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Abstract

We introduce cause identification, a new
problem involving classification of in-
cident reports in the aviation domain.
Specifically, given a set of pre-defined
causes, a cause identification system seeks
to identify all and only those causes that
can explain why the aviation incident de-
scribed in a given report occurred. The dif-
ficulty of cause identification stems in part
from the fact that it is a multi-class, multi-
label categorization task, and in part from
the skewness of the class distributions and
the scarcity of annotated reports. To im-
prove the performance of a cause identi-
fication system for the minority classes,
we present a bootstrapping algorithm that
automatically augments a training set by
learning from a small amount of labeled
data and a large amount of unlabeled data.
Experimental results show that our algo-
rithm yields a relative error reduction of
6.3% in F-measure for the minority classes
in comparison to a baseline that learns
solely from the labeled data.

Introduction

they tend to be more similar to each other with
respect to word usage, thus making the classes
less easily separable. This is one of the reasons
why topic-based classification, even with multiple
classes as in the 20 Newsgroups dafagends to
be easier than review classification, where reviews
from the same domain are to be classified accord-
ing to the sentiment expressed

In this paper, we introduce a new text classifi-
cation problem involving the Aviation Safety Re-
porting System (ASRS) that can be viewed as a
difficult task along each of the five dimensions dis-
cussed above. Established in 1967, ASRS collects
voluntarily submitted reports about aviation safety
incidents written by flight crews, attendants, con-
trollers, and other related parties. These incident
reports are made publicly available to researchers
for automatic analysis, with the ultimate goal of
improving the aviation safety situation. One cen-
tral task in the automatic analysis of these reports
is cause identificationor the identification ofvhy
an incident happened. Aviation safety experts at
NASA have identified 14 causes (shaping fac-
torsin NASA terminology) that could explain why
an incident occurred. Hence, cause identification
can be naturally recast as a text classification task:
given an incident report, determine which of a set

Automatic text classification is one of the most im-0f 14 shapers contributed to the occurrence of the
portant applications in natural language processincident described in the report.
ing (NLP). The difficulty of a text classification =~ As mentioned above, cause identification is
task depends on various factors, but typically, theconsidered challenging along each of the five
task can be difficult if (1the amount of labeled aforementioned dimensions. First, there is a
data available for learning the task is small; (2) scarcity of incident reports labeled with the
it involves multiple classes; (3) it involvesulti-  shapers. This can be attributed to the fact that
label categorization where more than one label there has been very little work on this task. While
can be assigned to each document; (4)dleess the NASA researchers have applied a heuristic
distributions are skewed, with some categoriesmethod for labeling a report with shapers (Posse
significantly outnumbering the others; and (5)the
documents belong to tremme domailfe.g., movie ;http://kdd.ics.uci.edu/databa_ses/ZOnews_,grou_ps/ _

. . . Of course, the fact that sentiment classification requires
review classification). In particular, when the doc-

- ~a deeper understanding of a text also makes it more difficult
uments to be classified are from the same domainhan topic-based text classification (Pang et al., 2002).

843

Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 843-851,
Suntec, Singapore, 2-7 August 2009. ©2009 ACL and AFNLP



et al., 2005), the method was evaluated on onlsideration, and (2) augment the labeled data by us-
20 manually labeled reports, which are not madeang the resulting words to annotate those unlabeled
publicly available. Second, the fact that this isreports that can be confidently labeled. We evalu-
a l4-class classification problem makes it moreate our approach using cross-validation on 1,333
challenging than a binary classification problem.manually annotated reports. In comparison to a
Third, a report can be labeled with more than onesupervised baseline approach where a classifier is
category, as several shapers can contribute to theecquired solely based on the training set, our boot-
occurrence of an aviation incident. Fourth, thestrapping approach yields a relative error reduc-
class distribution is very skewed: based on artion of 6.3% in F-measure for the minority classes.
analysis of our 1,333 annotated reports, 10 of the In sum, the contributions of our work are three-
14 categories can be considered minority classed$old. First, we introduce a new, challenging
which account for only 26% of the total hum- text classification problem, cause identification
ber of labels associated with the reports. Finallyfrom aviation safety reports, to the NLP commu-
our cause identification task is domain-specificnity. Second, we created an annotated dataset for
involving the classification of documents that all cause identification that is made publicly available
belong to the aviation domain. for stimulating further research on this problgém

This paper focuses on improving the accuracy_Th'rd’ we introduce a bootstrapping algorithm for

of minority class prediction for cause identifica- improving the predictiop Qfminority classes in the
tion. Not surprisingly, when trained on a datasetP €S€NCce of a small training set.

with a skewed class distribution, most super\/isedS T?_e rezst of the paptetrhls f;rgimzed assfolltt_)ws.gln
machine learning algorithms will exhibit good per- ection 2, we present the 14 shapers. seclion s ex-

formance on the majority classes, but relativelypl"’“n_S how we Preprocess and annot_ate the reports.
Sections 4 and 5 describe the baseline approaches

poor performance on the minority classes. Unfor- . : ;
tunately, achieving good accuracies on the minor?nd our bootstrapping algorithm, respectively. We

ity classes is very important in our task of identify- !oresenf[ results in Section 6 discgss related work
ing shapers from aviation safety reports, where 10" Section 7, and conclude in Section 8.

qut of the 14 shaperg are minority (_:Ia_sses, as men, Shaping Factors

tioned above. Minority class prediction has been

tackled extensively in the machine learning liter-As mentioned in the introduction, the task of cause
ature, using methods that typically involve sam-identification involves labeling an incident report
pling and re-weighting of training instances, with with all the shaping factors that contributed to the
the goal of creating a less skewed class distributiooccurrence of the incident. Table 1 lists the 14
(e.g., Pazzani et al. (1994), Fawcett (1996), Kushaping factors, as well as a description of each
bat and Matwin (1997)). Such methods, howevershaper taken verbatim from Posse et al. (2005).
are unlikely to perform equally well for our cause As we can see, the 14 classes are not mutually ex-
identification task given our small labeled set, asclusive. For instance, a lack of familiarity with
the minority class prediction problem is compli- equipment often implies a deficit in proficiency in
cated by the scarcity of labeled data. More specifits use, so the two shapers frequently co-occur. In
ically, given the scarcity of labeled data, manyaddition, while some classes cover a specific and
words that are potentially correlated with a shapemell-defined set of issues (e.g., lllusion), some en-
(especially a minority shaper) may not appear incompass a relatively large range of situations. For
the training set, and the lack of such useful indi-instance, resource deficiency can include prob-
cators could hamper the acquisition of an accuratéems with equipment, charts, or even aviation per-
classifier via supervised learning techniques. sonnel. Furthermore, ten shaping factors can be

We propose to address the problem of minori,[ycon5|dered minority classes, as each of them ac-

o .. “count for less than 10% of the labels. Accurately
class prediction in the presence of a small trainin

: redicting minority classes is important in this do-
set by means of a bootstrapping approach, wherg ~. .
. . . ; main because, for example, the physical factors
we introduce an iterative algorithm to (1) use a

small set of labeled reports and a large set of unla[nlnorlly shaper is frequently associated with in-

. i . cidents involving near-misses between aircraft.
beled reports to automatically identify words that 9
are most relevant to the minority shaper under con- *http://iwww.hit.utdallas.edu/persingg/ASRSdataset.html
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Id | Shaping Factor | Description %
1 | Attitude Any indication of unprofessional or antagonistic attitiyea controller or flight crew mem{ 2.4
ber, e.g., complacency or get-homeitis (in a hurry to getéom
2 | Communication | Interferences with communications in the cockpit such asmauditory interference, radip 5.5
Environment frequency congestion, or language batrrier.
3 | Duty Cycle A strong indication of an unusual working period, e.g., adaay, flying very late at night| 1.8
exceeding duty time regulations, having short and inadegest periods.
4 | Familiarity A lack of factual knowledge, such as new to or unfamiliar vatimpany, airport, or aircraft| 3.2
5 | Husion Bright lights that cause something to blend in, black holeitevout, sloping terrain, etc. | 0.1
6 | Other Anything else that could be a shaper, such as shift changsepger discomfort, or disorit 13.3
entation.
7 | Physical Unusual physical conditions that could impair flying or malkimgs difficult. 16.0
Environment
8 | Physical Pilot ailment that could impair flying or make things morefidifilt, such as being tired} 2.2
Factors drugged, incapacitated, suffering from vertigo, ilinedizziness, hypoxia, nausea, loss |of
sight or hearing.
9 | Preoccupation | A preoccupation, distraction, or division of attentionttbeeates a deficit in performance, 6.7
such as being preoccupied, busy (doing something elsejstoacted.
10 | Pressure Psychological pressure, such as feeling intimidated spiresl, or being low on fuel. 1.8
11 | Proficiency A general deficit in capabilities, such as inexperiencek tfdraining, not qualified, or not 14.4
current.
12 | Resource Absence, insufficient number, or poor quality of a resousceh as overworked or unavail- 30.0
Deficiency able controller, insufficient or out-of-date chart, malftioning or inoperative or missing
equipment.
13 | Taskload Indicators of a heavy workload or many tasks at once, sucha$-banded crew. 1.9
14 | Unexpected Something sudden and surprising that is not expected. 0.6

Table 1: Descriptions of shaping factor classeg “%” column shows the percent of labels the shapers atdoun

3 Dataset This sentence is grammatically incorrect (due to
the lack of a subject), and contains abbrevia-
We downloaded our corpus from the ASRS web-+jons such as CLRED, APCH, and TWR. This
sit¢. The corpus consists of 140,599 incidentmakes it difficult for a non-aviation expert to un-
reports collected during the period from Januaryderstand. To improve readability (and hence fa-
1998 to December 2007. Each report is a fregsjjitate the annotation process), we preprocess
text narrative that describes not only why an in-gach report as follows. First, we expand the ab-
cident happened, but also what happened, where jreviations/acronyms with the help of an official
happened, how the reporter felt about the incidentst of acronyms/abbreviations and their expanded
the reporter’s opinions of other people involved informs®. Second, though not as crucial as the first
the incident, and any other comments the reportestep, we heuristically restore the case of the words
cared to include. In other WordS, a lot of informa- by re|ying on an Eng“sh lexicon: if a word ap-
tion in the report is irrelevant to (and thus Compli- pears in the |exicon, we assume that it is not a
cates) the task of cause identification. proper name, and therefore convert it into lower-
case. After preprocessing, the example sentence
appears as

had been cleared for approach by ZOA

3.1 Preprocessing

Unlike newswire articles, at which many topic-

based text classification tasks are targeted, the and had been handed off to santa rosa

ASRS reports are informally written using various tower.

domain-specific abbreviations and acronyms, tenginally, to facilitate automatic analysis, we stem

to contain poor grammar, and have capitalizatioreach word in the narratives.

information removed, as illustrated in the follow- )

ing sentence taken from one of the reports. 3.2 Human Annotation
Next, we randomly picked 1,333 preprocessed re-

HAD BEEN CLRED FOR APCH BY ports and had two graduate students not affiliated

ZOA AND HAD BEEN HANDED OFF

5 . H
TO SANTA ROSA TWR. See http://akama.arc.nasa.gov/ASRSDBOnline/pdf/

ASRSDecode.pdf. In the very infrequently-occurring case
where the same abbreviation or acronym may have more

“http://asrs.arc.nasa.gov/ than expansion, we arbitrarily chose one of the possiedliti
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'ld ;gt??', g") E 52 ;3 E;‘ Eg mate goal is to evaluate the effectiveness of our
> [11989) |29 [20 [22 [16 |23 bootstrapping algorithm, the baseline approaches
3 [ 3829 |10 |5 6 9 8 only make use of small amounts of labeled data for
g ;0((552-5) él 32 g 14 34 acquiring classifiers. More specifically, both base-
5 289'(21_7) 26 174 160 142 67 lines recast_ the cause !deqtlflcatlon problem as a
7 | 348(26.1)] 73 | 63 | 82 |59 | 71 set of 14 binary classification problems, one for
8 |48 (32-6) ; 11 114 |8 11 14 predicting each shaper. In the binary classification
9 [145(10.9)[ 29 |25 |38 |28 | 25 I

0138 12 [0 4 = = prqb_lem_ for predicting shapet;, we crgate one
11 | 313(235)| 65 |50 | 74 | 46 | 78 training instance from each document in the train-
12 | 652 (48.9)| 149 | 144 | 125 | 123 | 111 ing set, labeling the instance as positive if the doc-

1342382 |7 |8 [8 |6 |13

2T 14 (1) 3 3 3 3 > ument has; as one of its labels, and negative oth-

erwise. After creating training instances, we train
binary classifierg;, for predictings;, employing
s features the top 50 unigrams that are selected
ber of narratives labeled with each shaper and the percenta aC(.:o.rdlng o information gain computed over the
. . . raining data (see Yang and Pedersen (1997)). The
of narratives tagged with each shaper in the 1,333 labele . . . .
) . _SVM learning algorithm as implemented in the
narrative set. The “F” columns show the number narratives )
) , : LIBSVM software package (Chang and Lin, 2001)
associated with each shaper in folds F1 — F5. . o et ; )
is used for classifier training, owing to its robust
= (# Shapers)| 1 2 3 42 5 6 performance on many text classification tasks.
Percentage | 53.6 332 103 27 02 0. In our first baseline, we set all the learning pa-
rameters to their default values. As noted before,
we divide the 1,333 annotated reports into five
folds of roughly equal size, training the classifiers

with this research independently annotate then®n four folds and applying them separately to the
with shaping factors, based solely on the defiyemaining fold. Results are reported in terms of
nitions presented in Table 1. To measure interPrecision (P), recall (R), and F-measure (F), which
annotator agreement, we compute Cohen’s Kappa'® computed by aggregating over the 14 shapers
(Carletta, 1996) from the two sets of annotations@S follows. Letip; be the number of test reports
obtaining a Kappa value of only 0.43. This not correctly labeled as positive by; p; be the total
only suggests the difficulty of the cause identifica-number of test reports labeled as positive gy
tion task, but also reveals the vagueness inhere@"dn: be the total number of test reports that be-
in the definition of the 14 shapers. As a result,/0ng tos; according to the gold standard. Then,

we hagl the two annotatqrs re-examine eachreport S .¢p, Sty 4F - 2PR

for which thercaT was a disagreement ar?d _reach an = TS Y ,and ¥ = Pt+R
agreement on its final set of labels. Statistics of the L _
annotated dataset can be found in Table 2, where OUr sécond baseline is similar to the first, ex-
the “Total” column shows the size of each of the €Pt that we tune the classification threshold (CT)
14 classes, expressed both as the number of &2 OPtimize F-measure. More specifically, recall

ports that are labeled with a particular shaper an&r;at LIBSVM ]:cralns z;claslyﬂe_r that by d_efault em-
as a percent (in parenthesis). Since we will perP!0yS @ CT of 0.5, thus classifying an instance as

form 5-fold cross validation in our experiments, positive if and onl_y if the p_robability that it be-
we also show the number of reports labeled WithIongs t(_) the positive class IS at least 0.5. How-
each shaper under the “F” columns for each fold Ever this may not be the optimal threshold to use

To get a better idea of how many reports have mul@S far as performance is concerned, especially for

tiple labels, we categorize the reports according téhe minority cla_\ss_es, where. th? class FjIS'[I‘Iij[IOI’l
the number of labels they contain in Table 3. is skewed. This is the motivation behind tuning
the CT of each classifier. To ensure a fair compar-

4 Baseline Approaches ison with the first baseline, we do not employ ad-

ditional labeled data for parameter tuning; rather,
In this section, we describe two baseline ap-we reserve 25% of the available training data for
proaches to cause identification. Since our ultituning, and use the remaining 75% for classifier

Table 2: Number of occurrences of each shapin@
factor in the datasethe “Total” column shows the num-

Table 3: Percentage of documents withabels.

R
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acquisition. This amounts to using three folds
for training and one fold for development in each
cross validation experiment. Using the develop-
ment data, we tune the 14 Cjantly to optimize
overall F-measure. However, an exact solution to
this optimization problem is computationally ex-
pensive. Consequently, we find a local maximum
by employing a local search algorithm, which al-

ters one parameter at a time to optimize F-measure

by holding the remaining parameters fixed.

5 Our Bootstrapping Algorithm

One of the potential weaknesses of the two base-

lines described in the previous section is that the
classifiers are trained on only a small amount of

labeled data. This could have an adverse effect

on the accuracy of the resulting classifiers, espe-
cially those for the minority classes. The situation

is somewhat aggravated by the fact that we are
adopting a one-versus-all scheme for generating

Train(P,N,U, k)
Inputs:
P: positively labeled training examples of shaper
N: negatively labeled training examples of shaper
U': set of unlabeled narratives in corpus
k: number of bootstrapping iterations
PW — 0
NW «—0
for i =0tok —1do
if |[P| > |N|then
[P, PW] «— EzpandTrainingSet(P, N,U, PW)
else
[N, NW] «— EzpandTrainingSet(N, P,U, NW)
end if
end for

ExpandTrainingSet(A, B, U, W)
Inputs:
A, B,U: narrative sets
W: unigram feature set
for j =1to4do
t «— arg max;gw (log(%ﬁ
11 C(t, X): number of narratives itX containingt
W — WuU{t}
end for
return [AU S(W,U), W]
/I S(W,U): narratives inJ containing> 3 words inW¥/

training instances for a particular shaper, which;
together with the small amount of labeled data, im-
plies that only a couple of positive instances may
be available for training the classifier for a minor-

Figure 1: Our bootstrapping algorithm.

ity class. To alleviate the data scarcity problemrithm uses two variablesPTW and NW, to store
and improve the accuracy of the classifiers, wethe sets of high-quality indicators for the positive
propose in this section a bootstrapping algorithminstances and the negative instances, respectively,
that automatically augments a training set by exthat are found during the bootstrapping process.

ploiting a large amount of unlabeled data. The ba-

Next, we begin oukk bootstrapping iterations.

sic idea behind the algorithm is to iteratively iden-In each iteration, we expand eith& or N, de-
tify words that are high-quality indicators of the pending on their relative sizes. In order to keep

positive or negative examples, and then automatithe two sets as close in size as possible, we choose
cally label unlabeled documents that contain a sufto expand the smaller of the two sétéfter that,

ficient number of such indicators.

we execute the functioBxpandTrainingSetio ex-

Our bootstrapping algorithm, shown in Figure pand the selected set. Without loss of general-
1, aims to augment the set of positive and negity, assume that” is chosen for expansion. To
ative training instances for a given shaper. Thedo this,ExpandTrainingSesdelects four words that
main function, Train, takes as input four argu- seem much more likely to appear i than in
ments. The first two argument®, and N, are the N from the set of candidate wortls To select
positive and negative instances, respectively, gerthese words, we calculate the log likelihood ratio

erated by the one-versus-one scheme from the iniog(co(i

) +1) for each candidate word, where

tial training set, as described in the previous secg (¢, p) is the number of narratives iR that con-

tion. The third arg.umentU,_ is the unlabeled set tain¢, andC/(¢, V) similarly is the number of nar-
of documents, which consists of all but the doc-ratives in IV that containt. If this ratio is large,

uments in the training set. In particuldy, con-

tains the documents in the development and test ‘It may seem from the wag> and NV are constructed that

: : N
sets. Hence, we are essentially assuming accegs

is almost always larger thaR and therefore is unlikely to
selected for expansion. However, the ample size of the un-

to the test documents (but not their labels) durdabeled set means that the algorithm still adds large nusnber
ing the training process, as in a transductive learn®f narratives to the training data. Hence, even for minority

ing setting. The last argument, is the number

classespP often grows larger thaiV by iteration 3.

A candidate word is a word that appears in the training

of bootstrapping iterations. In addition, the algo-set (P U N) at least four times.
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we posit that is a good indicator of”. Note that data can be used in combination with any of the
incrementing the count in the denominator by ongwo baseline approaches to acquire a classifier for
has a smoothing effect: it avoids selecting wordsdentifying a particular shaper. Whichever base-
that appears infrequently iR and not at all inV.  line is used, we need to reserve one of the five

There is a reason for selecting multiple wordsfolds to tune the parametér in our cross vali-
(rather than just one Word) in each bootstrap_dation eXperimentS. In partiCUIar, if the second
ping iteration: we want to prevent the algorithm baseline is used, we will tun€T" and k jointly
from selecting words that are too specific to oneon the development data using the local search al-
subcategory of a shaping factor. For examp|egorithm described previously, where we adjust the
shaping factor 7 (Physical Environment) is Com_values of bothC'T" and k for one of the 14 classi-
posed largely of incidents influenced by weatheffiers in each step of the search process to optimize
phenomena. In one experiment, we tried selectthe overall F-measure score.
ing only one word per bootstrapping iteration. .

For shaper 7, the first word added to PW was Evaluation
“snow”. Upon the next iteration, the algorithm ¢ 1 Baseline Systems

added “plow” to PW. While “plow” may itself be . ) i
indicative of shaper 7, we believe its selection was>"C€ OUr évaluation centers on the question of

due to the recent addition to P of a large number of'©W effective our bootstrapping algorithm is in ex-
" Hence, by selectingpIOiting unlabeled documents to improve classifier

narratives containing “snow”. .
o- Performance, our two baselines only employ the

four words per iteration, we are forcing the alg } - &
rithm to “branch out’ among these subcategories available labeled documents to train the classifiers.
Recall that our first baseline, which we call

After add'f‘g the selected words BW, we By.s (due to its being a baseline with a CT of
augmentP with all the unlabeled documents con-
0.5), employs default values for all of the learn-

taining at least three words frolR1/. The rea- . )

: B . . ng parameters. Micro-averaged 5-fold cross val-
son we impose the “at least three” requirement = . . .
. T , idation results of this baseline for all 14 shapers
's precision: ‘we want to ensure, with a reason°nd for just 10 minority classes (due to our focus
able level of confidence, that the unlabeled doc- J y

merts chosn 1 augmet shoud ndeed be. 7771010 Ty s redton) e e
labeled with the shaper under consideration, ag P g P ’

. ' recall (R), and F-measure (F) in the first row of
incorrectly labeled documents would Contammate‘l'able 4. As we can see. the baseline achieves

the Iabeled.data, thus accele_ratlng the deterlorat_logn F-measure of 45.4 (14 shapers) and 35.4 (10
of the quality of the automatically labeled data in . .

o . hapers). Comparing these two results, the higher
subsequent bootstrapping iterations and adverse

. . . . F-measure achieved using all 14 shapers can be at-
affecting the accuracy of the classifier trained on 'ttributed rimarilv to imorovements in recall. This
(Pierce and Cardie, 2001). P y P )

K ) should not be surprising: as mentioned above, the
The.abo_ve procedure is repeated in each_booﬁumber of positive instances of a minority class
strapping iteration. As mentioned above, M 1,y he small, thus causing the resulting classi-

is smaller in size tha?, we will expandN in-  fier g e biased towards classifying a document
stead, adding taVWW the four words that are the ,¢ negative.

strongest indicators of a narrative being a negative |staad of employing a CT value of 0.5, our

example.of the_ shaper under considera_ttion, angecond baselineB,;, tunes CT using one of the
augmentingV with those unlabeled narratives that y4ining folds and simply trains a classifier on the
contain at least three words fromv’. remaining three folds. For parameter tuning, we
The number of bootstrapping iterations is con-tested CTs of 0.0, 0.05, ., 1.0. Results of this
trolled by the input parametér. As we will see  paseline are shown in row 2 of Table 4. In com-
in the next section, we run the bootstrapping algoparison to the first baseline, we see that F-measure
rithm for up to five iterations only, as the quality improves considerably by 7.4% and 4.5% for 14

of the bootstrapped data deteriorates fairly rapidlyshapers and 10 shapers respectfalyhich illus-
The exact value of will be determined automati-

cally using development data, as discussed below, 81t is important to note that the parameters are optimized
' Separately for each pair of 14-shaper and 10-shaper exper-

After bootstrapping, the augmented trainingiments in this paper, and that the 10-shaper results are not
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All 14 Classes 10 Minority Classes i i
System P [RTF PR [F to a Igrge drqp in recall accompanied by a smaller
Bo- 670 344 | 454 1 683 1 239 | 354 gain in precision. In other words, for the four
Bt 4741592 [ 52.7 ][ 47.8 | 34.3 | 39.9 non-minority classes, the benefits obtained from
Eos 609 | 40.4 | 486 || 53.2 | 35.3 | 424 i )
Ex 205 {540 | 526 | 401 | 304 | 437 using the bootstrapped documents can also be ob

tained by simply adjusting the CT. This could be
attributed to the fact that a decent classifier can be
trained using only the hand-labeled training exam-
ples for these four shapers, and as a result, the au-
tomatically labeled examples either provide very
little new knowledge or are too noisy to be useful.
6.2 Our Approach On the other hand, for the 10 minority classes, the

Next. we evaluate the effectiven t our b t3'8% gain in F-measure can be attributed to a si-
ext, we evaluale Ine efiectiveness ot our booty, ianeous rise in recall and precision. Note that
strapping algorithm in improving classifier per-

formance. More specifically, we apply the two such gain cannot possibly be obtained by simply

) g adjusting the CT, since adjusting the CT always
baselines separately to the augmented training s

duced b bootst . lorithm. Wh ?ésults in higher recall and lower precision or vice
produced by our bootstrapping algorithm. enversa. Overall, the simultaneous rise in recall and

?OTEmm?_ our bootst[jappmg algi)rlthrtrr: V,;”th thelﬁrecision implies that the bootstrapped documents
ISt baseline, we produce a system that we cal o provided useful knowledge, particularly in

:EO:E’ (due :0 ':; beér_:_g ]Erglr;eg onhthexpzlinded the form of positive examples, for the classifiers.
faining set with a of 0.5) £y 5 has only one Even though the bootstrapped documents are nois-

tL:nabIg prfttramt_eterl;; (|.eh., the Ir|1umki)(|er OfIbOOt- ily labeled, they can still be used to improve the
strapping iterations), whose allowable values A'%lassifiers, as the set of initially labeled positive

03 L o 5.' When our a'go””‘f‘“ is used in com- examples for the minority classes is too small.
bination with the second baseline, we produce an-

other systemFE,;, which has botht and the CT
as its parameters. The allowable values of thesg 3 Additional Analyses
parameters, which are to be tuned jointly, are the™
same as those employed By; and £ s.

Results of £y 5 are shown in row 3 of Table
4. In comparison td3, 5, we see that F-measure

increases by 3.2% and 7.0% for 14 shapers and t th ¢ the bootst d.d
10 shapers, respectively. Such increases can b o€ Of the accuracy of the bootstrapped docu-

attributed to less imbalanced recall and precisionmemS without further manual labeling, recall that

. our experimental setup resembles a transductive
values, as a result of a large gain in recall accom- P P

panied by a roughly equal drop in precision. Thesesettmg where the test documents are part of the

results are consistent with our intuition: recall Canunlabeled data, and cor_wsequently, some of them
be improved with a larger training set, but Ioreci_may have been automatically labeled by the boot-

sion can be hampered when leaming from noiS_strappmg algorithm. In fact, 137 documents in the

ily labeled data. Overall, these results suggest thafi{fs;]easgggise\;(vser?irss;?;na;t:o?lelsyg I:chlrendatlir::atlrl];
Ci )

learning from the augmented training set is useful1 beled d N imilarity obtained f
especially for the minority classes. tﬁ elg hoczgwen s were S'tm' Iim ylz r?lne rt?]m
Results ofE,.; are shown in row 4 of Table 4. € 1U-ShapeL.; experiments. For 14 shapers, the
accuracies of the positively and negatively labeled

In comparison toB,;, we see mixed results: F- \
pal ct . Hocuments are 74.6% and 97.1%, respectively,
measure increases by 3.8% for 10 shapers (whic .
nd the corresponding numbers for 10 shapers are

represents a relative error reduction of 6.3%, bu 0 0

drops by 0.1% for 14 shapers. Overall, these refls'zf and 81'3|/°' Th(-;;se num_be(;s Sf:'hg%?S; that

sults suggest that when the CT is tunable, trajn’ C9aIVE Exampies can be acquired with nigh ac-
uracies, but the same is not true for positive ex-

ing set expansion helps the minority classes buf .
g P P y amples. Nevertheless, learning the 10 shapers

hurts the remaining classes. A closer look at the% i ; telv-labeled "
results reveals that the 0.1% F-measure drop is du&° Te Not-so-accurately-iabeled posilive exam-

- ples still allows us to outperform the correspond-
simply extracted from the 14-shaper experiments. ing baseline.

Table 4: 5-fold cross validation results.

trates the importance of employing the right CT
for the cause identification task.

Quality of the bootstrapped data. Since the
bootstrapped documents are noisily labeled, a nat-
ral question is: How noisy are they? To get a
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Shaping Factor Positive Expanders Negative Expanders

Familiarity unfamiliar, Tayout, unfamilarity, rely

Physical Environment | cloud, snow, ice, wind

Physical Factors fatigue, tire, night, rest, hotel, awake, sleep, sickleclare, emergency, advisory, separation

Preoccupation distract, preoccupied, awareness, situationafleclare, ice snow, crash, fire, rescue, anti,
task, interrupt, focus, eye, configure, sleep smoke

Pressure bad, decision, extend, fuel, calculate, reserye,
diversion, alternate

Table 5: Example positive and negative expansion wordectat byF,.,; for selected shaping factors.

Analysis of the expanders. To get an idea of on the under-sampled data using unlabeled doc-
whether the words acquired during the bootstrapuments collected from the Web.

ping process (hencefortBxpanders make intu- Minority classes can be expanded without the
itive sense, we show in Table 5 example positiveavailability of unlabeled data as well. For ex-
and negative expanders obtained for five shapingample, Chawla et al. (2002) describe a method
factors from theE; experiments. As we can see, by which synthetic training examples of minor-
many of the positive expanders are intuitively ob-ity classes can be generated from other labeled
vious. We might, however, wonder about the con-raining examples to address the problem of im-
nection between, for example, the shaper Familbalanced data in a variety of domains.

iarity and the word “rely”, or between the shaper Nigam et al. (2000) propose an iterative semi-
Pressure and the word “extend”. We suspect thagupervised method that employs the EM algorithm
the bootstrapping algorithm is likely to make poorin combination with the naive Bayes generative
word selections particularly in the cases of the mi-model to combine a small set of labeled docu-
nority classes, where the positively labeled trainments and a large set of unlabeled documents. Mc-
ing data used to select expansion words is mor€allum and Nigam (1999) suggest that the ini-
sparse. As suggested earlier, poor word choicgal labeled examples can be obtained using a list
early in the algorithm is likely to cause even poorerof keywords rather than through annotated data,
word choice later on. yielding an unsupervised algorithm.

On the other hand, while none of the negative Similar bootstrapping methods are applicable
expanders seem directly meaningful in relation toputside text classification as well. One of the
the shaper for which they were selected, some ofnost notable examples is Yarowsky’s (1995) boot-
them do appear to be related to other phenomengrapping algorithm for word sense disambigua-
that may be negatively correlated with the shapettion. Beginning with a list of unlabeled contexts
For instance, the words “snow” and “ice” were surrounding a word to be disambiguated and a list
selected as negative expanders for Preoccupatiast seed words for each possible sense, the algo-
and also as positive expanders for Physical Envirithm iteratively uses the seeds to label a training
ronment. While these two shapers are only slightlyset from the unlabeled contexts, and then uses the

negatively correlated, it is possible that Preoccutraining set to identify more seed words.
pation may be strongly negatively correlated with

the subset of Physical Environment incidents in-8 Conclusions

volving cold weather.
We have introduced a new problem, cause identi-

7 Related Work fication from aviation safety reports, to the NLP
community. We recast it as a multi-class, multi-
Since we recast cause identification as a text clagabel text classification task, and presented a boot-
sification task and proposed a bootstrapping apstrapping algorithm for improving the prediction
proach that targets at improving minority classof minority classes in the presence of a small train-
prediction, the work most related to ours involvesing set. Experimental results show that our algo-
one or both of these topics. rithm yields a relative error reduction of 6.3% in
Guzman-Cabrera et al. (2007) address thé-measure over a purely supervised baseline when
problem of class skewness in text classificationapplied to the minority classes. By making our
Specifically, they first under-sample the majority annotated dataset publicly available, we hope to
classes, and then bootstrap the classifier trainestimulate research in this challenging problem.

850



Acknowledgments

We thank the three anonymous reviewers for their
invaluable comments on an earlier draft of the
paper. We are indebted to Muhammad Arsha
Ul Abedin, who provided us with a preprocessed
version of the ASRS corpus and, together with
Marzia Murshed, annotated the 1,333 documents.
This work was supported in part by NASA Grant
NNXO8AC35A and NSF Grant 11S-0812261.

References

fication tasks: The Kappa statisti€Computational
Linguistics 22(2):249-254.

Chih-Chung Chang and Chih-Jen Lin, 2001LIB-
SVM: A library for support vector machines
Software available at t p: / / www. csi e. nt u.
edu.tw ~cjlin/libsvm

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O.
Hall, and W. Philip Kegelmeyer. 2002. SMOTE:
Synthetic minority over-sampling techniqudour-
nal of Artificial Intelligence Resear¢i6:321-357.

Tom Fawcett. 1996l earning with skewed class distri-
butions — summary of responsdglachine Learn-
ing List: Vol. 8, No. 20.

Rafael Guzméan-Cabrera, Manuel Montes-y-Gomez,
Paolo Rosso, and Luis Villasefior Pineda. 2007.
Taking advantage of the Web for text classification
with imbalanced classes. Proceedings of MICAI
pages 831-838.

Miroslav Kubat and Stan Matwin. 1997. Addressing
the curse of imbalanced training sets: One-sided se-
lection. InProceedings of ICMLpages 179-186.

Andrew McCallum and Kamal Nigam. 1999. Text
classification by bootstrapping with keywords, EM
and shrinkage. IrProceedings of the ACL Work-
shop for Unsupervised Learning in Natural Lan-
guage Processingages 52-58.

Kamal Nigam, Andrew McCallum, Sebastian Thrun,
and Tom Mitchell. 2000. Text classification from
labeled and unlabeled documents using EMa-
chine Learning39(2/3):103-134.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment classification us-
ing machine learning techniques. Pmoceedings of
EMNLP, pages 79-86.

Michael Pazzani, Christopher Merz, Patrick Murphy,
Kamal Ali, Timothy Hume, and Clifford Brunk.
1994. Reducing misclassification costs Pirmceed-
ings of ICML, pages 217-225.

851

David Pierce and Claire Cardie. 2001. Limitations of

co-training for natural language learning from large
datasets. IfProceedings of EMNLPpages 1-9.

hristian Posse, Brett Matzke, Catherine Anderson,

Alan Brothers, Melissa Matzke, and Thomas Ferry-
man. 2005. Extracting information from narratives:
An application to aviation safety reports. Rro-
ceedings of the Aerospace Conference 2Qiges
3678-3690.

Yiming Yang and Jan O. Pedersen. 1997. A compara-

tive study on feature selection in text categorization.
In Proceedings of ICMLpages 412—-420.

David Yarowsky. 1995. Unsupervised word sense dis-
Jean Carletta. 1996. Assessing agreement on classi-

ambiguation rivaling supervised methods. Rro-
ceedings of the ACGlpages 189-196.



