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Abstract 

This paper proposes a novel user intention si-

mulation method which is a data-driven ap-

proach but able to integrate diverse user dis-

course knowledge together to simulate various 

type of users. In Markov logic framework, lo-

gistic regression based data-driven user inten-

tion modeling is introduced, and human dialog 

knowledge are designed into two layers such 

as domain and discourse knowledge, then it is 

integrated with the data-driven model in gen-

eration time. Cooperative, corrective and self-

directing discourse knowledge are designed 

and integrated to mimic such type of users. 

Experiments were carried out to investigate 

the patterns of simulated users, and it turned 

out that our approach was successful to gener-

ate user intention patterns which are not only 

unseen in the training corpus and but also per-

sonalized in the designed direction.  

1 Introduction 

User simulation techniques are widely used for learn-

ing optimal dialog strategies in a statistical dialog 

management framework and for automated evaluation 

of spoken dialog systems. User simulation can be 

layered into the user intention level and user surface 

(utterance) level. This paper proposes a novel inten-

tion level user simulation technique.  

In recent years, a data-driven user intention model-

ing is widely used since it is domain- and language 

independent. However, the problem of data-driven 

user intention simulation is the limitation of user pat-

terns. Usually, the response patterns from data-driven 

simulated user tend to be limited to the training data. 

Therefore, it is not easy to simulate unseen user inten-

tion patterns, which is quite important to evaluate or 

learn optimal dialog policies. Another problem is poor 

user type controllability in a data-driven method. 

Sometimes, developers need to switch testers between 

various type of users such as cooperative, uncoopera-

tive or novice user and so on to expose their dialog 

system to various users. 

For this, we introduce a novel data-driven user in-

tention simulation method which is powered by hu-

man dialog knowledge in Markov logic formulation 

(Richardson and Domingos, 2006) to add diversity 

and controllability to data-driven intention simulation. 

2 Related work 

Data-driven intention modeling approach uses statis-

tical methods to generate the user intention given dis-

course information (history). The advantage of this 

approach lies in its simplicity and in that it is domain- 

and language independency. N-gram based approach-

es (Eckert et al., 1997, Levin et al., 2000) and other 

approaches (Scheffler and Young, 2001, Pietquin and 

Dutoit, 2006, Schatzmann et al., 2007) are  introduced. 

There has been some work on combining rules with 

statistical models especially for system side dialog 

management (Heeman, 2007, Henderson et al., 2008). 

However, little prior research has tried to use both 

knowledge and data-driven methods together in a sin-

gle framework especially for user intention simulation.  

In this research, we introduce a novel data-driven 

user intention modeling technique which can be di-

versified or personalized by integrating human dis-

course knowledge which is represented in first-order 

logic in a single framework. In the framework, di-

verse type of user knowledge can be easily designed 

and selectively integrated into data-driven user inten-

tion simulation. 

3 Overall architecture  
The overall architecture of our user simulator is 

shown in Fig. 1. The user intention simulator accepts 

the discourse circumstances with system intention as 

input and generates the next user intention. The user 

utterance simulator constructs a corresponding user 

sentence to express the given user intention. The si-

mulated user sentence is fed to the automatic speech 

recognition (ASR) channel simulator, which then adds 

noises to the utterance. The noisy utterance is passed 

to a dialog system which consists of spoken language 

understanding (SLU) and dialog management (DM) 

modules. In this research, the user utterance simulator 

and ASR channel simulator are developed using the 

method of  (Jung et al., 2009). 
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4 Markov logic 
Markov logic is a probabilistic extension of finite 

first-order logic (Richardson and Domingos, 2006). A 

Markov Logic Network (MLN) combines first-order 

logic and probabilistic graphical models in a single 

representation.  

An MLN can be viewed as a template for construct-

ing Markov networks. From the above definition, the 

probability distribution over possible worlds x speci-

fied by the ground Markov network is given by  

 
 

 
where F is the number  of formulas in the MLN and 

ni(x) is the number of true groundings of Fi in x. As 

formula weights increase, an MLN increasingly re-

sembles a purely logical KB, becoming equivalent to 

one in the limit of all infinite weights. General algo-

rithms for inference and learning in Markov logic are 

discussed in (Richardson and Domingos, 2006). 

Since Markov logic is a first-order knowledge base 

with a weight attached to each formula, it provides a 

theoretically fine framework integrating a statistically 

learned model with logically designed and inducted 

human knowledge. So the framework can be used for 

building up a hybrid user modeling with the advan-

tages of knowledge-based and data-driven models.  

5 User intention modeling in Markov 

logic 
The task of user intention simulation is to generate 

subsequent user intentions given current discourse 

circumstances. Therefore, user intention simulation 

can be formulated in the probabilistic form 

P(userIntention | context).  

In this research, we define the user intention state 

userIntention = [dialog_act, main_goal, compo-

nent_slot], where dialog_act is a domain-independent 

label of an utterance at the level of illocutionary force 

(e.g. statement, request, wh_question) and main_goal 

is the domain-specific user goal of an utterance (e.g. 

give_something, tell_purpose). Component slots 

represent domain-specific named-entities in the utter-

ance. For example, in the user intention state for the 

utterance “I want to go to city hall” (Fig. 2), the com-

bination of each slot of semantic frame represents the 

user intention symbol. In this example, the state sym-

bol is „request+search_loc+[loc_name]‟. Dialogs on 

car navigation deal with support for the information 

and selection of the desired destination. 

The first-order language-based predicates which 

are related with discourse context information and 

with generating the next user intention are as follows: 

 
For example, after the following fragment of dialog 

for the car navigation domain,  

 
the discourse context which is passed to the user si-

mulator is illustrated in Fig. 3. 

Notice that the context information is composed of 

semantic frame (SF), discourse history (DH) and pre-

vious system intention (SI). „isFilledComponent‟ 

predicate indicates which component slots are filled 

during the discourse.  „updatedEntity‟ predicate is 

true if the corresponding named entity is newly up-

dated. „hasSystemAct‟ and „hasSystemActAttr‟ 

predicate represent previous system intention and 

mentioned attributes.  

 

 

SF 

hasIntention(“ct_01”, “request+search_loc+loc_name”) 

hasDialogAct(“ct_01”,”wh_question”) 

hasMainGoal(“ct_01”, “search_loc”) 

hasEntity(“ct_01”, “loc_keyword”) 

DH 

isFilledComponent(“ct_01”, “loc_keyword) 

!isFilledComponent(“ct_01”, “loc_address) 

!isFilledComponent(“ct_01”, “loc_name”) 

!isFilledComponent(“ct_01”, “route_type”) 

updatedEntity(“ct_01”, “loc_keyword”) 

SI 

hasNumDBResult(“ct_01”, “many”) 

hasSystemAct(“ct_01”, “inform”) 

hasSystemActAttr(“ct_01”, “address,name”) 

Fig. 3 Example of discourse context in car navigation domain. 

SF=Semantic Frame, DH=Discourse History, SI=System Inten-

tion. 

raw user utterance I want to go to city hall. 

dialog_act request 

main_goal search_loc 

component.[loc_name] cityhall 

Fig. 2 Semantic frame for user intention simulation on 

car navigation domain. 

 
Fig. 1 Overall architecture of dialog simulation  

User(01) : Where are Chinese restaurants? 
// dialog_act=wh_question 
// main_goal=search_loc 

// named_entity[loc_keyword]=Chinese_restaurant 

Sys(01) : There are Buchunsung and Idongbanjum in 
Daeidong. 

// system_act=inform 

// target_action_attribute=name,address 

 User intention simulation related  predicates 

 GenerateUserIntention(context,userIntention) 

 Discourse context related predicates 

 hasIntention(context, userIntention) 

 hasDialogAct(context, dialogAct) 

 hasMainGoal(context, mainGoal) 

 hasEntity(context, entity) 

 isFilledComponent(context,entity) 

 updatedEntity(contetx, entity) 

 hasNumDBResult(context, numDBResult) 

 hasSystemAct(context, systemAct) 

 hasSystemActAttr(context, sytemActAttr) 

  isSubTask(context, subTask) 
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5.1 Data-driven user intention modeling in 

Markov logic 

The formulas are defined between the predicates 

which are related with discourse context information 

and corresponding user intention. The formulas for 

user intention modeling based on logistic regression 

are as follows: 
∀ct, pui, ui hasIntention(ct, pui)1   

=>  GenerateUserIntention(ct, ui) 

∀ct, da, ui hasDialogAct(ct, da) => GenerateUserIntention(ct,ui) 

∀ct, mg, ui hasMainGoal(ct, mg) => GenerateUserIntention(ct,ui) 

∀ct, en, ui hasEntity(ct, en) =>GenerateUserIntention(ct,ui) 

∀ct, en, ui isFilledComponent(ct,en) 

=> GenerateUserIntention(ct,ui)  
∀ct, en, ui updatedEntity(ct, en) => GenerateUserIntention(ct,ui) 

∀ct, dbr, ui hasNumDBResult(ct, dbr)  

=> GenerateUserIntention(ct, ui) 

∀ct, sa, ui hasSystemAct(ct, sa) =>GenerateUserIntention(ct, ui) 

∀ct, attr, ui hasSystemActAttr(ct, attr) 

       =>  GenerateUserIntention(ct, ui) 

The weights of each formula are estimated from 

the data which contains the evidence (context) and 

corresponding user intention of next turn (userInten-

tion). 

5.2 User knowledge 
In this research, the user knowledge, which is used for 

deciding user intention given discourse context, is 

layered into two levels: domain knowledge and dis-

course knowledge. Domain- specific and –dependent 

knowledge is described in domain knowledge. Dis-

course knowledge is more general and abstracted 

knowledge. It uses the domain knowledge as base 

knowledge. The subtask which is one of domain 

knowledge are defined as follows 

 
„isSubTask‟ implies which subtask corresponds 

to the current context. „subTaskHasIntention‟ 
describes which subtask has which user intention. 

„moveTo‟ predicate implies the connection from sub-

task to subtask node. 

Cooperative, corrective and self-directing discourse 

knowledge is represented in Markov logic to mimic 

following users.  
 Cooperative User: A user who is cooperative with a 

system by answering what the system asked.  

 Corrective User: A user who try to correct the mis-

behavior of system by jumping to or repeating spe-

cific subtask. 

 Self-directing User: A user who tries to say what 

he/she want to without considering system‟s sugges-

tion.  

Examples of discourse knowledge description for 

three types of user are shown in Fig. 4. 

                                                 
1 ct: context, ui: user intention, pui: previous user intention, da: 

dialog act, mg: main goal, en: entity, dbr:DB result, sa: system 
action, attr: target attribute of system action 

Both the formulas from data-driven model and 

formulas from discourse knowledge are used for con-

structing MLN in generation time. 

In inference, the discourse context related predi-

cates are given to MLN as true, then probabilities of 

predicate ‘GenerateUserIntention’ over candi-

date user intention are calculated. One of example 

evidence predicates was shown in Fig. 3. All of the 

predicates of Fig. 3 are given to MLN as true. From 

the network, the probability of P(userIntention | con-

text) is calculated. 

 

 
6 Experiments 
137 dialog examples from a real user and a dialog 

system in the car navigation domain were used to 

train the data-driven user intention simulator. The 

SLU and DM are built in the same way of (Jung et al., 

2009). After the training, simulations collected 1000 

dialog samples at each word error rate (WER) setting 

(WER=0 to 40%). The simulator model can be varied 

according to the combination of knowledge. We can 

generate eight different simulated users from A to H 

as Fig. 5. 

The overall trend of simulated dialogs are ex-

amined by defining an average score function similar 

to the reward score commonly used in reinforcement 

learning-based dialog systems for measuring both a 

cost and task success. We give 20 points for the suc-

cessful dialog state and penalize 1 point for each ac-

tion performed by the user to penalize longer dialogs.  

 A B C D E F G H 

Statistical model (S) O O O O O O O O 

Cooperative(CPR)  O   O O  O 

Corrective(COR)   O  O  O O 
Self-directing(SFD)    O  O O O 

Fig. 5 Eight different users (A to H) according to the 

combination of knowledge.  

 Subtask related predicates 

 subTaskHasIntention(subTask,userIntetion) 

 moveTo(subtask, subTask) 

 isCompletedSubTask (context, subTask) 

 isSubtask(context,subTask) 

 

Cooperative Knoweldge 

 // If system asks to specify an address explicitly, coop-

erative users would specify the address by jumping to 

the address setting subtask. 

 ct, st  isSubTask(ct, st) ^  

hasSytemAct(ct, “specify”) ^ 

          hasSystemActAttr(ct, “address”) 

           => moveTo(st, “AddressSetting”) 

Corrective Knowledge 

 // If the current subtask fails, corrective users would 

repeat current subtask. 

 ct, st isSubTask(ct, st)^  

isCompletedSubTask(ct, st) ^  

subTaskHasIntention(st, ui)  

=> GenerateUserIntention(ct,ui) 

Self-directing Knowledge 

 // Self-directing users do not make an utterance which 

is not relevant with the next subtask in their knowledge. 

 ct, st  isSubTask(ct, st) ^  

moveTo(st, nt) ^ 

           subTaskHasIntention(nt, ui) 

 => GenerateUserIntention(ct, ui) 

Fig. 4 Example of cooperative, corrective and self-

directing discourse knowledge.  
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Fig. 6 shows that simulated user C which has cor-

rective knowledge with statistical model show signifi-

cantly different trend over the most of word error rate 

settings. For the cooperative user (B), the difference is 

not as large and not statistically significant. It can be 

analyzed that the cooperative user behaviors are rela-

tively common patterns in human-machine dialog 

corpus. So, these behaviors can be already learned in 

statistical model (A).  

Using more than two type of knowledge together 

shows interesting result. Using cooperative know-

ledge with corrective knowledge together (E) shows 

much different result than using each knowledge 

alone (B and C). In the case of using self-directing 

knowledge with cooperative knowledge (F), the aver-

age scores are partially increased against base line 

scores. However, using corrective knowledge with 

self-directing knowledge does not show different re-

sult.  It can be thought that the corrective knowledge 

and self-directing knowledge are working as contra-

dictory policy in deciding user intention. Three dis-

course knowledge combined user shows very interest-

ing result. H shows much higher improvement over 

all simulated users, and the differences are significant 

results at p ≤ 0.001.  

To verify the proposed user simulation method can 

simulate the unseen events, the unseen rates of units 

were calculated. Fig. 7 shows the unseen unit rates of 

intention sequence. The unseen rate of n-gram varies 

according to the simulated user. Notice that simulated 

user C, E and H generates higher unseen n-gram pat-

terns over all word error settings. These users com-

monly have corrective knowledge, and the patterns 

seem to not be present in the corpus. But the unseen 

patterns do not mean poor intention simulation. High-

er task completion rate of C, E and H imply that these 

users actually generate corrective user response to 

make a successful conversation. 

7 Conclusion 
This paper presented a novel user intention simulation 

method which is a data-driven approach but able to 

integrate diverse user discourse knowledge together to 

simulate various type of user.  A logistic regression 

model is used for the statistical user intention model 

in Markov logic. Human dialog knowledge is sepa-

rated into domain and discourse knowledge, and co-

operative, corrective and self-directing discourse 

knowledge are designed to mimic such type user. The 

experiment results show that the proposed user inten-

tion simulation framework actually generates natural 

and diverse user intention patterns what the developer 

intended.  
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Fig. 7 Unseen user intention sequence rate and task com-

pletion rate over simulated users at word error rate of 10. 

WER(%) 

model  
0 10 20 30 40 

A:S (base line) 
14.22 

(0.00) 

9.13 

(0.00) 

5.55 

(0.00) 

1.33 

(0.00) 

-1.16 

(0.00) 

B:S+CPR 
14.39 

(0.17) 

9.78 

(0.65) 

5.38 

(-0.17) 

2.32† 

(0.99) 

-1.00 

(0.16) 

C:S+COR 
14.61† 

(0.40) 
10.91

♠
 

(1.78) 

7.28
♠
 

(1.74) 

2.62‡ 

(1.30) 

-0.81 

(0.35) 

D:S+SFD 
15.70

♠
 

(1.48) 

10.10‡ 

(0.97) 

5.51 

(-0.04) 

1.89 

(0.56) 
-0.96

♠
 

(0.20) 

E:S+CPR+COR 
14.75‡ 

(0.53) 
10.93

♠
 

(1.79) 

6.88‡ 

(1.33) 
2.94

♠
 

(1.61) 

-1.06† 

(0.11) 

F:S+CPR+SFD 
15.75

♠
 

(1.54) 

10.16‡ 

(1.02) 

5.80 

(0.26) 

1.88 

(0.56) 
-0.03‡ 

(1.13) 

G:S+COR+SFD 
14.39 

(0.17) 

9.18 

(0.05) 

5.04 

(-0.50) 

1.63 

(0.31) 

-1.52 

(-0.36) 

H:S+CPR+COR+SFD 
15.70

♠
 

(1.48) 

12.19
♠
 

(3.05) 

9.20
♠
 

(3.65) 

5.12
♠
 

(3.80) 

1.32
♠
 

(2.48) 

Fig. 6 Average scores of user intention models over used discourse 
knowledge. The relative improvements against statistical models 

are described between parentheses. Bold cells indicate the im-

provements are higher than 1.0.  
† : significantly different from the base line, p = 0.05,  

‡ : significantly different from the base line, p = 0.01,  

♠
 : significantly different from the base line, p ≤ 0.001 
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