integration. The parsing stage builds
a pruned forest of derivations scored by the trans-
lation grammar only. In the second stage, this for-
est is reranked by an n-gram language model. We
rerank derivations with cube growing, a lazy beam
search algorithm (Huang and Chiang, 2007).

In this paper, we focus on syntactic translation
with tree-transducer rules (Galley et al., 2006).
These synchronous rules allow multiple adjacent
non-terminals and place no restrictions on rule size
or lexicalization. Two example unlexicalized rules
appear in Figure 1, along with aligned and parsed
training sentences that would have licensed them.

2.1 Constructing Translation Forests

The parsing stage builds a forest of derivations by
parsing with the source-side projection of the syn-
chronous grammar. Each forest node Pij com-
pactly encodes all parse derivations rooted by
grammar symbol P and spanning the source sen-
tence from positions i to j. Each derivation of Pij

is rooted by a rule with non-terminals that each

141

!

PRP1 NN2 VBD3 PP4

PRP1 VBD3 PP4 NN2

S !

yo ayer comí en casa

I ate at home yesterday

PRP VBD PP NN

S

(a)

(b)

PRP1 NN2 VBD3 PP4

PRP1 VBD3 PP4 NN2

S !

yo ayer comí en casa

I ate at home yesterday

PRP VBD PP NN

S

yo ayer comí en casa

I ate yesterday at home

PRP VBD NN PP

S

PRP1 NN2 VBD3 PP4

PRP1 VBD3 NN2 PP4

S !

Figure 1: Two unlexicalized transducer rules (top) and
aligned, parsed training sentences from which they could be
extracted (bottom). The internal structure of English parses
has been omitted, as it is irrelevant to our decoding problem.

anchor to some child node C(t)
k` , where the symbol

C(t) is the tth child in the source side of the rule,
and i ≤ k < ` ≤ j.

We build this forest with a CKY-style algorithm.
For each span (i, j) from small to large, and each
symbol P , we iterate over all ways of building a
node Pij , first considering all grammar rules with
parent symbol P and then, for each rule, consider-
ing all ways of anchoring its non-terminals to ex-
isting forest nodes. Because we do not incorporate
a language model in this stage, we need only oper-
ate over the source-side projection of the grammar.

Of course, the number of possible anchorings
for a rule is exponential in the number of non-
terminals it contains. The purpose of binarization
during the parsing pass is to make this exponential
algorithm polynomial by reducing rule branching
to at most two non-terminals. Binarization reduces
algorithmic complexity by eliminating redundant
work: the shared substructures of n-ary rules are
scored only once, cached, and reused. Caching is
also commonplace in Early-style parsers that im-
plicitly binarize when applying n-ary rules.

While any binarization of the source side will
give a cubic-time algorithm, the particulars of a
grammar transformation can affect parsing speed
substantially. For instance, DeNero et al. (2009)
describe normal forms particularly suited to trans-
ducer grammars, demonstrating that well-chosen
binarizations admit cubic-time parsing algorithms
while introducing very few intermediate grammar
symbols. Binarization choice can also improve
monolingual parsing efficiency (Song et al., 2008).

The parsing stage of our decoder proceeds
by first converting the source-side projection of
the translation grammar into lexical normal form
(DeNero et al., 2009), which allows each rule to
be applied to any span in linear time, then build-

ing a binary-branching translation forest, as shown
in Figure 2(a). The intermediate nodes introduced
during this transformation do not have a target-
side projection or interpretation. They only exist
for the sake of source-side parsing efficiency.

2.2 Collapsing Binarization
To facilitate a change in binarization, we transform
the translation forest into n-ary form. In the n-ary
forest, each hyperedge corresponds to an original
grammar rule, and all nodes correspond to original
grammar symbols, rather than those introduced
during binarizaiton. Transforming the entire for-
est to n-ary form is intractable, however, because
the number of hyperedges would be exponential in
n. Instead, we include only the top k n-ary back-
traces for each forest node. These backtraces can
be enumerated efficiently from the binary forest.
Figure 2(b) illustrates the result.

For efficiency, we follow DeNero et al. (2009)
in pruning low-scoring nodes in the n-ary for-
est under the weighted translation grammar. We
use a max-marginal threshold to prune unlikely
nodes, which can be computed through a max-
sum semiring variant of inside-outside (Goodman,
1996; Petrov and Klein, 2007).

Forest reranking with a language model can be
performed over this n-ary forest using the cube
growing algorithm of Huang and Chiang (2007).
Cube growing lazily builds k-best lists of deriva-
tions at each node in the forest by filling a node-
specific priority queue upon request from the par-
ent. N -ary forest reranking serves as our baseline.

2.3 Reranking with Target-Side Binarization
Zhang et al. (2006) demonstrate that reranking
over binarized derivations improves search accu-
racy by better exploring the space of translations
within the strict confines of beam search. Binariz-
ing the forest during reranking permits pairs of ad-
jacent non-terminals in the target-side projection
of rules to be rescored at intermediate forest nodes.
This target-side binarization can be performed on-
the-fly: when a node Pij is queried for its k-best
list, we binarize its n-ary backtraces.

Suppose Pij can be constructed from a rule r
with target-side projection

P → `0 C1 `1 C2 `2 . . . Cn `n

where C1, . . . , Cn are non-terminal symbols that
are each anchored to a node C(i)

kl in the forest, and
`i are (possibly empty) sequences of lexical items.

142

yo ayer comí en casa

S

PRP+NN+VBD

PRP+NN

PRP NN VBD PP

yo ayer comí en casa

S

PRP NN VBD PP

yo ayer comí en casa

S

PRP NN VBD PP

PRP+VBD+NN

PRP+VBD

“I ate”

[[PRP1 NN2] VBD3] PP4

PRP1 VBD3 NN2 PP4
S !

PRP1 NN2 VBD3 PP4

PRP1 VBD3 NN2 PP4
S !

PRP1 NN2 VBD3 PP4

[[PRP1 VBD3] NN2] PP4
S !

[[PRP1 NN2] VBD3] PP4

PRP1 VBD3 PP4 NN2
S !

PRP1 NN2 VBD3 PP4

PRP1 VBD3 PP4 NN2
S !

PRP1 NN2 VBD3 PP4

[[PRP1 VBD3] PP4] NN2
S !

(a) Parsing stage binarization (b) Collapsed n-ary forest (c) Reranking stage binarization

PRP+VBD+PP

Figure 2: A translation forest as it evolves during two-stage decoding, along with two n-ary rules in the forest that are rebi-
narized. (a) A source-binarized forest constructed while parsing the source sentence with the translation grammar. (b) A flat
n-ary forest constructed by collapsing out the source-side binarization. (c) A target-binarized forest containing two derivations
of the root symbol—the second is dashed for clarity. Both derivations share the node PRP+VBD, which will contain a single
k-best list of translations during language model reranking. One such translation of PRP+VBD is shown: “I ate”.

We apply a simple left-branching binarization to
r, though in principle any binarization is possible.
We construct a new symbol B and two new rules:

r1 : B → `0 C1 `1 C2 `2

r2 : P → B C3 `3 . . . Cn `n

These rules are also anchored to forest nodes. Any
Ci remains anchored to the same node as it was in
the n-ary forest. For the new symbol B, we intro-
duce a new forest node B that does not correspond
to any particular span of the source sentence. We
likewise transform the resulting r2 until all rules
have at most two non-terminal items. The original
rule r from the n-ary forest is replaced by binary
rules. Figure 2(c) illustrates the rebinarized forest.

Language model reranking treats the newly in-
troduced forest node B as any other node: building
a k-best derivation list by combining derivations
from C(1) and C(2) using rule r1. These deriva-
tions are made available to the parent of B, which
may be another introduced node (if more binariza-
tion were required) or the original root Pij .

Crucially, the ordering of non-terminals in the
source-side projection of r does not play a role
in this binarization process. The intermediate
nodes B may comprise translations of discontigu-
ous parts of the source sentence, as long as those
parts are contained within the span (i, j).

2.4 Reusing Intermediate Nodes

The binarization we describe transforms the for-
est on a rule-by-rule basis. We must consider in-
dividual rules because they may contain different
lexical items and non-terminal orderings. How-
ever, two different rules that can build a node often
share some substructures. For instance, the two
rules in Figure 2 both begin with PRP followed by
VBD. In addition, these symbols are anchored to
the same source-side spans. Thus, binarizing both
rules yields the same intermediate forest node B.

In the case where two intermediate nodes share
the same intermediate rule anchored to the same
forest nodes, they can be shared. That is, we need
only generate one k-best list of derivations, then
use it in derivations rooted by both rules. Sharing
derivation lists in this way provides an additional
advantage of binarization over n-ary forest rerank-
ing. Not only do we assess language model penal-
ties over smaller partial derivations, but repeated
language model evaluations are cached and reused
across rules with common substructure.

3 Experiments

The utility of binarization for parsing is well
known, and plays an important role in the effi-
ciency of the parsing stage of decoding (DeNero et
al., 2009). The benefit of binarization for language

143

Forest Reranked BLEU Model Score
N -ary baseline 58.2 41,543
Left-branching binary 58.5 41,556

Table 1: Reranking a binarized forest improves BLEU by 0.3
and model score by 13 relative to an n-ary forest baseline by
reducing search errors during forest rescoring.

model reranking has also been established, both
for synchronous binarization (Zhang et al., 2006)
and for target-only binarization (Huang, 2007). In
our experiment, we evaluate the benefit of target-
side forest re-binarization in the two-stage decoder
of DeNero et al. (2009), relative to reranking n-ary
forests directly.

We translated 300 NIST 2005 Arabic sentences
to English with a large grammar learned from a
220 million word bitext, using rules with up to 6
non-terminals. We used a trigram language model
trained on the English side of this bitext. Model
parameters were tuned with MERT. Beam size was
limited to 200 derivations per forest node.

Table 1 shows a modest increase in model
and BLEU score from left-branching binarization
during language model reranking. We used the
same pruned n-ary forest from an identical parsing
stage in both conditions. Binarization did increase
reranking time by 25% because more k-best lists
are constructed. However, reusing intermediate
edges during reranking binarization reduced bina-
rized reranking time by 37%. We found that on
average, intermediate nodes introduced in the for-
est are used in 4.5 different rules, which accounts
for the speed increase.

4 Discussion

Asynchronous binarization in two-stage decoding
allows us to select an appropriate grammar trans-
formation for each language. The source trans-
formation can optimize specifically for the parsing
stage of translation, while the target-side binariza-
tion can optimize for the reranking stage.

Synchronous binarization is of course a way to
get the benefits of binarizing both grammar pro-
jections; it is a special case of asynchronous bi-
narization. However, synchronous binarization is
constrained by the non-terminal reordering, lim-
iting the possible binarization options. For in-
stance, none of the binarization choices used in
Figure 2 on either side would be possible in a
synchronous binarization. There are rules, though

rare, that cannot be binarized synchronously at all
(Wu, 1997), but can be incorporated in two-stage
decoding with asynchronous binarization.

On the source side, these limited binarization
options may, for example, prevent a binarization
that minimizes intermediate symbols (DeNero et
al., 2009). On the target side, the speed of for-
est reranking depends upon the degree of reuse
of intermediate k-best lists, which in turn depends
upon the manner in which the target-side grammar
projection is binarized. Limiting options may pre-
vent a binarization that allows intermediate nodes
to be maximally reused. In future work, we look
forward to evaluating the wide array of forest bi-
narization strategies that are enabled by our asyn-
chronous approach.

References
John DeNero, Mohit Bansal, Adam Pauls, and Dan Klein.

2009. Efficient parsing for transducer grammars. In Pro-
ceedings of the Annual Conference of the North American
Association for Computational Linguistics.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio Thayer.
2006. Scalable inference and training of context-rich syn-
tactic translation models. In Proceedings of the Annual
Conference of the Association for Computational Linguis-
tics.

Joshua Goodman. 1996. Parsing algorithms and metrics. In
Proceedings of the Annual Meeting of the Association for
Computational Linguistics.

Liang Huang and David Chiang. 2007. Forest rescoring:
Faster decoding with integrated language models. In Pro-
ceedings of the Annual Conference of the Association for
Computational Linguistics.

Liang Huang, Hao Zhang, Daniel Gildea, and Kevin Knight.
2008. Binarization of synchronous context-free gram-
mars. Computational Linguistics.

Liang Huang. 2007. Binarization, synchronous binarization,
and target-side binarization. In Proceedings of the HLT-
NAACL Workshop on Syntax and Structure in Statistical
Translation (SSST).

Slav Petrov and Dan Klein. 2007. Improved inference for un-
lexicalized parsing. In Proceedings of the North American
Chapter of the Association for Computational Linguistics.

Xinying Song, Shilin Ding, and Chin-Yew Lin. 2008. Better
binarization for the CKY parsing. In Proceedings of the
Conference on Empirical Methods in Natural Language
Processing.

Dekai Wu. 1997. Stochastic inversion transduction gram-
mars and bilingual parsing of parallel corpora. Computa-
tional Linguistics, 23:377–404.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin Knight.
2006. Synchronous binarization for machine translation.
In Proceedings of the North American Chapter of the As-
sociation for Computational Linguistics.

144

