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Abstract

Creating labeled training data for rela-
tion extraction is expensive. In this pa-
per, we study relation extraction in a spe-
cial weakly-supervised setting when we
have only a few seed instances of the tar-
get relation type we want to extract but
we also have a large amount of labeled
instances of other relation types. Ob-
serving that different relation types can
share certain common structures, we pro-
pose to use a multi-task learning method
coupled with human guidance to address
this weakly-supervised relation extraction
problem. The proposed framework mod-
els the commonality among different re-
lation types through a shared weight vec-
tor, enables knowledge learned from the
auxiliary relation types to be transferred
to the target relation type, and allows easy
control of the tradeoff between precision
and recall. Empirical evaluation on the
ACE 2004 data set shows that the pro-
posed method substantially improves over
two baseline methods.

1 Introduction

Relation extraction is the task of detecting and
characterizing semantic relations between entities
from free text. Recent work on relation extraction
has shown that supervised machine learning cou-
pled with intelligent feature engineering or ker-
nel design provides state-of-the-art solutions to the
problem (Culotta and Sorensen, 2004; Zhou et al.,
2005; Bunescu and Mooney, 2005; Qian et al.,
2008). However, supervised learning heavily re-
lies on a sufficient amount of labeled data for train-
ing, which is not always available in practice due
to the labor-intensive nature of human annotation.
This problem is especially serious for relation ex-

traction because the types of relations to be ex-
tracted are highly dependent on the application do-
main. For example, when working in the financial
domain we may be interested in the employment
relation, but when moving to the terrorism domain
we now may be interested in the ethnic and ide-
ology affiliation relation, and thus have to create
training data for the new relation type.

However, is the old training data really useless?
Inspired by recent work on transfer learning and
domain adaptation, in this paper, we study how
we can leverage labeled data of some old relation
types to help the extraction of a new relation type
in a weakly-supervised setting, where only a few
seed instances of the new relation type are avail-
able. While transfer learning was proposed more
than a decade ago (Thrun, 1996; Caruana, 1997),
its application in natural language processing is
still a relatively new territory (Blitzer et al., 2006;
Daume II1, 2007; Jiang and Zhai, 2007a; Arnold et
al., 2008; Dredze and Crammer, 2008), and its ap-
plication in relation extraction is still unexplored.

Our idea of performing transfer learning is mo-
tivated by the observation that different relation
types share certain common syntactic structures,
which can possibly be transferred from the old
types to the new type. We therefore propose to use
a general multi-task learning framework in which
classification models for a number of related tasks
are forced to share a common model component
and trained together. By treating classification
of different relation types as related tasks, the
learning framework can naturally model the com-
mon syntactic structures among different relation
types in a principled manner. It also allows us
to introduce human guidance in separating the
common model component from the type-specific
components. The framework naturally transfers
the knowledge learned from the old relation types
to the new relation type and helps improve the re-
call of the relation extractor. We also exploit ad-
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ditional human knowledge about the entity type
constraints on the relation arguments, which can
usually be derived from the definition of a relation
type. Imposing these constraints further improves
the precision of the final relation extractor. Em-
pirical evaluation on the ACE 2004 data set shows
that our proposed method largely outperforms two
baseline methods, improving the average F1 mea-
sure from 0.1532 to 0.4132 when only 10 seed in-
stances of the new relation type are used.

2 Related work

Recent work on relation extraction has been dom-
inated by feature-based and kernel-based super-
vised learning methods. Zhou et al. (2005) and
Zhao and Grishman (2005) studied various fea-
tures and feature combinations for relation extrac-
tion. We systematically explored the feature space
for relation extraction (Jiang and Zhai, 2007b) .
Kernel methods allow a large set of features to be
used without being explicitly extracted. A num-
ber of relation extraction kernels have been pro-
posed, including dependency tree kernels (Culotta
and Sorensen, 2004), shortest dependency path
kernels (Bunescu and Mooney, 2005) and more re-
cently convolution tree kernels (Zhang et al., 2006;
Qian et al., 2008). However, in both feature-based
and kernel-based studies, availability of sufficient
labeled training data is always assumed.

Chen et al. (2006) explored semi-supervised
learning for relation extraction using label prop-
agation, which makes use of unlabeled data.
Zhou et al. (2008) proposed a hierarchical learning
strategy to address the data sparseness problem in
relation extraction. They also considered the com-
monality among different relation types, but com-
pared with our work, they had a different problem
setting and a different way of modeling the com-
monality. Banko and Etzioni (2008) studied open
domain relation extraction, for which they man-
ually identified several common relation patterns.
In contrast, our method obtains common patterns
through statistical learning. Xu et al. (2008) stud-
ied the problem of adapting a rule-based relation
extraction system to new domains, but the types
of relations to be extracted remain the same.

Transfer learning aims at transferring knowl-
edge learned from one or a number of old tasks
to a new task. Domain adaptation is a spe-
cial case of transfer learning where the learn-
ing task remains the same but the distribution

of data changes. There has been an increasing
amount of work on transfer learning and domain
adaptation in natural language processing recently.
Blitzer et al. (2006) proposed a structural cor-
respondence learning method for domain adap-
tation and applied it to part-of-speech tagging.
Daume III (2007) proposed a simple feature aug-
mentation method to achieve domain adaptation.
Arnold et al. (2008) used a hierarchical prior struc-
ture to help transfer learning and domain adap-
tation for named entity recognition. Dredze and
Crammer (2008) proposed an online method for
multi-domain learning and adaptation.

Multi-task  learning is another learning
paradigm in which multiple related tasks are
learned simultaneously in order to achieve better
performance for each individual task (Caruana,
1997; Evgeniou and Pontil, 2004). Although it
was not originally proposed to transfer knowledge
to a particular new task, it can be naturally used to
achieve this goal because it models the common-
ality among tasks, which is the knowledge that
should be transferred to a new task. In our work,
transfer learning is done through a multi-task
learning framework similar to Evgeniou and
Pontil (2004).

3 Task definition

Our study is conducted using data from the Au-
tomatic Content Extraction (ACE) program'. We
focus on extracting binary relation instances be-
tween two relation arguments occurring in the
same sentence. Some example relation instances
and their corresponding relation types as defined
by ACE can be found in Table 1.

We consider the following weakly-supervised
problem setting. We are interested in extracting
instances of a rarget relation type 7, but this re-
lation type is only specified by a small set of seed
instances. We may possibly have some additional
knowledge about the target type not in the form of
labeled instances. For example, we may be given
the entity type restrictions on the two relation ar-
guments. In addition to such limited information
about the target relation type, we also have a large
amount of labeled instances for K auxiliary rela-
tion types A1, ..., Ax. Our goal is to learn a re-
lation extractor for 7, leveraging all the data and
information we have.

"http://projects.ldc.upenn.edu/ace/
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Syntactic Pattern |

Relation Instance

Relation Type (Subtype)

|

arg-2 arg-1 Arab leaders

OTHER-AFF (Ethnic)

his father

PER-SOC (Family)

South Jakarta Prosecution Office

GPE-AFF (Based-In)

arg-1 of arg-2

leader of a minority government

EMP-ORG (Employ-Executive)

the youngest son of ex-director Suharto

PER-SOC (Family)

the Socialist People’s Party of Montenegro

GPE-AFF (Based-In)

arg-1 [verb] arg-2

Yemen [sent] planes to Baghdad

ART (User-or-Owner)

his wife [had] three young children

PER-SOC (Family)

Jody Scheckter [paced] Ferrari to both victories

EMP-ORG (Employ-Staff)

Table 1: Examples of similar syntactic structures across different relation types. The head words of the
first and the second arguments are shown in italic and bold, respectively.

Before introducing our transfer learning solu-
tion, let us first briefly explain our basic classifi-
cation approach and the features we use, as well
as two baseline solutions.

3.1 Feature configuration

We treat relation extraction as a classification
problem. Each pair of entities within a single sen-
tence is considered a candidate relation instance,
and the task becomes predicting whether or not
each candidate is a true instance of 7. We use
feature-based logistic regression classifiers. Fol-
lowing our previous work (Jiang and Zhai, 2007b),
we extract features from a sequence representa-
tion and a parse tree representation of each rela-
tion instance. Each node in the sequence or the
parse tree is augmented by an argument tag that
indicates whether the node subsumes arg-1, arg-
2, both or neither. Nodes that represent the argu-
ments are also labeled with the entity type, subtype
and mention type as defined by ACE. Based on the
findings of Qian et al. (2008), we trim the parse
tree of a relation instance so that it contains only
the most essential components. We extract uni-
gram features (consisting of a single node) and bi-
gram features (consisting of two connected nodes)
from the graphic representations. An example of
the graphic representation of a relation instance
is shown in Figure 1 and some features extracted
from this instance are shown in Table 2. This
feature configuration gives state-of-the-art perfor-
mance (F1 = 0.7223) on the ACE 2004 data set in
a standard setting with sufficient data for training.

3.2 Baseline solutions

We consider two baseline solutions to the weakly-
supervised relation extraction problem. In the first

NPB a PP 6
NPB
leader of government
NN IN NN
PER @ @ ORG @

Figure 1: The combined sequence and parse tree
representation of the relation instance “leader of
a minority government.” The non-essential nodes
for “a” and for “minority” are removed based on

the algorithm from Qian et al. (2008).

Feature
ORG?
ofY government2

Explanation
arg-2 is an ORG entity.
arg-2 is “government” and
follows the word “of.”
There is a noun phrase
containing both arguments,
with arg-2 contained in a
prepositional phrase inside
the noun phrase.

NP3 — PP2

Table 2: Examples of unigram and bigram features
extracted from Figure 1.

baseline, we use only the few seed instances of the
target relation type together with labeled negative
relation instances (i.e. pairs of entities within the
same sentence but having no relation) to train a
binary classifier. In the second baseline, we take
the union of the positive instances of both the tar-
get relation type and the auxiliary relation types as
our positive training set, and together with the neg-
ative instances we train a binary classifier. Note
that the second baseline method essentially learns
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a classifier for any relation type.

Another existing solution to weakly-supervised
learning problems is semi-supervised learning,
e.g. bootstrapping. However, because our pro-
posed transfer learning method can be combined
with semi-supervised learning, here we do not in-
clude semi-supervised learning as a baseline.

4 A multi-task transfer learning solution

We now present a multi-task transfer learning so-
lution to the weakly-supervised relation extraction
problem, which makes use of the labeled data from
the auxiliary relation types.

4.1 Syntactic similarity between relation
types

To see why the auxiliary relation types may help
the identification of the target relation type, let us
first look at how different relation types may be re-
lated and even similar to each other. Based on our
inspection of a sample of the ACE data, we find
that instances of different relation types can share
certain common syntactic structures. For example,
the syntactic pattern “arg-1 of arg-2” strongly in-
dicates that there exists some relation between the
two arguments, although the nature of the relation
may be well dependent on the semantic meanings
of the two arguments. More examples are shown
in Table 1. This observation suggests that some
of the syntactic patterns learned from the auxiliary
relation types may be transferable to the target re-
lation type, making it easier to learn the target rela-
tion type and thus alleviating the insufficient train-
ing data problem with the target type.

How can we incorporate this desired knowledge
transfer process into our learning method? While
one can make explicit use of these general syntac-
tic patterns in a rule-based relation extraction sys-
tem, here we restrict our attention to feature-based
linear classifiers. We note that in feature-based lin-
ear classifiers, a useful syntactic pattern is trans-
lated into large weights for features related to the
syntactic pattern. For example, if “arg-1 of arg-2”
is a useful pattern, in the learned linear classifier
we should have relatively large weights for fea-
tures such as “the word of occurs before arg-2” or
“a preposition occurs before arg-2,” or even more
complex features such as “there is a prepositional
phrase containing arg-2 attached to arg-1.” It is
the weights of these generally useful features that
are transferable from the auxiliary relation types

to the target relation type.

4.2 Statistical learning model

As we have discussed, we want to force the linear
classifiers for different relation types to share their
model weights for those features that are related
to the common syntactic patterns. Formally, we
consider the following statistical learning model.

Let w* denote the weight vector of the linear
classifier that separates positive instances of aux-
iliary type A;, from negative instances, and let w”
denote a similar weight vector for the target type
T . If different relation types are totally unrelated,
these weight vectors should also be independent of
each other. But because we observe similar syn-
tactic structures across different relation types, we
now assume that these weight vectors are related
through a common component v:

= 1+,
k k
w' = pu 4v for k=1,..., K.

If we assume that only weights of certain gen-
eral features can be shared between different rela-
tion types, we can force certain dimensions of v to
be 0. We express this constraint by introducing a
matrix F' and setting F'v = 0. Here F' is a square
matrix with all entries set to O except that F; ; = 1
if we want to force v; = 0.

Now we can learn these weight vectors in a
multi-task learning framework. Let x represent
the feature vector of a candidate relation instance,
and y € {+1,—1} represent a class label. Let
Dr = {(zF,y7 )}f\g denote the set of labeled
instances for the target type 7. (Note that the
number of positive instances in D7 is very small.)
And let Dy = {(zF, yf)}fvz’“l denote the labeled
instances for the auxiliary type Aj.

We learn the optimal weight vectors {iF}5_ |
47 and © by optimizing the following objective
function:

({ﬂ’“}i‘:hﬂ? 19)

= arg min L(D7, 1" +v)

{uk},uT v, Fv=0

K
+>  L(Dk,p* +v)
k=1

K
AT+ ARt + /\V|V|2] .

k=1
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The objective function follows standard empir-
ical risk minimization with regularization. Here
L(D,w) is the aggregated loss of labeling = with
y for all (z,y) in D, using weight vector w. In
logistic regression models, the loss function is the
negative log likelihood, that is,

L(Dw) = — Y logp(ylz,w),

(=,y)eD

exp(wy - 7)
Zy/6{+l,—1} eXp(Wy’ - ) .

plylz,w) =

/\Z, )\ﬁ and )\, are regularization parameters.
By adjusting their values, we can control the de-
gree of weight sharing among the relation types.
The larger the ratio )\Z /A (or AZ /) is, the more
we believe that the model for 7 (or Aj) should
conform to the common model, and the smaller
the type-specific weight vector 7 (or 1*) will be.

The model presented above is based on our pre-
vious work (Jiang and Zhai, 2007¢), which bears
the same spirit of some other recent work on multi-
task learning (Ando and Zhang, 2005; Evgeniou
and Pontil, 2004; Daume III, 2007). It is general
for any transfer learning problem with auxiliary la-
beled data from similar tasks. Here we are mostly
interested in the model’s applicability and effec-
tiveness on the relation extraction problem.

4.3 Feature separation

Recall that we impose a constraint F'v = (0 when
optimizing the objective function. This constraint
gives us the freedom to force only the weights of a
subset of the features to be shared among different
relation types. A remaining question is how to set
this matrix F, that is, how to determine the set of
general features to use. We propose two ways of
setting this matrix F'.

Automatically setting F'

One way is to fix the number of non-zero entries
in v to be a pre-defined number H of general fea-
tures, and allow F' to change during the optimiza-
tion process. This can be done by repeating the
following two steps until F' converges:

1. Fix F, and optimize the objective function as
in Equation (1).

2. Fix (u7 + v) and (p* + v), and search for
pT, {1*} and v that minimizes ()\ZL—HMTW +
S AR )2 + Allv]?), subject to the
constraint that at most H entries of v are non-
Zero.

Human guidance

Another way to select the general features is to fol-
low some guidance from human knowledge. Re-
call that in Section 4.1 we find that the common-
ality among different relation types usually lies
in the syntactic structures between the two ar-
guments. This observation gives some intuition
about how to separate general features from type-
specific features. In particular, here we consider
two hypotheses regarding the generality of differ-
ent kinds of features.

Argument word features: We hypothesize that
the head words of the relation arguments are more
likely to be strong indicators of specific relation
types rather than any relation type. For example, if
an argument has the head word “sister,” it strongly
indicates a family relation. We refer to the set of
features that contain any head word of an argu-
ment as “arg-word” features.

Entity type features: We hypothesize that the
entity types and subtypes of the relation arguments
are also more likely to be associated with specific
relation types. For example, arguments that are
location entities may be strongly correlated with
physical proximity relations. We refer to the set of
features that contain the entity type or subtype of
an argument as “arg-NE” features.

We hypothesize that the arg-word and arg-NE
features are type-specific and therefore should be
excluded from the set of general features. We
can force the weights of these hypothesized type-
specific features to be 0 in the shared weight vec-
tor v, i.e. we can set the matrix F' to achieve this
feature separation.

Combined method

We can also combine the automatic way of setting
F with human guidance. Specifically, we still fol-
low the first automatic procedure to choose gen-
eral features, but we then filter out any hypothe-
sized type-specific feature from the set of general
features chosen by the automatic procedure.

4.4 Imposing entity type constraints

Finally, we consider how we can exploit additional
human knowledge about the target relation type 7°
to further improve the classifier. We note that usu-
ally when a relation type is defined, we often have
strong preferences or even hard constraints on the
types of entities that can possibly be the two rela-
tion arguments. These type constraints can help us
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Target Type 7 | BL | BL-A [| TL-auto | TL-guide | TL-comb | TL-NE

P [ 0.0000 | 0.1692 || 0.2920 | 0.2934 | 0.3325 | 0.5056
Physical | R || 0.0000 | 0.0848 | 0.1696 | 0.1722 | 02383 || 0.2316
F || 0.0000 | 0.1130 || 02146 | 02170 | 02777 | 0.3176

Personal | P | 1.0000 | 0.0804 | 0.1005 | 0.3069 | 03214 | 0.6412
/Social | R | 0.0386 | 0.1708 | 0.1598 | 0.7245 | 0.7686 | 0.7631
F || 0.0743 | 0.1093 || 0.1234 | 04311 04533 | 0.6969

Employment | P || 0.9231 | 0.3561 || 0.5230 | 0.5428 | 0.5973 | 0.7145
/Membership | R || 0.0075 | 0.1850 | 0.2617 | 02648 | 03632 | 0.3601
/Subsidiary | F || 0.0148 | 0.2435 | 03488 | 03559 | 04518 | 0.4789
Agent- P | 0.8750 | 0.0603 | 0.1813 | 0.1825 | 0.1835 | 0.1967
Artifact | R | 0.0343 | 02353 || 0.6471 | 06225 | 0.6422 | 0.6373
F || 0.0660 | 0.0960 || 0.2833 | 0.2822 | 02854 | 0.3006

PER/ORG | P || 0.8889 | 0.0838 || 0.1510 | 0.1592 | 0.1667 | 0.1844
Affiliation | R | 0.0567 | 0.4965 | 0.6950 | 0.8369 | 0.8794 | 0.8723
F || 0.1067 | 0.1434 || 02481 | 02676 | 02802 | 0.3045

GPE P | 1.0000 | 0.2530 | 0.3904 | 03604 | 03560 | 0.5824
Affiliation | R | 0.0077 | 0.4509 | 0.6416 | 05992 | 0.6166 | 0.6127
F || 0.0153 | 0.3241 || 0.4854 | 0.4501 04513 | 0.5972

P | 1.0000 | 0.0298 | 0.0503 | 0.0471 0.1370 || 0.1370

Discourse | R | 0.0036 | 0.0789 | 0.1075 | 0.1147 | 03477 | 0.3477
F || 0.0071 | 0.0433 || 0.0685 | 0.0668 | 0.1966 | 0.1966

P [ 0.8124 | 0.1475 | 0.2412 | 02703 | 02992 | 0.4231

Average | R || 0.0212 | 0.2432 || 0.3832 | 04764 | 05509 | 0.5464
F || 0.0406 | 0.1532 || 02532 | 0.2958 | 0.3423 | 0.4132

Table 3: Comparison of different methods on ACE 2004 data set. P, R and F stand for precision, recall

and F1, respectively.

remove some false positive instances. We there-
fore manually identify the entity type constraints
for each target relation type based on the defini-
tion of the relation type given in the ACE annota-
tion guidelines, and impose these type constraints
as a final refinement step on top of the predicted
positive instances.

S Experiments

5.1 Data set and experiment setup

We used the ACE 2004 data set to evaluate our
proposed methods. There are seven relation types
defined in ACE 2004. After data cleaning, we ob-
tained 4290 positive instances among 48614 can-
didate relation instances. We took each relation
type as the target type and used the remaining
types as auxiliary types. This gave us seven sets
of experiments. In each set of experiments for a
single target relation type, we randomly divided
all the data into five subsets, and used each subset
for testing while using the other four subsets for

training, i.e. each experiment was repeated five
times with different training and test sets. Each
time, we removed most of the positive instances
of the target type from the training set except only
a small number S of seed instances. This gave
us the weakly-supervised setting. We kept all the
positive instances of the target type in the test set.
In order to concentrate on the classification accu-
racy for the target relation type, we removed the
positive instances of the auxiliary relation types
from the test set, although in practice we need
to extract these auxiliary relation instances using
learned classifiers for these relation types.

5.2 Comparison of different methods

We first show the comparison of our proposed
multi-task transfer learning methods with the two
baseline methods described in Section 3.2. The
performance on each target relation type and the
average performance across seven types are shown
in Table 3. BL refers to the first baseline and BL-
A refers to the second baseline which uses auxil-
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AT ] 100 [ 1000 [ 10000
P | 0.6265 | 0.3162 | 0.2992
R | 0.1170 | 0.3959 | 0.5509
F | 0.1847 | 0.2983 | 0.3423

Table 4: The average performance of TL-comb
with different A7 (A% = 10* and A, = 1)

iary relation instances. The four TL methods are
all based on the multi-task transfer learning frame-
work. TL-auto sets F' automatically within the
optimization problem itself. TL-guide chooses all
features except arg-word and arg-NE features as
general features and sets F' accordingly. TL-comb
combines TL-auto and TL-guide, as described in
Section 4.3. Finally, TL-NE builds on top of TL-
comb and uses the entity type constraints to re-
fine the predictions. In this set of experiments,
the number of seed instances for each target re-
lation type was set to 10. The parameters were
set to their optimal values ()\Z = 104, )\Z = 10%,
Ay, = 1,and H = 500).

As we can see from the table, first of all, BL
generally has high precision but very low recall.
BL-A performs better than BL in terms of F1 be-
cause it gives better recall. However, BL-A still
cannot achieve as high recall as the TL methods.
This is probably because the model learned by BL-
A still focuses more on type-specific features for
each relation type rather than on the commonly
useful general features, and therefore does not
help much in classifying the target relation type.

The four TL methods all outperform the two
baseline methods. TL-comb performs better than
both TL-auto and TL-guide, which shows that
while we can either choose general features au-
tomatically by the learning algorithm or manu-
ally with human knowledge, it is more effective
to combine human knowledge with the multi-task
learning framework. Not surprisingly, TL-NE im-
proves the precision over TL-comb without hurt-
ing the recall much. Ideally, TL-NE should not
decrease recall if the type constraints are strictly
observed in the data. We find that it is not always
the case with the ACE data, leading to the small
decrease of recall from TL-comb to TL-NE.

5.3 The effect of A7

Let us now take a look at the effect of using dif-
ferent )\Z. As we can see from Table 4, smaller

)\g gives higher precision while larger /\Z— gives

05 : :
TL-comb —&—
045 - TL-auto ---%--- 7]
04| BL-A |
- 0-35[;/5—5\5__5\;]
(TR
= 0.3 m
B 025  Meewee . |
-------- emmmemee
02%F 7
0.15
0.1 L I
100 1000 10000
H

Figure 2: Performance of TL-comb and TL-auto
as H changes.

higher recall. These results make sense because
the larger )\g is, the more we penalize large
weights of 17 . As a result, the model for the tar-
get type is forced to conform to the shared model
v and prevented from overfitting the few seed tar-
get instances. )\Z is therefore a useful parameter
to help us control the tradeoff between precision
and recall for the target type.

While varying )\l’j also gives similar effect for
type Ay, we found that setting )\ﬁ to smaller values
would not help 7 because in this case the auxiliary
relation instances would be used more for train-
ing the type-specific component y* rather than the
common component v.

5.4 Sensitivity of H

Another parameter in the multi-task transfer learn-
ing framework is the number of general features
H, ie. the number of non-zero entries in the
shared weight vector v. To see how the perfor-
mance may vary as H changes, we plot the per-
formance of TL-comb and TL-auto in terms of the
average F1 across the seven target relation types,
with H ranging from 100 to 50000. As we can see
in Figure 2, the performance is relatively stable,
and always above BL-A. This suggests that the
performance of TL-comb and TL-auto is not very
sensitive to the value of H.

5.5 Hypothesized type-specific features

In Section 4.3, we showed two sets of hypoth-
esized type-specific features, namely, arg-word
features and arg-NE features. We also experi-
mented with each set separately to see whether
both sets are useful. The comparison is shown in
Table 5. As we can see, using either set of type-
specific features in either TL-guide or TL-comb
can improve the performance over BL-A, but the
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arg-word | arg-NE | union

TL-guide | 0.2095 0.2983 | 0.2958

TL-comb | 0.2215 0.3331 | 0.3423
BL-A 0.1532

Table 5: Average F1 using different hypothesized
type-specific features.

E *
e 03r . X i
© d'
0.2 - Xt
* s TLNE (100 —8—
TL-NE (10%) ---%---
01%¥ ( BB ....... g
X BL-A
O 1 1
10 100 1000

S

Figure 3: Performance of TL-NE, BL and BL-A
as the number of seed instances S of the target type
increases. (H = 500. )\Z was set to 10* and 10?).

arg-NE features are probably more type-specific
than arg-word features because they give better
performance. Using the union of the two sets is
still the best for TL-comb.

5.6 Changing the number of seed instances

Finally, we compare TL-NE with BL and BL-A
when the number of seed instances increases. We
set S from 5 up to 1000. When S is large, the
problem becomes more like traditional supervised
learning, and our setting of AZ = 10% is no longer
optimal because we are now not afraid of overfit-
ting the large set of seed target instances. There-
fore we also included another TL-NE experiment
with /\Z— set to 102. The comparison of the perfor-
mance is shown in Figure 3. We see that as .S in-
creases, both BL and BL-.A catch up, and BL over-
takes BL-.4 when S is sufficiently large because
BL uses positive training examples only from the
target type. Overall, TL-NE still outperforms the
two baselines in most of the cases over the wide
range of values of S, but the optimal value for )\g
decreases as S increases, as we have suspected.
The results show that if )\Z is set appropriately,
our multi-task transfer learning method is robust
and advantageous over the baselines under both
the weakly-supervised setting and the traditional
supervised setting.

6 Conclusions and future work

In this paper, we applied multi-task transfer learn-
ing to solve a weakly-supervised relation extrac-
tion problem, leveraging both labeled instances of
auxiliary relation types and human knowledge in-
cluding hypotheses on feature generality and en-
tity type constraints. In the multi-task learning
framework that we introduced, different relation
types are treated as different but related tasks that
are learned together, with the common structures
among the relation types modeled by a shared
weight vector. The shared weight vector corre-
sponds to the general features across different re-
lation types. We proposed to choose the general
features either automatically inside the learning al-
gorithm or guided by human knowledge. We also
leveraged additional human knowledge about the
target relation type in the form of entity type con-
straints. Experiment results on the ACE 2004 data
show that the multi-task transfer learning method
achieves the best performance when we combine
human guidance with automatic general feature
selection, followed by imposing the entity type
constraints. The final method substantially outper-
forms two baseline methods, improving the aver-
age F1 measure from 0.1532 to 0.4132 when only
10 seed target instances are used.

Our work is the first to explore transfer learning
for relation extraction, and we have achieved very
promising results. Because of the practical impor-
tance of transfer learning and adaptation for rela-
tion extraction due to lack of training data in new
domains, we hope our study and findings will lead
to further investigation into this problem. There
are still many issues that remain unsolved. For ex-
ample, we have not looked at the degrees of re-
latedness between different pairs of relation types.
Presumably, when adapting to a specific target re-
lation type, we want to choose the most similar
auxiliary relation types to use. Our current study
is based on ACE relation types. It would also be
interesting to study similar problems in other do-
mains, for example, the protein-protein interaction
extraction problem in biomedical text mining.
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