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Abstract

We define the problem of recognizing entailed re-

lations – given an open set of relations, find all oc-

currences of the relations of interest in a given doc-

ument set – and pose it as a challenge to scalable

information extraction and retrieval. Existing ap-

proaches to relation recognition do not address well

problems with an open set of relations and a need

for high recall: supervised methods are not eas-

ily scaled, while unsupervised and semi-supervised

methods address a limited aspect of the problem, as

they are restricted to frequent, explicit, highly lo-

calized patterns. We argue that textual entailment

(TE) is necessary to solve such problems, propose

a scalable TE architecture, and provide preliminary

results on an Entailed Relation Recognition task.

1 Introduction

In many information foraging tasks, there is a need
to find all text snippets relevant to a target concept.
Patent search services spend significant resources
looking for prior art relevant to a specified patent
claim. Before subpoenaed documents are used in
a court case or intelligence data is declassified, all
sensitive sections need to be redacted. While there
may be a specific domain for a given application,
the set of target concepts is broad and may change
over time. For these knowledge-intensive tasks,
we contend that feasible automated solutions re-
quire techniques which approximate an appropri-
ate level of natural language understanding.

Such problems can be formulated as a relation
recognition task, where the information need is ex-
pressed as tuples of arguments and relations. This
structure provides additional information which
can be exploited to precisely fulfill the informa-
tion need. Our work introduces the Entailed Rela-
tion Recognition paradigm, which leverages a tex-
tual entailment system to try to extract all relevant
passages for a given structured query without re-

quiring relation-specific training data. This con-
trasts with Open Information Extraction (Banko
and Etzioni, 2008) and On-Demand Information
Extraction (Sekine, 2006), which aim to extract
large databases of open-ended facts, and with su-
pervised relation extraction, which requires addi-
tional supervised data to learn new relations.

Specifically, the contributions of this paper are:
1. Introduction of the entailed relation recognition
framework; 2. Description of an architecture and a
system which uses structured queries and an exist-
ing entailment engine to perform relation extrac-
tion; 3. Empirical assessment of the system on a
corpus of entailed relations.

2 Entailed Relation Recognition (ERR)

In the task of Entailed Relation Recognition, a cor-
pus and an information need are specified. The
corpus comprises all text spans (e.g. paragraphs)
contained in a set of documents. The information
need is expressed as a set of tuples encoding rela-
tions and entities of interest, where entities can be
of arbitrary type. The objective is to retrieve all
relevant text spans that a human would recognize
as containing a relation of interest. For example:
Information Need: An organization acquires weapons.

Text 1: ...the recent theft of 500 assault rifles by FARC...

Text 2: ...the report on FARC activities made three main ob-

servations. First, their allies supplied them with the 3” mor-

tars used in recent operations. Second, ...

Text 3: Amnesty International objected to the use of artillery

to drive FARC militants from heavily populated areas.

An automated system should identify Texts 1 and
2 as containing the relation of interest, and Text 3
as irrelevant. The system must therefore detect
relation instances that cross sentence boundaries
(“them” maps to “FARC”, Text 2), and that re-
quire inference (“theft” implies “acquire”, Text 1).
It must also discern when sentence structure pre-
cludes a match (“Amnesty International... use...
artillery” does not imply “Amnesty International
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acquires artillery”, Text 3).

The problems posed by instances like Text 2
are beyond the scope of traditional unsuper-
vised and semi-supervised relation-extraction ap-
proaches such as those used by Open IE and On-
Demand IE, which are constrained by their de-
pendency on limited, sentence-level structure and
high-frequency, highly local patterns, in which
relations are explicitly expressed as verbs and
nouns. Supervised methods such as (Culotta and
Sorensen, 2004) and (Roth and Yih, 2004) pro-
vide only a partial solution, as there are many pos-
sible relations and entities of interest for a given
domain, and such approaches require new anno-
tated data each time a new relation or entity type is
needed. Information Retrieval approaches are op-
timized for document-level performance, and en-
hancements like pseudo-feedback (Rocchio, 1971)
are less applicable to the localized text spans
needed in the tasks of interest; as such, it is un-
likely that they will reliably retrieve all correct in-
stances, and not return superficially similar but in-
correct instances (such as Text 3) with high rank.

Attempts have been made to apply Textual En-
tailment in larger scale applications. For the task
of Question Answering, (Harabagiu and Hickl,
2006) applied a TE component to rerank candidate
answers returned by a retrieval step. However, QA
systems rely on redundancy in the same way Open
IE does: a large document set has so many in-
stances of a given relation that at least some will
be sufficiently explicit and simple that standard IR
approaches will retrieve them. A single correct in-
stance suffices to complete the QA task, but does
not meet the needs of the task outlined here.

Recognizing relation instances requiring infer-
ence steps, in the absence of labeled training data,
requires a level of text understanding. A suit-
able proxy for this would be a successful Textual
Entailment Recognition (TE) system. (Dagan et
al., 2006) define the task of Recognizing Textual
Entailment (RTE) as: ...a directional relation be-
tween two text fragments, termed T – the entailing
text, and H – the entailed text. T entails H if, typ-
ically, a human reading T would infer that H is
most likely true. For relation recognition, the rela-
tion triple (e.g. “Organization acquires weapon”)
is the hypothesis, and a candidate text span that
might contain the relation is the text. The def-
inition of RTE clearly accommodates the range
of phenomena described for the examples above.

However, the more successful TE systems (e.g.
(Hickl and Bensley, 2007)) are typically resource
intensive, and cannot scale to large retrieval tasks
if a brute force approach is used.

We define the task of Entailed Relation Recog-
nition thus: Given a text collection D, and an in-
formation need specified in a set of [argument, re-
lation, argument] triples S: for each triple s ∈ S,
identify all texts d ∈ D such that d entails s.
The information need triples, or queries, encode
relations between arbitrary entities (specifically,
these are not constrained to be Named Entities).

This problem is distinct from recent work in
Textual Entailment as we constrain the structure
of the Hypothesis to be very simple, and we re-
quire that the task be of a significantly larger scale
than the RTE tasks to date (which are typically of
the order of 800 Text-Hypothesis pairs).

3 Scalable ERR Algorithm

Our scalable ERR approach, SERR, consists of
two stages: expanded lexical retrieval, and entail-
ment recognition. The SERR algorithm is pre-
sented in Fig. 1. The goal is to scale Textual
Entailment up to a task involving large corpora,
where hypotheses (queries) may be entailed by
multiple texts. The task is kept tractable by de-
composing TE capabilities into two steps.

The first step, Expanded Lexical Retrieval
(ELR), uses shallow semantic resources and simi-
larity measures, thereby incorporating some of the
semantic processing used in typical TE systems.
This is required to retrieve, with high recall, se-
mantically similar content that may not be lexi-
cally similar to query terms, to ensure return of
a set of texts that are highly likely to contain the
concept of interest.

The second step applies a textual entailment
system to this text set and the query in order to
label the texts as ‘relevant’ or ‘irrelevant’, and re-
quires deeper semantic resources in order to dis-
cern texts containing the concept of interest from
those that do not. This step emphasizes higher pre-
cision, as it filters irrelevant texts.

3.1 Implementation of SERR

In the ELR stage, we use a structured query that
allows more precise search and differential query
expansion for each query element. Semantic units
in the texts (e.g. Named Entities, phrasal verbs)
are indexed separately from words; each index is
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SERR Algorithm
SETUP:

Input: Text set D
Output: Indices {I} over D
for all texts d ∈ D

Annotate d with local semantic content
Build Search Indices {I} over D

APPLICATION:
Input: Information need S

EXPANDED LEXICAL RETRIEVAL (ELR)(s):
R← ∅
Expand s with semantically similar words
Build search query qs from s
R← k top-ranked texts for qs using indices {I}
return R

SERR:
Answer set A← ∅
for all queries s ∈ S

R← ELR(s)
Answer set As ← ∅
for all results r ∈ R

Annotate s, r with NLP resources
if r entails s

As ← As ∪ r
A← A ∪ {As}

return A

Figure 1. SERR algorithm

a hierarchical similarity structure based on a type-
specific metric (e.g. WordNet-based for phrasal
verbs). Query structure is also used to selectively
expand query terms using similarity measures re-
lated to types of semantic units, including distribu-
tional similarity (Lin and Pantel, 2001), and mea-
sures based on WordNet (Fellbaum, 1998).

We assess three different Textual Entailment
components: LexPlus, a lexical-level system
that achieves relatively good performance on the
RTE challenges, and two variants of Predicate-
based Textual Entailment, PTE-strict and PTE-
relaxed, which use a predicate-argument repre-
sentation. The former is constrained to select a
single predicate-argument structure from each re-
sult, which is compared to the query component-
by-component using similarity measures similar to
the LexPlus system. PTE-relaxed drops the single-
predicate constraint, and can be thought of as a
‘bag-of-constituents’ model. In both, features are
extracted based on the predicate-argument compo-
nents’ match scores and their connecting structure,
and the rank assigned by ELR. These features are
used by a classifier that labels each result as ‘rel-
evant’ or ‘irrelevant’. Training examples are se-
lected from the top 7 results returned by ELR for
queries corresponding to entailment pair hypothe-

ses from the RTE development corpora; test exam-
ples are similarly selected from results for queries
from the RTE test corpora (see section 3.2).

3.2 Entailed Relation Recognition Corpus
To assess performance on the ERR task, we de-
rive a corpus from the publicly available RTE
data. The corpus consists of a set S of informa-
tion needs in the form of [argument, relation, argu-
ment] triples, and a set D of text spans (short para-
graphs), half of which entail one or more s ∈ S
while the other half are unrelated to S. D com-
prises all 1, 950 Texts from the IE and IR sub-
tasks of the RTE Challenge 1–3 datasets. The
shorter hypotheses in these examples allow us to
automatically induce their structured query form
from their shallow semantic structure. S was au-
tomatically generated from the positive entailment
pairs in D, by annotating their hypotheses with a
publicly available SRL tagger (Punyakanok et al.,
2008) and inferring the relation and two main ar-
guments to form the equivalent queries.

Since some Hypotheses and Texts appear mul-
tiple times in the RTE corpora, we automatically
extract mappings from positive Hypotheses to one
or more Texts by comparing hypotheses and texts
from different examples. This provides the label-
ing needed for evaluation. In the resulting corpus,
a wide range of relations are sparsely represented;
they exemplify many linguistic and semantic char-
acteristics required to infer the presence of non-
explicit relations.

4 Results and Discussion

Top # Basic ELR Rel.Impr. Err.Redu.
1 48.1% 55.2% +14.8% 13.7%
2 68.1% 72.8% +6.9% 14.7%
3 75.2% 78.5% +4.4% 17.7%

Table 1. Change in relevant results retrieved in top 3
positions for basic and expanded lexical retrieval

System Acc. Prec. Rec. F1

Baseline 18.1 18.1 100.0 30.7
LexPlus 81.6 44.9 62.5 55.5
PTE-relax. 71.9 37.7 72.0 49.0

(0.1) (5.5) (6.2) (4.1)
PTE-strict 83.6 55.4 61.5 57.9

(1.3) (3.4) (7.9) (2.1)

Table 2. Comparison of performance of SERR with
different TE algorithms. Numbers in parentheses are
standard deviations.

Table 1 compares the results of SERR with and
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# System RTE 1 RTE 2 RTE 3 Avg. Acc.
LexPlus 49.0 65.2 [3] 76.5 [2] 66.3
PTE-relaxed 54.5 (1.0) 68.7 (1.5) [3] 82.3 (2.0) [1] 71.2 (1.2)
PTE-strict 64.8 (2.3) [1] 71.2 (2.6) [3] 76.0 (3.2) [2] 71.8 (2.6)

Table 3. Performance (accuracy) of SERR system variants on RTE challenge
examples; numbers in parentheses are standard deviations, while numbers in
brackets indicate where systems would have ranked in the RTE evaluations.

Comparisons
Standard TE 3,802,500
SERR 13,650

Table 4. Entailment compar-
isons needed for standard TE
vs. SERR

without the ELR’s semantic enhancements. For
each rank k, the entries represent the proportion of
queries for which the correct answer was returned
in the top k positions. The semantic enhancements
improve the number of matched results at each of
the top 3 positions.

Table 2 compares variants of the SERR imple-
mentation. The baseline labels every result re-
turned by ELR as ‘relevant’, giving high recall
but low precision. PTE-relaxed performs better
than baseline, but poorly compared to PTE-strict
and LexPlus. Our analysis shows that LexPlus
has a relatively high threshold, and correctly labels
as negative some examples mislabeled by PTE-
relaxed, which may match two of the three con-
stituents in a hypothesis and label that result as
positive. PTE-strict will correctly identify some
such examples as it will force some match edges to
be ignored, and will correctly identify some neg-
ative examples due to structural constraints even
when LexPlus finds matches for all query terms.
PTE-strict strikes the best balance between preci-
sion and recall on positive examples.

Table 3 shows the accuracy of SERR’s clas-
sification of the examples from each RTE chal-
lenge; results not returned in the top 7 ranks by
ELR are labeled ‘irrelevant’. PTE-strict and PTE-
relaxed perform comparably overall, though PTE-
strict has more uniform results over the different
challenges. Both outperform the LexPlus system
overall, and perform well compared to the best re-
sults published for the RTE challenges.

The significant computational gain of SERR is
shown in Table 4, exhibiting the much greater
number of comparisons required by a brute force
TE approach compared to SERR: SERR performs
well compared to published results for RTE chal-
lenges 1-3, but makes only 0.36% of the TE com-
parisons needed by standard approaches on our
ERR task.

5 Conclusion

We have proposed an approach to solving the En-
tailed Relation Recognition task, based on Tex-

tual Entailment, and implemented a solution that
shows that a Textual Entailment Recognition sys-
tem can be scaled to a much larger IE problem
than that represented by the RTE challenges. Our
preliminary results demonstrate the utility of the
proposed architecture, which allows strong perfor-
mance in the RTE task and efficient application to
a large corpus (table 4).
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