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Abstract

A∗ parsing makes 1-best search efficient by
suppressing unlikely 1-best items. Existing k-
best extraction methods can efficiently search
for top derivations, but only after an exhaus-
tive 1-best pass. We present a unified algo-
rithm for k-best A∗ parsing which preserves
the efficiency of k-best extraction while giv-
ing the speed-ups of A∗ methods. Our algo-
rithm produces optimal k-best parses under the
same conditions required for optimality in a
1-best A∗ parser. Empirically, optimal k-best
lists can be extracted significantly faster than
with other approaches, over a range of gram-
mar types.

1 Introduction

Many situations call for a parser to return the k-
best parses rather than only the 1-best. Uses for
k-best lists include minimum Bayes risk decod-
ing (Goodman, 1998; Kumar and Byrne, 2004),
discriminative reranking (Collins, 2000; Char-
niak and Johnson, 2005), and discriminative train-
ing (Och, 2003; McClosky et al., 2006). The
most efficient known algorithm for k-best parsing
(Jiménez and Marzal, 2000; Huang and Chiang,
2005) performs an initial bottom-up dynamic pro-
gramming pass before extracting the k-best parses.
In that algorithm, the initial pass is, by far, the bot-
tleneck (Huang and Chiang, 2005).

In this paper, we propose an extension of A∗

parsing which integrates k-best search with an A∗-
based exploration of the 1-best chart. A∗ pars-
ing can avoid significant amounts of computation
by guiding 1-best search with heuristic estimates
of parse completion costs, and has been applied
successfully in several domains (Klein and Man-
ning, 2002; Klein and Manning, 2003c; Haghighi
et al., 2007). Our algorithm extends the speed-
ups achieved in the 1-best case to the k-best case
and is optimal under the same conditions as a stan-

dard A∗ algorithm. The amount of work done in
the k-best phase is no more than the amount of
work done by the algorithm of Huang and Chiang
(2005). Our algorithm is also equivalent to stan-
dard A∗ parsing (up to ties) if it is terminated after
the 1-best derivation is found. Finally, our algo-
rithm can be written down in terms of deduction
rules, and thus falls into the well-understood view
of parsing as weighted deduction (Shieber et al.,
1995; Goodman, 1998; Nederhof, 2003).

In addition to presenting the algorithm, we
show experiments in which we extract k-best lists
for three different kinds of grammars: the lexi-
calized grammars of Klein and Manning (2003b),
the state-split grammars of Petrov et al. (2006),
and the tree transducer grammars of Galley et al.
(2006). We demonstrate that optimal k-best lists
can be extracted significantly faster using our al-
gorithm than with previous methods.

2 A k-Best A∗ Parsing Algorithm

We build up to our full algorithm in several stages,
beginning with standard 1-best A∗ parsing and
making incremental modifications.

2.1 Parsing as Weighted Deduction
Our algorithm can be formulated in terms of
prioritized weighted deduction rules (Shieber et
al., 1995; Nederhof, 2003; Felzenszwalb and
McAllester, 2007). A prioritized weighted deduc-
tion rule has the form

φ1 : w1, . . . , φn : wn
p(w1,...,wn)−−−−−−−−→ φ0 : g(w1, . . . , wn)

where φ1, . . . , φn are the antecedent items of the
deduction rule and φ0 is the conclusion item. A
deduction rule states that, given the antecedents
φ1, . . . , φn with weights w1, . . . , wn, the conclu-
sion φ0 can be formed with weight g(w1, . . . , wn)
and priority p(w1, . . . , wn).
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These deduction rules are “executed” within
a generic agenda-driven algorithm, which con-
structs items in a prioritized fashion. The algo-
rithm maintains an agenda (a priority queue of un-
processed items), as well as a chart of items al-
ready processed. The fundamental operation of
the algorithm is to pop the highest priority item φ
from the agenda, put it into the chart with its cur-
rent weight, and form using deduction rules any
items which can be built by combining φ with
items already in the chart. If new or improved,
resulting items are put on the agenda with priority
given by p(·).

2.2 A∗ Parsing

The A∗ parsing algorithm of Klein and Manning
(2003c) can be formulated in terms of weighted
deduction rules (Felzenszwalb and McAllester,
2007). We do so here both to introduce notation
and to build to our final algorithm.

First, we must formalize some notation. As-
sume we have a PCFG1 G and an input sentence
s1 . . . sn of length n. The grammar G has a set of
symbols Σ, including a distinguished goal (root)
symbol G. Without loss of generality, we assume
Chomsky normal form, so each non-terminal rule
r in G has the form r = A→ B C with weight wr

(the negative log-probability of the rule). Edges
are labeled spans e = (A, i, j). Inside derivations
of an edge (A, i, j) are trees rooted at A and span-
ning si+1 . . . sj . The total weight of the best (min-
imum) inside derivation for an edge e is called the
Viterbi inside score β(e). The goal of the 1-best
A∗ parsing algorithm is to compute the Viterbi in-
side score of the edge (G, 0, n); backpointers al-
low the reconstruction of a Viterbi parse in the
standard way.

The basic A∗ algorithm operates on deduc-
tion items I(A, i, j) which represent in a col-
lapsed way the possible inside derivations of edges
(A, i, j). We call these items inside edge items or
simply inside items where clear; a graphical rep-
resentation of an inside item can be seen in Fig-
ure 1(a). The space whose items are inside edges
is called the edge space.

These inside items are combined using the sin-
gle IN deduction schema shown in Table 1. This
schema is instantiated for every grammar rule r

1While we present the algorithm specialized to parsing
with a PCFG, it generalizes to a wide range of hypergraph
search problems as shown in Klein and Manning (2001).
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Figure 1: Representations of the different types of
items used in parsing. (a) An inside edge item:
I(VP, 2, 5). (b) An outside edge item: O(VP, 2, 5).
(c) An inside derivation item: D(TVP, 2, 5) for a tree
TVP. (d) A ranked derivation item: K(VP, 2, 5, 6).
(e) A modified inside derivation item (with back-
pointers to ranked items): D(VP, 2, 5, 3,VP →
VBZ NP, 1, 4).

in G. For IN, the function g(·) simply sums the
weights of the antecedent items and the gram-
mar rule r, while the priority function p(·) adds
a heuristic to this sum. The heuristic is a bound
on the Viterbi outside score α(e) of an edge e;
see Klein and Manning (2003c) for details. A
good heuristic allows A∗ to reach the goal item
I(G, 0, n) while constructing few inside items.

If the heuristic is consistent, then A∗ guarantees
that whenever an inside item comes off the agenda,
its weight is its true Viterbi inside score (Klein and
Manning, 2003c). In particular, this guarantee im-
plies that the goal item I(G, 0, n) will be popped
with the score of the 1-best parse of the sentence.
Consistency also implies that items are popped off
the agenda in increasing order of bounded Viterbi
scores:

β(e) + h(e)

We will refer to this monotonicity as the order-
ing property of A∗ (Felzenszwalb and McAllester,
2007). One final property implied by consistency
is admissibility, which states that the heuristic
never overestimates the true Viterbi outside score
for an edge, i.e. h(e) ≤ α(e). For the remain-
der of this paper, we will assume our heuristics
are consistent.

2.3 A Naive k-Best A∗ Algorithm

Due to the optimal substructure of 1-best PCFG
derivations, a 1-best parser searches over the space
of edges; this is the essence of 1-best dynamic
programming. Although most edges can be built
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Inside Edge Deductions (Used in A∗ and KA∗)

IN: I(B, i, l) : w1 I(C, l, j) : w2
w1+w2+wr+h(A,i,j)−−−−−−−−−−−−−→ I(A, i, j) : w1 + w2 + wr

Table 1: The deduction schema (IN) for building inside edge items, using a supplied heuristic. This schema is
sufficient on its own for 1-best A∗, and it is used in KA∗. Here, r is the rule A→ B C.

Inside Derivation Deductions (Used in NAIVE)

DERIV: D(TB , i, l) : w1 D(TC , l, j) : w2
w1+w2+wr+h(A,i,j)−−−−−−−−−−−−−→ D

(
A

TB TC

, i, j

)
: w1 + w2 + wr

Table 2: The deduction schema for building derivations, using a supplied heuristic. TB and TC denote full tree
structures rooted at symbols B and C. This schema is the same as the IN deduction schema, but operates on the
space of fully specified inside derivations rather than dynamic programming edges. This schema forms the NAIVE
k-best algorithm.

Outside Edge Deductions (Used in KA∗)

OUT-B: I(G, 0, n) : w1
w1−−→ O(G, 0, n) : 0

OUT-L: O(A, i, j) : w1 I(B, i, l) : w2 I(C, l, j) : w3
w1+w3+wr+w2−−−−−−−−−−→ O(B, i, l) : w1 + w3 + wr

OUT-R: O(A, i, j) : w1 I(B, i, l) : w2 I(C, l, j) : w3
w1+w2+wr+w3−−−−−−−−−−→ O(C, l, j) : w1 + w2 + wr

Table 3: The deduction schemata for building ouside edge items. The first schema is a base case that constructs an
outside item for the goal (G, 0, n) from the inside item I(G, 0, n). The second two schemata build outside items
in a top-down fashion. Note that for outside items, the completion cost is the weight of an inside item rather than
a value computed by a heuristic.

Delayed Inside Derivation Deductions (Used in KA∗)

DERIV: D(TB , i, l) : w1 D(TC , l, j) : w2 O(A, i, j) : w3
w1+w2+wr+w3−−−−−−−−−−→ D

(
A

TB TC

, i, j

)
: w1 + w2 + wr

Table 4: The deduction schema for building derivations, using exact outside scores computed using OUT deduc-
tions. The dependency on the outside item O(A, i, j) delays building derivation items until exact Viterbi outside
scores have been computed. This is the final search space for the KA∗ algorithm.

Ranked Inside Derivation Deductions (Lazy Version of NAIVE)

BUILD: K(B, i, l, u) : w1 K(C, l, j, v) : w2
w1+w2+wr+h(A,i,j)−−−−−−−−−−−−−→ D(A, i, j, l, r, u, v) : w1 + w2 + wr

RANK: D1(A, i, j, ·) : w1 . . . Dk(A, i, j, ·) : wk
maxm wm+h(A,i,j)−−−−−−−−−−−−→ K(A, i, j, k) : maxm wm

Table 5: The schemata for simultaneously building and ranking derivations, using a supplied heuristic, for the lazier
form of the NAIVE algorithm. BUILD builds larger derivations from smaller ones. RANK numbers derivations
for each edge. Note that RANK requires distinct Di, so a rank k RANK rule will first apply (optimally) as soon as
the kth-best inside derivation item for a given edge is removed from the queue. However, it will also still formally
apply (suboptimally) for all derivation items dequeued after the kth. In practice, the RANK schema need not be
implemented explicitly – one can simply assign a rank to each inside derivation item when it is removed from the
agenda, and directly add the appropriate ranked inside item to the chart.

Delayed Ranked Inside Derivation Deductions (Lazy Version of KA∗)

BUILD: K(B, i, l, u) : w1 K(C, l, j, v) : w2 O(A, i, j) : w3
w1+w2+wr+w3−−−−−−−−−−→ D(A, i, j, l, r, u, v) : w1 + w2 + wr

RANK: D1(A, i, j, ·) : w1 . . . Dk(A, i, j, ·) : wk O(A, i, j) : wk+1
maxm wm+wk+1−−−−−−−−−−−→ K(A, i, j, k) : maxm wm

Table 6: The deduction schemata for building and ranking derivations, using exact outside scores computed from
OUT deductions, used for the lazier form of the KA∗ algorithm.
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using many derivations, each inside edge item
will be popped exactly once during parsing, with
a score and backpointers representing its 1-best
derivation.

However, k-best lists involve suboptimal
derivations. One way to compute k-best deriva-
tions is therefore to abandon optimal substructure
and dynamic programming entirely, and to search
over the derivation space, the much larger space
of fully specified trees. The items in this space are
called inside derivation items, or derivation items
where clear, and are of the form D(TA, i, j), spec-
ifying an entire tree TA rooted at symbol A and
spanning si+1 . . . sj (see Figure 1(c)). Derivation
items are combined using the DERIV schema of
Table 2. The goals in this space, representing root
parses, are any derivation items rooted at symbol
G that span the entire input.

In this expanded search space, each distinct
parse has its own derivation item, derivable only
in one way. If we continue to search long enough,
we will pop multiple goal items. The first k which
come off the agenda will be the k-best derivations.
We refer to this approach as NAIVE. It is very in-
efficient on its own, but it leads to the full algo-
rithm.

The correctness of this k-best algorithm follows
from the correctness of A∗ parsing. The derivation
space of full trees is simply the edge space of a
much larger grammar (see Section 2.5).

Note that the DERIV schema’s priority includes
a heuristic just like 1-best A∗. Because of the
context freedom of the grammar, any consistent
heuristic for inside edge items usable in 1-best A∗

is also consistent for inside derivation items (and
vice versa). In particular, the 1-best Viterbi out-
side score for an edge is a “perfect” heuristic for
any derivation of that edge.

While correct, NAIVE is massively inefficient.
In comparison with A∗ parsing over G, where there
are O(n2) inside items, the size of the derivation
space is exponential in the sentence length. By
the ordering property, we know that NAIVE will
process all derivation items d with

δ(d) + h(d) ≤ δ(gk)

where gk is the kth-best root parse and δ(·) is the
inside score of a derivation item (analogous to β
for edges).2 Even for reasonable heuristics, this

2The new symbol emphasizes that δ scores a specific
derivation rather than a minimum over a set of derivations.

number can be very large; see Section 3 for empir-
ical results.

This naive algorithm is, of course, not novel, ei-
ther in general approach or specific computation.
Early k-best parsers functioned by abandoning dy-
namic programming and performing beam search
on derivations (Ratnaparkhi, 1999; Collins, 2000).
Huang (2005) proposes an extension of Knuth’s
algorithm (Knuth, 1977) to produce k-best lists
by searching in the space of derivations, which
is essentially this algorithm. While Huang (2005)
makes no explicit mention of a heuristic, it would
be easy to incorporate one into their formulation.

2.4 A New k-Best A∗ Parser

While NAIVE suffers severe performance degra-
dation for loose heuristics, it is in fact very effi-
cient if h(·) is “perfect,” i.e. h(e) = α(e) ∀e. In
this case, the ordering property of A∗ guarantees
that only inside derivation items d satisfying

δ(d) + α(d) ≤ δ(gk)

will be placed in the chart. The set of derivation
items d satisfying this inequality is exactly the set
which appear in the k-best derivations of (G, 0, n)
(as always, modulo ties). We could therefore use
NAIVE quite efficiently if we could obtain exact
Viterbi outside scores.

One option is to compute outside scores with
exhaustive dynamic programming over the orig-
inal grammar. In a certain sense, described in
greater detail below, this precomputation of exact
heuristics is equivalent to the k-best extraction al-
gorithm of Huang and Chiang (2005). However,
this exhaustive 1-best work is precisely what we
want to use A∗ to avoid.

Our algorithm solves this problem by integrat-
ing three searches into a single agenda-driven pro-
cess. First, an A∗ search in the space of inside
edge items with an (imperfect) external heuristic
h(·) finds exact inside scores. Second, exact out-
side scores are computed from inside and outside
items. Finally, these exact outside scores guide the
search over derivations. It can be useful to imag-
ine these three operations as operating in phases,
but they are all interleaved, progressing in order of
their various priorities.

In order to calculate outside scores, we intro-
duce outside items O(A, i, j), which represent
best derivations of G → s1 . . . si A sj+1 . . . sn;
see Figure 1(b). Where the weights of inside items
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compute Viterbi inside scores, the weights of out-
side items compute Viterbi outside scores.

Table 3 shows deduction schemata for building
outside items. These schemata are adapted from
the schemata used in the general hierarchical A∗

algorithm of Felzenszwalb and McAllester (2007).
In that work, it is shown that such schemata main-
tain the property that the weight of an outside item
is the true Viterbi outside score when it is removed
from the agenda. They also show that outside
items o follow an ordering property, namely that
they are processed in increasing order of

β(o) + α(o)

This quantity is the score of the best root deriva-
tion which includes the edge corresponding to o.
Felzenszwalb and McAllester (2007) also show
that both inside and outside items can be processed
on the same queue and the ordering property holds
jointly for both types of items.

If we delay the construction of a derivation
item until its corresponding outside item has been
popped, then we can gain the benefits of using an
exact heuristic h(·) in the naive algorithm. We re-
alize this delay by modifying the DERIV deduc-
tion schema as shown in Table 4 to trigger on and
prioritize with the appropriate outside scores.

We now have our final algorithm, which we call
KA∗. It is the union of the IN, OUT, and new “de-
layed” DERIV deduction schemata. In words, our
algorithm functions as follows: we initialize the
agenda with I(si, i − 1, i) and D(si, i − 1, i) for
i = 1 . . . n. We compute inside scores in standard
A∗ fashion using the IN deduction rule, using any
heuristic we might provide to 1-best A∗. Once the
inside item I(G, 0, n) is found, we automatically
begin to compute outside scores via the OUT de-
duction rules. Once O(si, i − 1, i) is found, we
can begin to also search in the space of deriva-
tion items, using the perfect heuristics given by
the just-computed outside scores. Note, however,
that all computation is done with a single agenda,
so the processing of all three types of items is in-
terleaved, with the k-best search possibly termi-
nating without a full inside computation. As with
NAIVE, the algorithm terminates when a k-th goal
derivation is dequeued.

2.5 Correctness
We prove the correctness of this algorithm by a re-
duction to the hierarchical A∗ (HA∗) algorithm of
Felzenszwalb and McAllester (2007). The input

to HA∗ is a target grammar Gm and a list of gram-
mars G0 . . .Gm−1 in which Gt−1 is a relaxed pro-
jection of Gt for all t = 1 . . .m. A grammar Gt−1

is a projection of Gt if there exists some onto func-
tion πt : Σt 7→ Σt−1 defined for all symbols in Gt.
We use At−1 to represent πt(At). A projection is
relaxed if, for every rule r = At → BtCt with
weight wr there is a rule r′ = At−1 → Bt−1Ct−1

in Gt−1 with weight wr′ ≤ wr.
We assume that our external heuristic function

h(·) is constructed by parsing our input sentence
with a relaxed projection of our target grammar.
This assumption, though often true anyway, is
to allow proof by reduction to Felzenszwalb and
McAllester (2007).3

We construct an instance of HA∗ as follows: Let
G0 be the relaxed projection which computes the
heuristic. Let G1 be the input grammar G, and let
G2, the target grammar of our HA∗ instance, be the
grammar of derivations in G formed by expanding
each symbol A in G to all possible inside deriva-
tions TA rooted atA. The rules in G2 have the form
TA → TB TC with weight given by the weight of
the rule A → B C. By construction, G1 is a re-
laxed projection of G2; by assumption G0 is a re-
laxed projection of G1. The deduction rules that
describe KA∗ build the same items as HA∗ with
same weights and priorities, and so the guarantees
from HA∗ carry over to KA∗.

We can characterize the amount of work done
using the ordering property. Let gk be the kth-best
derivation item for the goal edge g. Our algorithm
processes all derivation items d, outside items o,
and inside items i satisfying

δ(d) + α(d) ≤ δ(gk)
β(o) + α(o) ≤ δ(gk)
β(i) + h(i) ≤ δ(gk)

We have already argued that the set of deriva-
tion items satisfying the first inequality is the set of
subtrees that appear in the optimal k-best parses,
modulo ties. Similarly, it can be shown that the
second inequality is satisfied only for edges that
appear in the optimal k-best parses. The last in-
equality characterizes the amount of work done in
the bottom-up pass. We compare this to 1-best A∗,
which pops all inside items i satisfying

β(i) + h(i) ≤ β(g) = δ(g1)

3KA∗ is correct for any consistent heuristic but a non-
reductive proof is not possible in the present space.
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Thus, the “extra” inside items popped in the
bottom-up pass during k-best parsing as compared
to 1-best parsing are those items i satisfying

δ(g1) ≤ β(i) + h(i) ≤ δ(gk)

The question of how many items satisfy these
inequalities is empirical; we show in our experi-
ments that it is small for reasonable heuristics. At
worst, the bottom-up phase pops all inside items
and reduces to exhaustive dynamic programming.

Additionally, it is worth noting that our algo-
rithm is naturally online in that it can be stopped
at any k without advance specification.

2.6 Lazy Successor Functions
The global ordering property guarantees that we
will only dequeue derivation fragments of top
parses. However, we will enqueue all combina-
tions of such items, which is wasteful. By ex-
ploiting a local ordering amongst derivations, we
can be more conservative about combination and
gain the advantages of a lazy successor function
(Huang and Chiang, 2005).

To do so, we represent inside derivations not
by explicitly specifying entire trees, but rather
by using ranked backpointers. In this represen-
tation, inside derivations are represented in two
ways, shown in Figure 1(d) and (e). The first
way (d) simply adds a rank u to an edge, giving
a tuple (A, i, j, u). The corresponding item is the
ranked derivation item K(A, i, j, u), which repre-
sents the uth-best derivation of A over (i, j). The
second representation (e) is a backpointer of the
form (A, i, j, l, r, u, v), specifying the derivation
formed by combining the uth-best derivation of
(B, i, l) and the vth-best derivation of (C, l, j) us-
ing rule r = A→ B C. The corresponding items
D(A, i, j, l, r, u, v) are the new form of our inside
derivation items.

The modified deduction schemata for the
NAIVE algorithm over these representations are
shown in Table 5. The BUILD schema pro-
duces new inside derivation items from ranked
derivation items, while the RANK schema as-
signs each derivation item a rank; together they
function like DERIV. We can find the k-best list
by searching until K(G, 0, n, k) is removed from
the agenda. The k-best derivations can then
be extracted by following the backpointers for
K(G, 0, n, 1) . . . K(G, 0, n, k). The KA∗ algo-
rithm can be modified in the same way, shown in
Table 6.
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Figure 2: Number of derivation items enqueued as a
function of heuristic. Heuristics are shown in decreas-
ing order of tightness. The y-axis is on a log-scale.

The actual laziness is provided by addition-
ally delaying the combination of ranked items.
When an item K(B, i, l, u) is popped off the
queue, a naive implementation would loop over
items K(C, l, j, v) for all v, C, and j (and
similarly for left combinations). Fortunately,
little looping is actually necessary: there is
a partial ordering of derivation items, namely,
that D(A, i, j, l, r, u, v) will have a lower com-
puted priority than D(A, i, j, l, r, u − 1, v) and
D(A, i, j, l, r, u, v − 1) (Jiménez and Marzal,
2000). So, we can wait until one of the latter two
is built before “triggering” the construction of the
former. This triggering is similar to the “lazy fron-
tier” used by Huang and Chiang (2005). All of our
experiments use this lazy representation.

3 Experiments

3.1 State-Split Grammars
We performed our first experiments with the gram-
mars of Petrov et al. (2006). The training pro-
cedure for these grammars produces a hierarchy
of increasingly refined grammars through state-
splitting. We followed Pauls and Klein (2009) in
computing heuristics for the most refined grammar
from outside scores for less-split grammars.

We used the Berkeley Parser4 to learn such
grammars from Sections 2-21 of the Penn Tree-
bank (Marcus et al., 1993). We trained with 6
split-merge cycles, producing 7 grammars. We
tested these grammars on 100 sentences of length
at most 30 of Section 23 of the Treebank. Our
“target grammar” was in all cases the most split
grammar.

4http://berkeleyparser.googlecode.com
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Figure 3: The cost of k-best extraction as a function of k for state-split grammars, for both KA∗ and EXH. The
amount of time spent in the k-best phase is negligible compared to the cost of the bottom-up phase in both cases.

Heuristics computed from projections to suc-
cessively smaller grammars in the hierarchy form
successively looser bounds on the outside scores.
This allows us to examine the performance as a
function of the tightness of the heuristic. We first
compared our algorithm KA∗ against the NAIVE
algorithm. We extracted 1000-best lists using each
algorithm, with heuristics computed using each of
the 6 smaller grammars.

In Figure 2, we evaluate only the k-best extrac-
tion phase by plotting the number of derivation
items and outside items added to the agenda as
a function of the heuristic used, for increasingly
loose heuristics. We follow earlier work (Pauls
and Klein, 2009) in using number of edges pushed
as the primary, hardware-invariant metric for eval-
uating performance of our algorithms.5 While
KA∗ scales roughly linearly with the looseness of
the heuristic, NAIVE degrades very quickly as the
heuristics get worse. For heuristics given by gram-
mars weaker than the 4-split grammar, NAIVE ran
out of memory.

Since the bottom-up pass of k-best parsing is
the bottleneck, we also examine the time spent
in the 1-best phase of k-best parsing. As a base-
line, we compared KA∗ to the approach of Huang
and Chiang (2005), which we will call EXH (see
below for more explanation) since it requires ex-
haustive parsing in the bottom-up pass. We per-
formed the exhaustive parsing needed for EXH
in our agenda-based parser to facilitate compar-
ison. For KA∗, we included the cost of com-
puting the heuristic, which was done by running
our agenda-based parser exhaustively on a smaller
grammar to compute outside items; we chose the

5We found that edges pushed was generally well corre-
lated with parsing time.
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Figure 4: The performance of KA∗ for lexicalized
grammars. The performance is dominated by the com-
putation of the heuristic, so that both the bottom-up
phase and the k-best phase are barely visible.

3-split grammar for the heuristic since it gives the
best overall tradeoff of heuristic and bottom-up
parsing time. We separated the items enqueued
into items enqueued while computing the heuris-
tic (not strictly part of the algorithm), inside items
(“bottom-up”), and derivation and outside items
(together “k-best”). The results are shown in Fig-
ure 3. The cost of k-best extraction is clearly
dwarfed by the the 1-best computation in both
cases. However, KA∗ is significantly faster over
the bottom-up computations, even when the cost
of computing the heuristic is included.

3.2 Lexicalized Parsing

We also experimented with the lexicalized parsing
model described in Klein and Manning (2003b).
This model is constructed as the product of a
dependency model and the unlexicalized PCFG
model in Klein and Manning (2003a). We
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Figure 5: k-best extraction as a function of k for tree transducer grammars, for both KA∗ and EXH.

constructed these grammars using the Stanford
Parser.6 The model was trained on Sections 2-20
of the Penn Treebank and tested on 100 sentences
of Section 21 of length at most 30 words.

For this grammar, Klein and Manning (2003b)
showed that a very accurate heuristic can be con-
structed by taking the sum of outside scores com-
puted with the dependency model and the PCFG
model individually. We report performance as a
function of k for KA∗ in Figure 4. Both NAIVE
and EXH are impractical on these grammars due
to memory limitations. For KA∗, computing the
heuristic is the bottleneck, after which bottom-up
parsing and k-best extraction are very fast.

3.3 Tree Transducer Grammars

Syntactic machine translation (Galley et al., 2004)
uses tree transducer grammars to translate sen-
tences. Transducer rules are synchronous context-
free productions that have both a source and a tar-
get side. We examine the cost of k-best parsing in
the source side of such grammars with KA∗, which
can be a first step in translation.

We extracted a grammar from 220 million
words of Arabic-English bitext using the approach
of Galley et al. (2006), extracting rules with at
most 3 non-terminals. These rules are highly lex-
icalized. About 300K rules are applicable for a
typical 30-word sentence; we filter the rest. We
tested on 100 sentences of length at most 40 from
the NIST05 Arabic-English test set.

We used a simple but effective heuristic for
these grammars, similar to the FILTER heuristic
suggested in Klein and Manning (2003c). We pro-
jected the source projection to a smaller grammar
by collapsing all non-terminal symbols to X, and

6http://nlp.stanford.edu/software/

also collapsing pre-terminals into related clusters.
For example, we collapsed the tags NN, NNS,
NNP, and NNPS to N. This projection reduced
the number of grammar symbols from 149 to 36.
Using it as a heuristic for the full grammar sup-
pressed ∼ 60% of the total items (Figure 5).

4 Related Work

While formulated very differently, one limiting
case of our algorithm relates closely to the EXH
algorithm of Huang and Chiang (2005). In par-
ticular, if all inside items are processed before any
derivation items, the subsequent number of deriva-
tion items and outside items popped by KA∗ is
nearly identical to the number popped by EXH in
our experiments (both algorithms have the same
ordering bounds on which derivation items are
popped). The only real difference between the al-
gorithms in this limited case is that EXH places
k-best items on local priority queues per edge,
while KA∗ makes use of one global queue. Thus,
in addition to providing a method for speeding
up k-best extraction with A∗, our algorithm also
provides an alternate form of Huang and Chiang
(2005)’s k-best extraction that can be phrased in a
weighted deduction system.

5 Conclusions

We have presented KA∗, an extension of A∗ pars-
ing that allows extraction of optimal k-best parses
without the need for an exhaustive 1-best pass. We
have shown in several domains that, with an ap-
propriate heuristic, our algorithm can extract k-
best lists in a fraction of the time required by cur-
rent approaches to k-best extraction, giving the
best of both A∗ parsing and efficient k-best extrac-
tion, in a unified procedure.
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