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Abstract 

The tree sequence based translation model al-

lows the violation of syntactic boundaries in a 

rule to capture non-syntactic phrases, where a 

tree sequence is a contiguous sequence of sub-

trees. This paper goes further to present a trans-

lation model based on non-contiguous tree se-

quence alignment, where a non-contiguous tree 

sequence is a sequence of sub-trees and gaps. 

Compared with the contiguous tree sequence-

based model, the proposed model can well han-

dle non-contiguous phrases with any large gaps 

by means of non-contiguous tree sequence 

alignment. An algorithm targeting the non-

contiguous constituent decoding is also proposed. 

Experimental results on the NIST MT-05 Chi-

nese-English translation task show that the pro-

posed model statistically significantly outper-

forms the baseline systems. 

1 Introduction 

Current research in statistical machine translation 

(SMT) mostly settles itself in the domain of either 

phrase-based or syntax-based. Between them, the 

phrase-based approach (Marcu and Wong, 2002; 

Koehn et al, 2003; Och and Ney, 2004) allows lo-

cal reordering and contiguous phrase translation. 

However, it is hard for phrase-based models to 

learn global reorderings and to deal with non-

contiguous phrases. To address this issue, many 

syntax-based approaches (Yamada and Knight, 

2001; Eisner, 2003; Gildea, 2003; Ding and Palmer, 

2005; Quirk et al, 2005; Zhang et al, 2007, 2008a; 

Bod, 2007; Liu et al, 2006, 2007; Hearne and Way, 

2003) tend to integrate more syntactic information 

to enhance the non-contiguous phrase modeling. In 

general, most of them achieve this goal by intro-

ducing syntactic non-terminals as translational 

equivalent placeholders in both source and target 

sides. Nevertheless, the generated rules are strictly 

required to be derived from the contiguous transla-

tional equivalences (Galley et al, 2006; Marcu et al, 

2006; Zhang et al, 2007, 2008a, 2008b; Liu et al, 

2006, 2007). Among them, Zhang et al. (2008a) 

acquire the non-contiguous phrasal rules from the 

contiguous tree sequence pairs1, and find them use-

less via real syntax-based translation systems. 

However, Wellington et al. (2006) statistically re-

port that discontinuities are very useful for transla-

tional equivalence analysis using binary branching 

structures under word alignment and parse tree 

constraints. Bod (2007) also finds that discontinues 

phrasal rules make significant improvement in lin-

guistically motivated STSG-based translation 

model. The above observations are conflicting to 

each other. In our opinion, the non-contiguous 

phrasal rules themselves may not play a trivial role, 

as reported in Zhang et al. (2008a). We believe that 

the effectiveness of non-contiguous phrasal rules 

highly depends on how to extract and utilize them.   

To verify the above assumption, suppose there is 

only one tree pair in the training data with its 

alignment information illustrated as Fig. 1(a) 2. A 

test sentence is given in Fig. 1(b): the source sen-

tence with its syntactic tree structure as the upper 

tree and the expected target output with its syntac-

tic structure as the lower tree. In the tree sequence 

alignment based model, in addition to the entire 

tree pair, it is capable to acquire the contiguous 

tree sequence pairs: TSP (1~4) 3  in Fig. 1. By 

means of the rules derived from these contiguous 

tree sequence pairs, it is easy to translate the conti-

guous phrase �
�

/he ��� /show up � /�s�. As for the 

non-contiguous phrase � � /at, ***, ��� /time�, the 

only related rule is r1 derived from TSP4 and the 

entire tree pair. However, the source side of r1 does 

not match the source tree structure of the test sen-

tence. Therefore, we can only partially translate the 

illustrated test sentence with this training sample. 

                                                 
1 A tree sequence pair in this context is a kind of translational 

equivalence comprised of a pair of tree sequences. 
2 We illustrate the rule extraction with an example from the 

tree-to-tree translation model based on tree sequence align-

ment (Zhang et al, 2008a) without losing of generality to most 

syntactic tree based models. 
3 We only list the contiguous tree sequence pairs with one 

single sub-tree in both sides without losing of generality. 
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As discussed above, the problem lies in that the 

non-contiguous phrases derived from the conti-

guous tree sequence pairs demand greater reliance 

on the context. Consequently, when applying those 

rules to unseen data, it may suffer from the data 

sparseness problem. The expressiveness of the 

model also slacks due to their weak ability of gene-

ralization.  

To address this issue, we propose a syntactic 

translation model based on non-contiguous tree 

sequence alignment. This model extracts the 

translation rules not only from the contiguous tree 

sequence pairs but also from the non-contiguous 

tree sequence pairs where a non-contiguous tree 

sequence is a sequence of sub-trees and gaps. With 

the help of the non-contiguous tree sequence, the 

proposed model can well capture the non-
contiguous phrases in avoidance of the constraints 

of large applicability of context and enhance the 

non-contiguous constituent modeling. As for the 

above example, the proposed model enables the 

non-contiguous tree sequence pair indexed as 

TSP5 in Fig. 1 and is allowed to further derive r2 

from TSP5. By means of r2 and the same 

processing to the contiguous phrase �
�

/he � �
/show up � /�s� as the contiguous tree sequence 

based model, we can successfully translate the en-

tire source sentence in Fig. 1(b). 

We define a synchronous grammar, named Syn-

chronous non-contiguous Tree Sequence Substitu-

tion Grammar (SncTSSG), extended from syn-

chronous tree substitution grammar (STSG: 

Chiang, 2006) to illustrate our model. The pro-

posed synchronous grammar is able to cover the 

previous proposed grammar based on tree (STSG, 

Eisner, 2003; Zhang et al, 2007) and tree sequence 

(STSSG, Zhang et al, 2008a) alignment. Besides, 

we modify the traditional parsing based decoding 

algorithm for syntax-based SMT to facilitate the 

non-contiguous constituent decoding for our model. 

To the best of our knowledge, this is the first 

attempt to acquire the translation rules with rich 

syntactic structures from the non-contiguous 

Translational Equivalences (non-contiguous tree 

sequence pairs in this context). 

The rest of this paper is organized as follows: 

Section 2 presents a formal definition of our model 

with detailed parameterization. Sections 3 and 4 

elaborate the extraction of the non-contiguous tree 

sequence pairs and the decoding algorithm respec-

tively. The experiments we conduct to assess the 

effectiveness of the proposed method are reported 

in Section 5. We finally conclude this work in Sec-

tion 6. 

2 Non-Contiguous Tree sequence Align-
ment-based Model  

In this section, we give a formal definition of 

SncTSSG and accordingly we propose the align-

ment based translation model. The details of prob-

abilistic parameterization are elaborated based on 

the log-linear framework. 

2.1 Synchronous non-contiguous TSSG 
(SncTSSG) 

Extended from STSG (Shiever, 2004), SncTSSG 

can be formalized as a quintuple G = <  , , , 

, R>, where: 

x and  are source and target terminal 

alphabets (words) respectively, and 

x  and  are source and target non-

terminal alphabets (linguistically syntactic 

tags, i.e. NP, VP) respectively; as well as the 

non-terminal  to denote a gap,  

VP

NP

ASVV PN

IP

CP

NNDECVV

� �������	


SBAR

VP

S

RPVBZPRPWRB

upshowshewhen

TSP1:  PN(� ) �  PRP(he)

r1: VP(VV(
 ),AS( � ),NP(CP[0],NN( ��� ))) �
SBAR(WRB(when),S[0])

TSP5:  VV( 
 ), *** ,NN( ��� ) �  WRB(when)

TSP3:  IP(PN( � ),VV( ��� )) �  

S((PRP(he), VP(VBZ(shows), RP(up))))

TSP2:  VV( ��� ) �  VP(VBZ(shows),RP(up))

r2: VV(
 ), *** ,NN( ��� ) � WRB(when) 

TSP4:  CP(IP(PN(� ),VV( ��� )),DEC( � )) �  

S((PRP(he), VP(VBZ(shows), RP(up))))
(at) (NULL) (he) (show up) (þs) (time)

VP

NP

VV PN

IP

CP

NNDECVV

� �������	

SBAR

VP

S

RPVBZPRPWRB

upshowshewhen

(at) (he) (show up) (þs) (time)

 
                      (a)                                                (b) 

 

Figure 1: Rule extraction of tree-to-tree model based on tree sequence pairs 
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 can represent any syntactic or non-

syntactic tree sequences, and 

x R is a production rule set consisting of rules 

derived from corresponding contiguous or 

non-contiguous tree sequence pairs, where a 

rule is a pair of contiguous or non-

contiguous tree sequence with alignment re-

lation between leaf nodes across the tree se-

quence pair. 

A non-contiguous tree sequence translation rule 

r  R can be further defined as a triple 

, where: 

x is a non-contiguous source tree 

sequence, covering the span set 

 in , where 

  which means each subspan has non-

zero width and  which means there 

is a non-zero gap between each pair of 

consecutive intervals. A gap of interval 

[ ] is denoted as , and  

x is a non-contiguous target tree 

sequence, covering the span set 

 in , where   

which means each subspan has non-zero 

width and  which means there is a 

non-zero gap between each pair of 

consecutive intervals. A gap of interval 

[ ] is denoted as , and 

x  are the alignments between leaf nodes of 

the source and target non-contiguous tree 

sequences, satisfying the following 

conditions : 

,  

where   and  

In SncTSSG, the leaf nodes in a non-contiguous 

tree sequence rule can be either non-terminal 

symbols (grammar tags) or terminal symbols 

(lexical words) and the non-terminal symbols with 

the same index which are subsumed 

simultaneously are not required to be contiguous. 

Fig. 4 shows two examples of non-contiguous tree 

sequence rules (�non-contiguous rule� for short in 

the following context) derived from the non-

contiguous tree sequence pair (in Fig. 3) which is 

extracted from the bilingual tree pair in Fig. 2. 

Between them, ncTSr1 is a tree rule with internal 

nodes non-contiguously subsumed from a 

contiguous tree sequence pair (dashed in Fig. 2) 

while ncTSr2 is a non-contiguous rule with a 

contiguous source side and a non-contiguous target 

side. Obviously, the non-contiguous tree sequence 

rule ncTSr2 is more flexible by neglecting the 

context among the gaps of the tree sequence pair 

while capturing all aligned counterparts with the 

corresponding syntactic structure information. We 

 
 

Figure 2: A word-aligned parse tree pair 

 

 
 

Figure 3: A non-contiguous tree sequence pair 

 

 
 

Figure 4: Two examples of non-contiguous  
tree sequence translation rules 
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expect these properties can well address the issues 

of non-contiguous phrase modeling. 

2.2 SncTSSG based Translation Model 

Given the source and target sentence and , as 

well as the corresponding parse trees �  

and� , our approach directly approximates the 

posterior probability  based on 

the log-linear framework: 

 

���  

 

In this model, the feature function hm is log-

linearly combined by the corresponding parameter 

(Och and Ney, 2002). The following features 

are utilized in our model: 

1) The bi-phrasal translation probabilities 

2) The bi-lexical translation probabilities 

3) The target language model 

4) The # of words in the target sentence 

5) The  # of rules utilized 

6) The average tree depth in the source side 

of the rules adopted 

7) The # of non-contiguous rules utilized 

8) The # of reordering times caused by the 

utilization of the non-contiguous rules 

Feature 1~6 can be applied to either STSSG or 

SncTSSG based models, while the last two targets 

SncTSSG only. 

3 Tree Sequence Pair Extraction  

In training, other than the contiguous tree sequence 

pairs, we extract the non-contiguous ones as well. 

Nevertheless, compared with the contiguous tree 

sequence pairs, the non-contiguous ones suffer 

more from the tree sequence pair redundancy 

problem that one non-contiguous tree sequence 

pair can be comprised of two or more unrelated 

and nonadjacent contiguous ones. To model the 

contiguous phrases, this problem is actually trivial, 

since the contiguous phrases stay adjacently and 

share the related syntactic constraints; however, as 

for non-contiguous phrase modeling, the cohesion 

of syntactically and semantically unrelated tree 

sequence pairs is more likely to generate noisy 

rules which do not benefit at all. In order to minim-

ize the number of redundant tree sequence pairs, 

we limit the # of gaps of non-contiguous tree se-

quence pairs to be 0 in either source or target side. 

In other words, we only allow one side to be non-

contiguous (either source or target side) to partially 

reserve its syntactic and semantic cohesion4. We 

further design a two-phase algorithm to extract the 

tree sequence pairs as described in Algorithm 1.  

For the first phase (line 1-11), we extract the 

contiguous tree sequence pairs (line 3-5) and the 

non-contiguous ones with contiguous tree se-

quence in the source side (line 6-9). In the second 

phase (line 12-19), the ones with contiguous tree 

sequence in the target side and non-contiguous tree 

sequence on the source side are extracted.  

                                                 
4 Wellington et al. (2006) also reports that allowing gaps in 

one side only is enough to eliminate the hierarchical alignment 

failure with word alignment and one side parse tree constraints. 

This is a particular case of our definition of non-contiguous 

tree sequence pair since a non-contiguous tree sequence can be 

considered to overcome the structural constraint by neglecting 

the structural information in the gaps. 

Algorithm 1: Tree Sequence Pair Extraction
Input: source tree and target tree  
Output: the set of tree sequence pairs 
Data structure:  
p[j1, j2] to store tree sequence pairs covering source 

span[j1, j2] 
1: foreach source span [j1, j2], do 

2:    find a target span [i1,i2] with minimal length cov-

ering all the target words aligned to [j1, j2] 

3:   if all the target words in [i1,i2] are aligned with 

source words only in [j1, j2], then 

4:       Pair each source tree sequence covering [j1, j2] 

with those in target covering [i1,i2] as a conti-

guous tree sequence pair 

5:         Insert them into p[j1, j2] 

6:     else 

7:       create sub-span set s([i1,i2]) to cover all the tar-

get words aligned to [j1, j2] 

8:       Pair each source tree sequence covering [j1, j2] 

with each target tree sequence covering 

s([i1,i2]) as a non-contiguous tree sequence pair 

9:         Insert them into p[j1, j2] 

10:   end if 
11:end do 

12: foreach target span [i1,i2], do 

13:   find a source span [j1, j2] with minimal length 

covering all the source words aligned to [i1,i2] 

14:    if any source word in [j1, j2] is aligned with tar-

get words outside [i1,i2], then 

15:       create sub-span set s([j1, j2]) to cover all the 

source words aligned to [i1,i2] 

16:         Pair each source tree sequence covering s([j1, 

j2]) with each target tree sequence covering 

[i1,i2] as a non-contiguous tree sequence pair 

17:          Insert them into p[j1, j2] 

18:     end if 
19: end do
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The extracted tree sequence pairs are then uti-

lized to derive the translation rules. In fact, both 

the contiguous and non-contiguous tree sequence 

pairs themselves are applicable translation rules; 

we denote these rules as Initial rules. By means of 

the Initial rules, we derive the Abstract rules simi-

larly as in Zhang et al. (2008a). 

Additionally, we develop a few constraints to 

limit the number of Abstract rules. The depth of a 

tree in a rule is no greater than h. The number of 

non-terminals as leaf nodes is no greater than c. 

The tree number is no greater than d. Besides, the 

number of lexical words at leaf nodes in an Initial 
rule is no greater than l. The maximal number of 

gaps for a non-contiguous rule is no greater than . 

4 The Pisces decoder 

We implement our decoder Pisces by simulating 

the span based CYK parser constrained by the 

rules of SncTSSG. The decoder translates each 

span iteratively in a bottom up manner which guar-

antees that when translating a source span, any of 

its sub-spans is already translated. 

For each source span [j1, j2], we perform a three-

phase decoding process. In the first phase, the 

source side contiguous translation rules are utilized 

as described in Algorithm 2. When translating us-

ing a source side contiguous rule, the target tree 

sequence of the rule whether contiguous or non-

contiguous is directly considered as a candidate 

translation for this span (line 3), if the rule is an 

Initial rule; otherwise, the non-terminal leaf nodes 

are replaced with the corresponding sub-spans� 

translations (line 5). 

In the second phase, the source side non-

contiguous rules5 for [j1, j2] are processed. As for 

                                                 
5 A source side non-contiguous translation rules which cover a 

list of n non-contiguous spans s([ , ], i=1,�,n) is consi-

dered to cover the source span [j1, j2] if and only if = j1 and 

= j2. 

the ones with non-terminal leaf nodes, the re-

placement with corresponding spans� translations 

is initially performed in the same way as with the 

contiguous rules in the first phase. After that, an 

operation specified for the source side non-

contiguous rules named �Source gap insertion� is 

performed. As illustrated in Fig. 5, to use the non-

contiguous rule r1, which covers the source span 

set ([0,0], [4,4]), the target portion �IN(in)� is first 

attained, then the translations to the gap span [1,3] 

is acquired from the previous steps and is inserted 

either to the right or to the left of �IN(in)�. The 

insertion is rather cohesion based but leaves a gap 

<***> for further �Target tree sequence reordering� 

in the next phase if necessary. 

 In the third phase, we carry out the other non-

contiguous rule specific operation named �Target 

tree sequence reordering�. Algorithm 3 gives an 

overview of this operation. For each source span, 

we first binarize the span into the left one and the 

right one. The translation hypothesis for this span 

is generated by firstly inserting the candidate trans-

lations of the right span to each gap in the ones of 

the left span respectively (line 2-9) and then re-

peating in the alternative direction (line10-17). The 

gaps for the insertion of the tree sequences in the 

target side are generated from either the inherit-

 
 

Figure 5: Illustration of �Source gap insertion�  
 

 

Algorithm 2: Contiguous rule processing 

Data structure:  
h[j1, j2]to store translations covering source span[j1, j2]

1: foreach rule r contiguous in source span [j1, j2], do 
2:     if r is an Initial rule, then 

3:         insert r into h[j1, j2] 

4:     else //Abstract rule 

5:   generate translations by replacing the non-

terminal leaf nodes of r with their correspond-

ing spans� translation 

6:         insert the new translation into h[j1, j2] 

7:     end if 
8: end do 
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ance of the target side non-contiguous tree se-

quence pairs or the production of the previous op-

erations of �Source gap insertion�. Therefore, the 

insertion for target gaps helps search for a better 

order of the non-contiguous constituents in the tar-

get side. On the other hand, the non-contiguous 

tree sequences with rich syntactic information are 

reordered, nevertheless, without much considera-

tion of the constraints of the syntactic structure. 

Consequently, this distortional operation, like 

phrase-based models, is much more flexible in the 

order of the target constituents than the traditional 

syntax-based models which are limited by the syn-

tactic structure. As a result, �Target tree sequence 

reordering� enhances the reordering ability of the 

model. 

To speed up the decoder, we use several thre-

sholds to limit the searching space for each span. 

The maximal number of the rules in a source span 

is no greater than . The maximal number of trans-

lation candidates for a source span is no greater 

than . On the other hand, to simplify the compu-

tation of language model, we only compute for 

source side contiguous translational hypothesis, 

while neglecting gaps in the target side if any. 

5 Experiments 

5.1 Experimental Settings  

In the experiments, we train the translation model 

on FBIS corpus (7.2M (Chinese) + 9.2M (English) 

words) and train a 4-gram language model on the 

Xinhua portion of the English Gigaword corpus 

(181M words) using the SRILM Toolkits (Stolcke, 

2002). We use these sentences with less than 50 

characters from the NIST MT-2002 test set as the 

development set and the NIST MT-2005 test set as 

our test set. We use the Stanford parser (Klein and 

Manning, 2003) to parse bilingual sentences on the 

training set and Chinese sentences on the devel-

opment and test set. The evaluation metric is case-

sensitive BLEU-4 (Papineni et al., 2002). We base 

on the m-to-n word alignments dumped by GI-

ZA++ to extract the tree sequence pairs. For the 

MER training, we modify Koehn�s version (Koehn, 

2004). We use Zhang et al�s implementation 

(Zhang et al, 2004) for 95% confidence intervals 

significant test. 

 We compare the SncTSSG based model against 

two baseline models: the phrase-based and the 

STSSG-based models. For the phrase-based model, 

we use Moses (Koehn et al, 2007) with its default 

settings; for the STSSG and SncTSSG based mod-

els we use our decoder Pisces by setting the fol-

lowing parameters: , , , , 

, . Additionally, for STSSG we set 

, and for SncTSSG, we set . 

5.2 Experimental Results  

Table 1 compares the performance of different 

models across the two systems. The proposed 

SncTSSG based model significantly outperforms 

(p < 0.05) the two baseline models. Since the 

SncTSSG based model covers the STSSG based 

model in its modeling ability and obtains a superset 

in rules, the improvement empirically verifies the 

effectiveness of the additional non-contiguous 

rules.  
 

System Model BLEU 

Moses cBP 23.86 
 

Pisces 
STSSG 25.92 

SncTSSG 26.53 

 

Table 1: Translation results of different models (cBP 

refers to contiguous bilingual phrases without syntactic 

structural information, as used in Moses) 
 

Table 2 measures the contribution of different 

combination of rules. cR refers to the rules derived 

from contiguous tree sequence pairs (i.e., all 

STSSG rules); ncPR refers to non-contiguous 

phrasal rules derived from contiguous tree se-

quence pairs with at least one non-terminal leaf 

node between two lexicalized leaf nodes (i.e., all 

non-contiguous rules in STSSG defined as in 

Zhang et al. (2008a)); srcncR refers to source side 

non-contiguous rules (SncTSSG rules only, not 

STSSG rules); tgtncR refers to target side non-

contiguous rules (SncTSSG rules only, not STSSG 

rules) and src&tgtncR refers non-contiguous rules 

Algorithm 3: Target tree sequence reordering
Data structure:  
h[j1, j2]to store translations covering source span[j1, 

j2] 
1: foreach k� [j1, j2), do                       
2:     foreach translation  h[j1, k], do 

3:         foreach gap  in , do 

4:             foreach translation  h[k+1, j2], do 

5:                  insert  into the position of  

6:                   insert the new translation into h[j1, j2] 

7:             end do 

8:         end do 

9:      end do 
10:    foreach translation  h[k+1, j2], do 

11:        foreach gap  in , do 

12:            foreach translation  h[j1, k], do 

13:                 insert  into the position of  

14:                  insert the new translation into h[j1, j2] 

15:            end do 

16:        end do 

17:    end do 

18:end do 
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with gaps in either side (srcncR+ tgtncR). The last 

three kinds of rules are all derived from non-
contiguous tree sequence pairs. 

1) From Exp 1 and 2 in Table 2, we find that 

non-contiguous phrasal rules (ncPR) derived from 

contiguous tree sequence pairs make little impact 

on the translation performance which is consistent 

with the discovery of Zhang et al. (2008a). How-

ever, if we append the non-contiguous phrasal 

rules derived from non-contiguous tree sequence 

pairs, no matter whether non-contiguous in source 

or in target, the performance statistically signifi-

cantly (p < 0.05) improves (as presented in Exp 

2~5), which validates our prediction that the non-

contiguous rules derived from non-contiguous tree 

sequence pairs contribute more to the performance 

than those acquired from contiguous tree sequence 

pairs.  

2) Not only that, after comparing Exp 6,7,8 

against Exp 3,4,5 respectively, we find that the 

ability of rules derived from non-contiguous tree 

sequence pairs generally covers that of the rules 

derived from the contiguous tree sequence pairs, 

due to the slight change in BLEU score.  

3) The further comparison of the non-

contiguous rules from non-contiguous spans in Exp. 

6&7 as well as Exp 3&4, shows that non-

contiguity in the target side in Chinese-English 

translation task is not so useful as that in the source 

side when constructing the non-contiguous phrasal 

rules. This also validates the findings in Welling-

ton et al. (2006) that varying the gaps on the Eng-

lish side (the target side in this context) seldom 

reduce the hierarchical alignment failures.  

Table 3 explores the contribution of the non-

contiguous translational equivalence to phrase-

based models (all the rules in Table 3 has no 

grammar tags, but a gap <***> is allowed in the 

last three rows). tgtncBP refers to the bilingual 

phrases with gaps in the target side; srcncBP refers 

to the bilingual phrases with gaps in the source 

side; src&tgtncBP refers to the bilingual phrases 

with gaps in either side. 
 

System Rule Set BLEU

Moses cBP 23.86 

 
 

Pisces 

cBP 22.63 

cBP + tgtncBP 23.74 

cBP + srcncBP 23.93 

cBP + src&tgtncBP 24.24 
 

Table 3: Performance of bilingual phrasal rules 

 

1) As presented in Table 3, the effectiveness 

of the bilingual phrases derived from non-

contiguous tree sequence pairs is clearly indicated. 

Models adopting both tgtncBP and srcncBP sig-

nificantly (p < 0.05) outperform the model adopt-

ing cBP only. 

2) Pisces underperforms Moses when utiliz-

ing cBPs only, since Pisces can only perform mo-

notonic search with cBPs. 

3) The bilingual phrase model with both 

tgtncBP and srcncBP even outperforms Moses. 

Compared with Moses, we only utilize plain fea-

tures in Pisces for the bilingual phrase model (Fea-

ture 1~5 for all phrases and additional 7, 8 only for 

non-contiguous bilingual phrases as stated in Sec-

tion 2.2; None of the complex reordering features 

or distortion features are employed by Pisces while 

Moses uses them), which suggests the effective-

ness of the non-contiguous rules and the advantag-

es of the proposed decoding algorithm. 

Table 4 studies the impact on performance when 

setting different maximal gaps allowed for either 

side in a tree sequence pair (parameter ) and the 

relation with the quantity of rule set.  

Significant improvement is achieved when al-

lowing at least one gap on either side compared 

with when only allowing contiguous tree sequence 

pairs. However, the further increment of gaps does 

not benefit much. The result exhibits the accor-

dance with the growing amplitude of the rule set 

filtered for the test set, in which the rule size in-

creases more slowly as the maximal number of 

gaps increments. As a result, this slow increase 

against the increment of gaps can be probably at-

tributed to the small augmentation of the effective 

ID Rule Set BLEU 

1 cR (STSSG) 25.92 

2 cR w/o ncPR 25.87 

3 cR w/o ncPR + tgtncR 26.14 

4 cR w/o ncPR + srcncR 26.50 

5 cR w/o ncPR + src&tgtncR 26.51 

6 cR + tgtncR 26.11 

7 cR + srcncR 26.56 

8 cR+src&tgtncR(SncTSSG) 26.53 

 

Table 2: Performance of different rule combination 

Max gaps allowed Rule # BLEU 

source target 

0 0 1,661,045 25.92 

1 1 +841,263 26.53 

2 2 +447,161 26.55 

3 3 +17,782 26.56 

 � +8,223 26.57 

 

Table 4: Performance and rule size changing with 

different maximal number of gaps 
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non-contiguous rules. 

In order to facilitate a better intuition to the abil-

ity of the SncTSSG based model against the 

STSSG based model, we present in Table 5, two 

translation outputs produced by both models.  

In the first example, GIZA++ wrongly aligns the 

idiom word �������� /confront at court� to a non-

contiguous phrase �confront other countries at 
court�***� leisurely manner� in training, in which 

only the first constituent �confront other countries 
at court� is reasonable, indicated from the key 

rules of SncTSSG leant from the training set.  The 

STSSG or any contiguous translational equiva-

lence based model is unable to attain the corres-

ponding target output for this idiom word via the 

non-contiguous word alignment and consider it as 

an out-of-vocabulary (OOV). On the contrary, the 

SncTSSG based model can capture the non-

contiguous tree sequence pair consistent with the 

word alignment and further provide a reasonable 

target translation. It suggests that SncTSSG can 

easily capture the non-contiguous translational 

candidates while STSSG cannot. Besides, 

SncTSSG is less sensitive to the error of word 

alignment when extracting the translation candi-

dates than the contiguous translational equivalence 

based models.  

In the second example, � � /in �
	 /recent � /�s ��
/survey 
 /middle� is correctly translated into �in 

the recent surveys� by both the STSSG and 

SncTSSG based models. This suggests that the 

short non-contiguous phrase � � /in *** 
 /middle� 

is well handled by both models. Nevertheless, as 

for the one with a larger gap, � � /will *** ���
/continue� is correctly translated and well reorder-

ing into �will continue� by SncTSSG but failed by 

STSSG. Although the STSSG is theoretically able 

to capture this phrase from the contiguous tree se-

quence pair, the richer context in the gap as in this 

example, the more difficult STSSG can correctly 

translate the non-contiguous phrases. This exhibits 

the flexibility of SncTSSG to the rich context 

among the non-contiguous constituents. 

6 Conclusions and Future Work 

In this paper, we present a non-contiguous tree se-

quence alignment model based on SncTSSG to 

enhance the ability of non-contiguous phrase mod-

eling and the reordering caused by non-contiguous 

constituents with large gaps. A three-phase decod-

ing algorithm is developed to facilitate the usage of 

non-contiguous translational equivalences (tree 

sequence pairs in this work) which provides much 

flexibility for the reordering of the non-contiguous 

constituents with rich syntactic structural informa-

tion. The experimental results show that our model 

outperforms the baseline models and verify the 

effectiveness of non-contiguous translational equi-

valences to non-contiguous phrase modeling in 

both syntax-based and phrase-based systems. We 

also find that in Chinese-English translation task, 

gaps are more effective in Chinese side than in the 

English side. 

Although the characteristic of more sensitive-

ness to word alignment error enables SncTSSG to 

capture the additional non-contiguous language 

phenomenon, it also induces many redundant non-

contiguous rules. Therefore, further work of our 

studies includes the optimization of the large rule 

set of the SncTSSG based model. 

 

 Output & References 

Source � /only � /pass � /null ��� /five years �  ��� /two people � /null ������ /confront at court 

Reference after only five years the two confronted each other at court 

STSSG only in the five years , the two candidates would ������  

SncTSSG the two people can confront other countries at court leisurely manner only in the five years 

key rules VV(������ )! VB(confront)NP(JJ(other),NNS(countries))IN(at) NN(court) 


�JJ(leisurely)NN(manner) 

Source 

"�#
/Euro $ /�s %'& /substantial  (�) /appreciation * /will + /in ,�- /recent $ /�s .�/ /survey 0 /middle 1�2 /continue 

� /for 3�4 /economy 5�6 /confidence 7�8 /produce 9': /impact 

Reference substantial appreciation of the euro will continue to impact the economic confidence in the recent surveys 

STSSG substantial appreciation of the euro has continued to have an impact on confidence in the economy , in the re-
cent surveys will 

SncTSSG substantial appreciation of the euro will continue in the recent surveys have an impact on economic confidence 

key rules 
AD(* ) 


�VV(1�2 ) !  VP(MD(will),VB(continue)) 

P(+ )�


�LC( 0 ) !  IN(in) 
 

 

Table 5: Sample translations (tokens in italic match the reference provided) 
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