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Abstract 2 Modd

Tree substitution grammars (TSGs) of- 2.1 Treesubstitution grammars

fer many advantages over context-free TSGs extend CFGs (and their probabilistic coun-
grammars (CFGs), but are hard to learn.  terparts, which concern us here) by allowing non-
Past approaches have resorted to heuris- terminals to be rewritten as subtrees of arbitrary
tics. In this paper, we learn a TSG us-  size. Although nonterminal rewrites are still
ing Gibbs sampling with a nonparamet- context-free, in practice TSGs can loosen the in-
ric prior to control subtree size. The dependence assumptions of CFGs because larger
learned grammars perform significantly rules capture more context. This is simpler than
better than heuristically extracted ones on  the complex independence and backoff decisions

parsing accuracy. of Markovized grammars. Furthermore, subtrees
_ with terminal symbols can be viewed as learn-
1 Introduction ing dependencies among the words in the subtree,

Tree substition grammars (TSGs) have potentiaPPViating the need for the manual specification
advantages over regular context-free grammard/i2german, 1995) or automatic inference (Chiang
(CFGs), but there is no obvious way to learn thes@"d Bikel, 2002) of lexical dependencies.
grammars. In particular, learning procedures are Following standard notation for PCFGs, the
not able to take direct advantage of manually anProbability of a derivationd in the grammar is
notated corpora like the Penn Treebank, which ar8'V€Nn @S
not marked for derivations and thus assume a stan- Pr(d) = [ [ Pr(r)
dard CFG. Since different TSG derivations can red
produce the same parse tree, learning procedureghere eachr is a rule used in the derivation. Un-
must guess the derivations, the number of which igler a regular CFG, each parse tree uniquely idenfi-
exponential in the tree size. This compels heuristidies a derivation. In contrast, multiple derivations
methods of subtree extraction, or maximum like-in a TSG can produce the same parse; obtaining
lihood estimators which tend to extract large subthe parse probability requires a summation over
trees that overfit the training data. all derivations that could have produced it. This
These problems are common in natural landisconnect between parses and derivations com-
guage processing tasks that search for a hidplicates both inference and learning. The infer-
den segmentation. Recently, many groups havence (parsing) task for TSGs is NP-hard (Sima’an,
had success using Gibbs sampling to address tH¥96), and in practice the most probable parse is
complexity issue and nonparametric priors to adapproximated (1) by sampling from the derivation
dress the overfitting problem (DeNero et al., 2008 forest or (2) from the tog: derivations.
Goldwater et al., 2009). In this paper we apply Grammar learning is more difficult as well.
these techniques to learn a tree substitution granEFGs are usually trained on treebanks, especially
mar, evaluate it on the Wall Street Journal parsinghe Wall Street Journal (WSJ) portion of the Penn
task, and compare it to previous work. Treebank. Once the model is defined, relevant
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400 : — T E o : set of subtrees should be added to our grammar,
350 - g Bag S and we would like to do so in a manner that prefers
300 |- i ‘\, i smaller subtrees but permits larger ones if the data
250 |- / u ] warrants it. This type of requirement is common in
200 & /- [ } T NLP tasks that require searching for a hidden seg-
150 - / L ] 1 mentation, and in the following sections we apply
1:2 : ./.i 'l\l it to learning a TSG from the Penn Treebank.
ol BB 55 Collapsed Gibbs sampling with a DP

iar2
subtree height prior

Figure 1: Subtree count (thousands) across heightr an excellent introduction to collapsed Gibbs

for the “all subtrees” grammarl{) and the supe- sampling with a DP prior, we refer the reader to

rior “minimal subset” @) from Bod (2001). Appendix A of Goldwater et al. (2009), which we

follow closely here. Our training data is a set of

events can simply be counted in the training dataParse tree§” that we assume was produced by an

In contrast, there are no treebanks annotated witdnknown TSGy with probability Pr(7 |g). Using

TSG derivations, and a treebank parse tree: of Bayes’ rule, we can compute the probability of a

nodes is ambiguous amor®j possible deriva- Pparticular hypothesized grammar as

tions. One solution would be to manually annotate Pr(T | ) Pr(g)

a treebank with TSG derivations, but in addition Pr(g|7)= ———"———

to being expensive, this task requires one to know Pr(T)

what the grammar actually is. Part of the thinkingpr(g) is a distribution over grammars that ex-

motivating TSGs is to let the data determine thepresses oua priori preference for. We use a set

best set of subtrees. of Dirichlet Process (DP) priors (Ferguson, 1973),
One approach to grammar-learning is Datagpne for each nontermindf € N, the set of non-

Oriented Parsing (DOP), whose strategy is to simterminals in the grammar. A sample from a DP

ply take all subtrees in the training data as thejs a distribution over events in an infinite sample

grammar (Bod, 1993). Bod (2001) did this, ap-space (in our case, potential subtrees in a TSG)

proximating “all subtrees” by extracting from the which takes two parameters, a base measure and a
Treebank 400K random subtrees for each subtregoncentration parameter:

height ranging from two to fourteen, and com-

pared the performance of that grammar to that gx ~ DP(Gx,«)

of a heurl’sncally pruned mlnlmgl subset” of !t. Gx(t) = Prg([t]:ps) HPrMLE(T)
The latter's performance was quite good, achiev-
ing 90.8% F scoré on section 23 of the WSJ.

This approach is unsatisfying in some ways,The base measuréx defines the probability of a
however. Instead of heuristic extraction we wouldSubtreet as the product of the PCFG rulesc ¢
prefer a model that explained the subtrees foundat constitute it and a geometric distributibng
in the grammar. Furthermore, it seems unlikelyoVer the number of those rules, thus encoding a
that subtrees with ten or so lexical items will be Preference for smaller sub_t.re%é'.he parameter:
useful on average at test time (Bod did not reporfontributes to the probability that previously un-
how often larger trees are used, but did report that€en subtrees will be sampled. All DPs share pa-
including subtrees with up to twelve lexical items f@metersps and . An entire grammar is then
improved parser performance). We expect there t§IVen asy = {gx : X € N}. We emphasize that
be fewer large subtrees than small ones. Repedi© head information is used by the sampler.
ing Bod’s grammar extraction experiment, this is Rather than explicitly consider each segmen-

indeed what we find when comparing these twdation of the parse trees (which would define a
grammars (Figure 1). TSG and its associated parameters), we use a col-

. lapsed Gibbs sampler to integrate over all possi-

ret

In summary, we would like a principled (mode

based) means of determining from the data which 2cohn et al. (2009) and O’Donnell et al. (2009) indepen-
dently developed similar models.

‘The harmonic mean of precision and rec#ll: = 222 3G'x(t) = O unless rodft) = X.
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3 Experiments

5
NP ADlVP 31 Sdup _
| | We used the standard split for the Wall Street Jour-
NN RB VBZ Sy nal portion of the Treebank, training on sections 2
| | / to 21, and reporting results on sentences with no
Someone always makes NP more than forty words from section 23.
P}LP We compare with three other grammars.
| : e A standard Treebank PCFG.
you quit
- e A “spinal” TSG, produced by extracting
Figure 2: Depiction ofsub(S2) and sub(S2). lexicalized subtrees from each lengttsen-
Highlighted subtrees correspond with our spinal  tence in the training data. Each subtree is de-
extraction heuristic §6) Circles denote nodes fined as the sequence of CFG rules from leaf
whose flag=1. upward all sharing a head, according to the

Magerman head-selection rules. We detach
the top-level unary rule, and add in counts
from the Treebank CFG rules.

ble grammars and sample directly from the poste-
rior. This is based on the Chinese Restaurant Pro-
cess (CRP) representation of the DP. The Gibbs
sampler is an iterative procedure. Atinitialization, ¢ An in-house version of the heuristic “mini-
each parse tree in the corpus is annotated with &  ma| subset” grammar of Bod (2004).
specific derivation by marking each node in the _ _

tree with a binary flag. This flag indicates whetherWe note two differences in our work that ex-
the subtree rooted at that node (a height one cF@lain the large difference in scores for the minimal
rule, at minimum) is part of the subtree contain-9rammar from those reported by Bod: (1) we did

ing its parent. The Gibbs sampler considers evD0t implement the smoothed “mismatch parsing”,
ery non-terminal, non-root node of each parse which permits lexical leaves of subtrees to act as
tree in turn, freezing the rest of the training dataWildcards, and (2) we approximate the most prob-
and randomly choosing whether to join the sub-able parse with the top single derivation instead of
trees above: and rooted at (outcomeh;) or to  the top 1,000.
split them (outcomé,) according to the probabil- ~ Rulé probabilities for all grammars were set
ity ratio ¢(h1)/(¢(h1) + ¢(hs)), wheres assigns W|th r.elatlve. frequency. The Gibbs sam_pler was
a probability to each of the outcomes (Figure 2). initialized with the spinal grammar derivations.
Letsub(n) denote the subtree above and includ-We construct sampled grammars in two ways: by
ing noden andsub(n) the subtree rooted at ois ~ SUMMIng all subtree counts from the derivation
a binary operator that forms a single subtree fronftates of the first sampling iterations together

two adjacent ones. The outcome probabilities aréWith counts from the Treebank CFG rules (de-
noted(«, pg, <7)), and by taking the counts only
o(h1) = 6(

t) from iteration: (denoted o, ps, 7)).
#(ha) = 6O(sub(c)) - f(sub(c)) Our standard CKY parser and Gibbs sampler
_ were both written in Perl. TSG subtrees were flat-
wheret = sub(c) o sub(c). Under the CRP, the (gneq to CFG rules and reconstructed afterward,
subtree probability(t) is afu_nctlon of the current |, ith identical mappings favoring the most proba-
state of the rest of the training corpus, the apprope ryle. For pruning, we binned nonterminals ac-
priate base me.asu(émot(t), and the concentra- oding to input span and degree of binarization,
tion parametex.: keeping the ten highest scoring items in each bin.

o) = oWtz F aCroon () 32 Reslts

|zt| + «

_ . . Table 1 contains parser scores. The spinal TSG
wherez; is the multiset of subtrees in the frozen gutperforms a standard unlexicalized PCFG and
portion of the training corpus sharing the same—; _

All rules of height one, plus 400K subtrees sampled at

root ast, andcount, (¢) is the count of subtree ¢, heighf:, 2 < h < 14, minus unlexicalized subtrees of
t among them. h > 6 and lexicalized subtrees with more than twelve words.
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grammar size LP LR F1 10° : : : : : _
PCFCI5 46K 75.37 70.05 72.61 - ,,@»rr@—r»@,,,@,,.@,,.@,,_@__,@‘,,@,,_Q,,@__,gi
spina 190K 80.30 78.10 79.18 ]
minimal subset | 2.56M 76.40 7829 77.33 ot 1005 o A ey i 1
(10,0.7,100) 62K 81.48 81.03 81.25 e __minimal, actual grammar ---C---- |

3 &% minimal, used parsing WSJ23 @ ]
(10,0.8,100) 61K 81.23 80.79 81.00 10 N ) ]
(10,0.9,100) 61K 82.07 81.17 8161 102 ]
(100,0.7,100) 64K 81.23 80.98 81.10 . ]
(100, 0.8, 100) 63K 82.13 81.36 81.74 10 o0 0 T
(100,0.9, 100) 62K 82.11 81.20 81.65 o0 o .
(100,0.7,<100) | 798K 82.38 82.27 82.32 0 2 4 N 8 10 12
(100,0.8,§100) 506K 8227 8195 82.10 number of words in subtree’s frontier
(100,0.9, <100) | 290K 82.64 82.09 82.36 Figure 3: Histogram of subtrees sizes used in pars-
(100, 0.7, 500) 61K 8195 81.76 81.85 ing WSX23 (filled points), as well as from the
(100, 0.8, 500) 60K 82.73 82.21 82.46 grammars themselves (outlined points).
(100, 0.9, 500) 50K 82.57 81.53 82.04
(100,0.7,<500) | 2.05M 82.81 82.01 82.40 . .
(100.0.8. <500) | 1.13M 83.06 82.10 8257 over_SL_Jbtree size. They substantially outperform
(100,0.9,<500) | 528K 83.17 8191 82.53 heuristically extracted grammars from previous

work as well as our novel spinal grammar, and can
Table 1: Labeled precision, recall, and Bn  do so with many fewer rules.

WS323. Acknowledgments This work was supported by
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The sampled grammars outperform all of them
Nearly all of the rules of the best single iteration
sampled grammaf100, 0.8, 500) are lexicalized Rens Bod. 1993. Using an annotated corpus as a
(50,820 of 60,633), and almost half of them have stochastic grammar. IRroc. ACL.
a height greater than one (27,328). ConstructingRens Bod. 2001. What is the minimal set of fragments
sampled grammars by summing across iterations thatachieves maximal parse accuracyPioc. ACL.
improved over this in all cases, but at the expens@avid Chiang and Daniel M. Bikel. 2002. Recovering
of a much larger grammar. latent information in treebanks. ROLING.

Figure 3 shows a histogram of subtree size takelcllrevOr Cohn, Sharon Goldwater, and Phil Blun-

from the counts of the subtrees (by token, nottype) som. 2009. Inducing compact but accurate tree-
actually used in parsing W§23. Parsing with substitution grammars. IRroc. NAACL.

the. minimal subset” grammar gses highly lexi- John DeNero, Alexandre Bouchard€, and Dan
calized subtrees, but they do notimprove accuracy. Kiein. 2008. Sampling alignment structure under
We examined sentence-level Bcores and found a Bayesian translation model. EMNLP.

that the use of larger subtrees did correlate withrhomas S. Ferguson. 1973. A Bayesian analysis of
accuracy; however, the low overall accuracy (and some nonparametric problemsinnals of Mathe-

the fact that there are so many of these large sub- matical Satistics, 1(2):209-230.

trees avallable. in the grammar) sgggests that SuQ\lglharon Goldwater, Thomas L. Griffiths, and Mark
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