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Abstract solution proposed by Glass et al. (2007) uses half
of the lectures in a semester course to train an

We demonstrate that transformation-based ASR system for the other half or for when the
learning can be used to correct noisy  course is next offered, and still results in signifi-
speech recognition transcripts in the lec-  cant WER reductions. And yet even in this sce-
ture domain with an average word error  nario, the business case for manually transcrib-
rate reduction of 12.9%. Our method is  ing half of the lecture material in every recorded
distinguished from earlier related work by course is difficult to make, to say the least. Manu-
its robustness to small amounts of training  ally transcribing a one-hour recorded lecture re-
data, and its resulting efficiency, in spite of  quires at least 5 hours in the hands of qualified
its use of true word error rate computations  transcribers (Hazen, 2006) and roughly 10 hours
as a rule scoring function. by students enrolled in the course (Munteanu et
al., 2008). As argued by Hazen (2006), any ASR
improvements that rely on manual transcripts need
to offer a balance between the cost of producing

Improving access to archives of recorded lecture&n0se transcripts and the amount of improvement
is a task that, by its very nature, requires researchi-€- WER reductions).
efforts common to both Automatic Speech Recog- There is some work that specializes in adap-
nition (ASR) and Human-Computer Interaction tive language modelling with extremely limited
(HCI). One of the main challenges to integratingamounts of manual transcripts. Klakow (2000)
text transcripts into archives of webcast lectures isilters the corpus on which language models are
the poor performance of ASR systems on lecturérained in order to retain the parts that are more
transcription. This is in part caused by the mis-similar to the correct transcripts on a particular
match between the language used in a lecture artdpic. This technique resulted in relative WER
the predictive language models employed by mosteductions of between 7% and 10%. Munteanu
ASR systems. Most ASR systems achieve Wordet al. (2007) use an information retrieval tech-
Error Rates (WERs) of about 40-45% in realis-nique that exploits lecture presentation slides, au-
tic and uncontrolled lecture conditions (Leeuwistomatically mining the World Wide Web for doc-
et al., 2003; Hsu and Glass, 2006). uments related to the topic as attested by text
Progress in ASR for this genre requires bothon the slides, and using these to build a better-
better acoustic modelling (Park et al.,, 2005;matching language model. This yields about an
Flgen et al., 2006) and better language modellind1% relative WER reduction for lecture-specific
(Leeuwis et al., 2003; Kato et al., 2000; Munteanulanguage models. Following upon other applica-
et al., 2007). In contrast to some unsupervised apions of computer-supported collaborative work to
proaches to language modelling that require largaddress shortcomings of other systems in atrtificial
amounts of manual transcription, either from theintelligence (von Ahn and Dabbish, 2004), a wiki-
same instructor or on the same topic (Nanjo andbased technique for collaboratively editing lecture
Kawahara, 2003; Niesler and Willett, 2002), thetranscripts has been shown to produce entirely cor-
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rected transcripts, given the proper motivation forguage model trained over a diverse range of broad-
students to participate (Munteanu et al., 2008)cast news and telephone conversation transcripts),
Another approach is active learning, where thewas reported to produce only a 5% WER reduc-
goal is to select or generate a subset of the avaikion.
able data that would be the best candidate for ASR What we show in this paper is that a true WER
adaptation or training (Riccardi and Hakkani-Tur, calculation is so valuable that a manual transcrip-
2005; Huo and Li, 20073. Even with all of these, tion of only about 10 minutes of a one-hour lecture
however, there remains a significant gap betweeis necessary to learn the TBL rules, and that this
this WER and the threshold of 25%, at which lec-smaller amount of transcribed data in turn makes
ture transcripts have been shown with statisticathe true WER calculation computationally feasi-
significance to improve student performance orble. With this combination, we achieve a greater
a typical lecture browsing task (Munteanu et al.,average relative error reduction (12.9%) than that
2006). reported by Peters and Drexel (2004) on their dic-
People have also tried to correct ASR output intation corpus (9.6%), and an RER over three times
a second pass. Ringger and Allen (1996) treatedreater than that of our reimplementation of their
ASR errors as noise produced by an auxiliaryheuristics on our lecture data (3.6%). This is on
noisy channel, and tried to decode back to the pettop of the average 11% RER from language model
fect transcript. This reduced WER from 41% toadaptation on the same data. We also achieve
35% on a corpus of train dispatch dialogues. Oththe RER from TBL without the obligatory round
ers combine the transcripts or word lattices (fromof development-set parameter tuning required by
which transcripts are extracted) of two comple-their heuristics, and in a manner that is robust to
mentary ASR systems, a technique first proposeg@erplexity. Less is more.
in the context of NIST's ROVER system (Fiscus, Section 2 briefly introduces Transformation-
1997) with a 12% relative error reduction (RER), Based Learning (TBL), a method used in various
and subsequently widely employed in many ASRNatural Language Processing tasks to correct the
systems. output of a stochastic model, and then introduces
This paper tries to correct ASR output usinga TBL-based solution for improving ASR tran-
transformation-based learning (TBL). This, too,scripts for lectures. Section 3 describes our exper-
has been attempted, although on a professionaental setup, and Section 4 analyses its results.
dictation corpus with a 35% initial WER (Peters
and Drexel, 2004). They had access to avery largé  Transformation-Based L earning
amount of manually transcribed data — so large
in fact, that the computation of true WER in the

TBL rule selection loop was computationally in- 992 The fund | orinciole of TBL i
feasible, and so they used a set of faster heuristic]s )- e fundamental principle o IS
19 employ a set of rules to correct the output

instead. Mangu and Padmanabhan (2001) use . -
TBL to improve the word lattices from which the of a stochastic model. In contrast to traditional
transcripts are decoded, but this method also ha;éjle-kl)aseg approaclhes where rules alrle :nanuaély
efficiency problems (it begins with a reduction off eveloped, TIZL ru e_?hare gu_tomjtlca y egrnef
the lattice to a confusion network), is poorly suited rom training data. € trammg- ata conqst 0
to word lattices that have already been heavilyg"’_1mp|e output from the stochastic model, aligned
domain-adapted because of the language modelvg'th the correct mstan(_:es. For example, in Brill's
low perplexity, and even with higher perplexity tagger, the system assigns POSs to words in a text,

models (the SWITCHBOARD corpus using a lan-Which are later corrected by TBL rules. These
rules are learned from manually-tagged sentences
This work generally measures progress by reduction ithat are aligned with the same sentences tagged
the size of training data rather than relative WER reductionby the system. Typically, rules take the form of
Riccardi and Hakkani-Tur (2005) achieved a 30% WER with _ ;
68% less training data than their baseline. Huo and Li (2007?0nteXt dependent tranSformatlons’, for example
worked on a small-vocabulary name-selection task that com-change the tag from verb to noun if one of the

bined active learning with acoustic model adaptation. Theytwo preceding words is tagged as a determiner.”
reduced the WER from 15% to 3% with 70 syllables of acous- . .

tic adaptation, relative to a baseline that reduced the WER t An important aspect of TBL is rule scor-
3% with 300 syllables of acoustic adaptation. ing/ranking. While the training data may suggest

Brill's tagger introduced the concept of
Transformation-Based Learning (TBL) (Brill,
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a certain transformation rule, there is no guarantefibitive over large data-sets. Peters and Drexel
that the rule will indeed improve the system’s ac-(2004) address this problem by using an heuris-
curacy. So a scoring function is used to rank rulestic approximation to WER instead, and it appears
From all the rules learned during training, only that their approximation is indeed adequate when
those scoring higher than a certain threshold aréarge amounts of training data are available. Our
retained. For a particular task, the scoring func-approach stands at the opposite side of this trade-
tion ideally reflects an objective quality function. off — restrict the amount of training data to a bare
Since Brill's tagger was first introduced, TBL minimum so that true WER can be used in the
has been used for other NLP applications, includfule scoring function. As it happens, the mini-
ing ASR transcript correction (Peters and Drexelmum amount of data is so small that we can au-
2004). A graphical illustration of this task is pre- tomatically develop highly domain-specific lan-
sented in Figure 1. Here, the rules consist ofgjuage models for single 1-hour lectures. We show
below that the rules selected by this function lead

For the availble raining data ﬂ For cach rule v in R, \ to a significant WER reduction for individual lec-

align output tex . . . .

ith manual ansripte 7 | tures even if a little less than the first ten minutes of
(at utterance level) Determine the best-scoring rule the lecture are manually transcribed. This combi-

Fhegr= argmax . S(r,T asr,T)

S(Fpegts TAsR.T) > O

nation of domain-specificity with true WER leads
to the superior performance of the present method,
at least in the lecture domain (we have not experi-

Y
Discover all word-level
(n-gram) differences between

aligned T and T osr. . . .
Vos mented with a dictation corpus).
: Another alternative would be to change the
Reformat text differences ‘Place eyt in the ordered set RM .
as the set R of l scope over which TBL rules are ranked and eval-
replacement rules uated, but it is well known that globally-scoped
Apply rpep to Tasr and . . .. .
| remove vy from R ranking over the entire training set at once is so
, ! useful to TBL-based approaches that this is not
Retain replacement rules Ry, that i i i
occur more frequently than { a feasible option — one must either choose an

a threshold value Apply all rules r in R,y to the

heuristic approach, such as that of Peters and
Drexel (2004) or reduce the amount of training
data to learn sufficiently robust rules.

output text T' s of the test

data in decreasing order of S

Figure 1: General TBL algorithm. Transformation . .
rules are learned from the alignment of manually->-1 Algorithm and Rule Discovery

transcribed textX) with automatically-generated As our proposed TBL adaptation operates di-
transcripts (45 ) of training data, ranked accord- rectly on ASR transcripts, we employ an adapta-
ing to a scoring function) and applied to the tjon of the specific algorithm proposed by Peters
ASR output {5 ;) of test data. and Drexel (2004), which is schematically repre-

sented in Figure 1. This in turn was adapted from

word-level transformations that correct n-gram sethe general-purpose algorithm introduced by Brill
quences. A typical challenge for TBL is the heavy(1992).
computational requirements of the rule scoring The transformation rules are contextual word-
function (Roche and Schabes, 1995; Ngai andeplacement rules to be applied to ASR tran-
Florian, 2001). This is no less true in large-scripts, and are learned by performing a word-
vocabulary ASR correction, where large traininglevel alignment between corresponding utterances
corpora are often needed to learn good rules oven the manual and ASR transcripts of training
a much larger space (larger than POS tagging, foflata, and then extracting the mismatched word
example). The training and development sets areequences, anchored by matching words. The
typically up to five times larger than the evaluationmatching words serve as contexts for the rules’
test set, and all three sets must be sampled from tr&pplication. The rule discovery algorithm is out-
same cohesive corpus. lined in Figure 2; it is applied to every mismatch-
While the objective function for improving the ing word sequence between the utterance-aligned
ASR transcript is WER reduction, the use of thismanual and ASR transcripts.
for scoring TBL rules can be computationally pro- For every mismatching sequence of words, a set
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o for every sequence of words cows ...wnc1 in the
ASR output that is deemed to be aligned with a
corresponding sequence cowj ...w,,c1 in the
manual transcript:

o add the following contextual replacements to the
set of discovered rules:
| cows ... wner [ cow ... whe1 !
[ cowr ... wnl cowt ... wh, !
lwi ... wper lwh .. wher !
Twy...wp lwh .. owh, |

o for each i such that 1 < ¢ < min(n,m), add
the following contextual replacements to the set of
discovered rules:
/cowl...wi/cowi...w;(i)/
Jwit1 ... wner /w;(i_H) T
Twy.owi lwy . owp gy
/w¢+1.,.wn/wé(i+1>,,.wm/

Figure 2: The discovery of transformation rules.

of contextual replacement rules is generated. Th
set contains the mismatched pair, by themselve
and together with three contexts formed from the
left, right, and both anchor context words. In
addition, all possible splices of the mismatched
pair and the surrounding context words are als
considered. Rules are shown here as replace-
ment expressions in a sed-like syntax. Given thg
ruler = /wy...w,/wj...w,,/, every instance
of the n-gramuw; ... w, appearing in the current
transcript is replaced with the n-gramy ... w/,.

Utterance-align ASR output and correct transcripts:
ASR: the okay one and you come and get your seats
Correct: ok why don’t you come and get your seats
\
Insert sentence delimiters (to serve as possible
anchors for the rules):
ASR: <s> the okay one and you come and get your sedts>
Correct: <s> ok why don’t you come and get your seatés>
U
Extract the mismatching sequence, enclosed by
matching anchors:
ASR: <s> the okay one and you
Correct: <s> ok why don’t you
\

Output all rules for replacing the incorrect ASR
sequence with the correct text, using the entire
sequence (a) or splices (b), with or without
surrounding anchors:

(a) the okay one anfiok why don't
(@)
@
(a) <s> the okay one and yolJ <s> ok why don't you
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)

the okay one and yo{lok why don’t you

<s> the okay one and <s> ok why don't

n

the okay/ ok
<s> the okay/ <s> ok
one and why don't
one and yot/ why don’t you
the okay ond ok why

1174

<s> the okay ond <s> ok why
and/ don't
and you/ don’t you

Rules cannot apply to their own output. Rules that

would result in arbitrary insertions of single words
(e.g./ /wi/) are discarded. An example of a rule

Figure 3: An example of rule discovery.

learned from transcripts is presented in Figure 3. wherep(r, T4sz) is the result of applying rule

2.2 Scoring Function and Rule Application

The scoring function that ranks rules is the mai
component of any TBL algorithm. Assuming a
relatively small size for the available training data
a TBL scoring function that directly correlates
with WER can be conducted globally over the en-
tire training set. In keeping with TBL tradition,

however, rule selection itself is still greedily ap-
proximated. Our scoring function is defined as:

WER(Tasr,T)
_WER(p(Ta TASR): T)7

Swer(r,Tasr, T) =

The splicing preserves the original order of the word-
level utterance alignment, i.e., the output of a typicalaiyic
programming implementation of the edit distance algorithm
(Gusfield, 1997). For this, word insertion and deletion eper
ations are treated as insertions of blanks in either the alanu
or ASR transcript.
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ontextTssp.
As outlined in Figure 1, rules that occur in the

ntraining sample more often than an established

threshold are ranked according to the scoring func-
tion. The ranking process is iterative: in each iter-
ation, the highest-scoring rute.; is selected. In
subsequent iterations, the training ddtasr are
replaced with the result of applying the selected
rule onthemTasr < p(rvest; Tasr)) and the re-
maining rules are scored on the transformed train-
ing text. This ensures that the scoring and ranking
of remaining rules takes into account the changes
brought by the application of the previously se-
lected rules. The iterations stop when the scoring
function reaches zero: none of the remaining rules
improves the WER on the training data.

On testing data, rules are applied to ASR tran-



scripts in the same order in which they were setion is theexpected error reduction:
lected. XER = ErrLen - (GoodCnt — BadCnt),

3 Experimental Design a WER approximation computed over all instances
of rules applicable to the training set which reflects

Several combinations of TBL parameters werne gifference between true positives (the number
tested with no tuning or modifications betweenys iimes a rule is correctly applied to errorful tran-

tests. As the proposed method was not refined du%‘cripts _GoodCnt) and false positives (the in-

ing the experiments, and since one of the goals ofiances of correct text being unnecessarily “cor-
our proposed approach is to eliminate the need fofg e by a rule -BadCnt). These are weighted
developmental data sets, the available data WeIT8 the length in wordsKrrLen) of the text area

partitioned only into training and test sets, with hat matches the left-hand side of the replacement.
one additional hour set aside for code development

and debugging. 3.1 Acoustic Modd

It can be assumed that a one-hour lecture giverrhe experiments were conducted using the
by the same instructor will exhibit a strong cohe-SONIC toolkit (Pellom, 2001). We used the
sion, both in topic and in speaking style, betweeracoustic model distributed with the toolkit, which
its parts. Therefore, in contrast to typical TBL was trained on 30 hours of data from 283 speak-
solutions, we have evaluated our TBL-based apers from the WSJO and WSJ1 subsets of the
proach by partitioning each 50 minute lecture into1992 development set of the Wall Street Jour-
a training and a test set, where the training set igal (WSJ) Dictation Corpus. Our own lectures
smaller than the test set. As mentioned inthe introconsist of eleven lectures of approximately 50
duction, it is feasible to obtain manual transcriptsminutes each, recorded in three separate courses,
for the first 10 to 15 minutes of a lecture. As such,each taught by a different instructor. For each
the evaluation was carried out with two values forcourse, the recordings were performed in different
the training size: the first fifthi(S = 20%) and  weeks of the same term. They were collected in
the first third ('S = 33%) of the lecture being a large, amphitheatre-style, 200-seat lecture hall
manually transcribed. using the AKG C420 head-mounted directional

Besides the training size parameter, during almicrophone. The recordings were not intrusive,
experimental tests a second parameter was alsind no alterations to the lecture environment or
considered: the rule pruning threshol@X(). As proceedings were made. The 1-channel record-
described in Section 2.2, of all the rules learnedngs were digitized using a TASCAM US-122 au-
during the rule discovery step, only those that ocdio interface as uncompressed audio files with a
cur more often than the threshold are scored andl6KHz sampling rate and 16-bit samples. The au-
ranked. This parameter can be setas low as 1 (comtio recordings were segmented at pauses longer
sider all rules) or 2 (consider all rules that occurthan 200ms, manually for one instructor and au-
at least twice over the training set). For larger-tomatically for the other two, using the silence
scale tasks, the threshold serves as a pruning afetection algorithm described in Placeway et al.
ternative to the computational burden of scoring(1997). Our implementation was manually fine-
several thousand rules. A large threshold coulduned for every instructor in order to detect all
potentially lead to discrediting low-frequency but pauses longer than 200ms while allowing a maxi-
high-scoring rules. Due to the intentionally smallmum of 20 seconds in between pauses.
size of our training data for lecture TBL, the low- The evaluation data are described in Table 1.
est threshold was set tBT" = 2. When a de- Four evaluations tasks were carried out; for in-
velopment set is available, several values for th&tructorR, two separate evaluation sessioRs]

RT parameter could be tested and the optimal onandR-2, were conducted, using two different lan-
chosen for the evaluation task. Since we used nguage models.

development set, we tested two more values for the The pronunciation dictionary was custom-built
rule pruning thresholdRT = 5 and RT = 10. to include all words appearing in the corpus on

Since our TBL solution is an extension of the which the language model was trained. Pronunci-
solution proposed in Peters and Drexel (2004)ations were extracted from the 5K-word WSJ dic-
their heuristic is our baseline. Their scoring func-tionary included with the SONIC toolkit and from
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Evaluation

‘ R-1 ‘R—Z‘ G1 ‘ K-1 ‘

per lecture, and an average of 35 million word to-

task name
Tnstructor R. G. K. kens per lecture.
Gend Mal Mal F | . . .
e Ear 605 Wid 405 Early 40 It is appropriate to take the difference between
Segmentation manual automatic | automatic ICSISWB and WSJ-5K to be one of greater genre
# lectures 4 3 4 epe . .
Lecture topic Interactive Software | Unix pro- SpeCIfICIty, whereas the difference between WEB
media design design gramming . . e
[anguage modell WSI5K [ WEB | ToSISWE |~ WSI5K and ICSISWB is one of greater topic-specificity.

Our experiments on these three models (Munteanu
et al., 2007) shows that the topic adaptation pro-
vides nearly all of the benefit.

the 100K-word CMU pronunciation dictionary.
For all models, we allowed one non-dictionary4 Results

word per utterance, but only for lines longer thantapies 2, 3 and %present the evaluation results
four words. For allowable non-dictionary words,

SONIC’ssspel | lexicon access tool was used to

Table 1: The evaluation data.

ICSISWB | Lecture 1 Lecture 2 Lecture 3

L . [7S=% | 20 | 33 20 | 33 20 | 33
generate pronunciations using letter-to-sound pre=—mwarwer 5093 | 5075 | 5410 | 5393 | 4879 | 4935
XER RT =10 46.63 49.38 49.93 48.61 49.52 50.43

dictions. The language models were trained us
ing the CMU-CAM Language Modelling Toolkit
(Clarkson and R., 1997) with a training vocabu-
lary size of 40K words.

RT=5 48.34 | 49.75 | 49.32 | 48.81 | 49.58 [ 49.26
RT=2 54.05 [ 56.84 | 52.01 | 49.11 [ 50.37 | 51.66

RT=10 | 49.54 | 49.38 | 54.10 | 53.93 | 48.79 | 48.24
RT=5 49.54 | 49.31 | 56.70 [ 55.50 | 48.51 [ 48.42
RT=2 59.00 [ 59.28 | 57.61 | 55.03 [ 50.41 | 52.67
RT=10 | 46.63 | 46.53 | 49.80 | 48.44 | 45.83 | 45.42
RT=5 46.63 | 45.60 | 47.75 | 4723 | 44.76 | 4444
RT=2 44.48 44.30 47.46 47.02 43.60 44.13

XER-NoS

SWER

3.2 Language Models
. . . Table 4: Experimental evaluation: WER values for
The four evaluations were carried out using the .

: ) : instructor G using the ICSISWB language model.
language models given in Table 1, either custom-
built for a particular topic or the baseline models

i i ; for instructors R and G. The transcripts were ob-
included in the SONIC toolkit, as follows: INstru ipts w

) ; tained through ASR runs using three different lan-
WSJ-5K is the baseline model of the SONIC 346 models. The TBL implementation with our
toolkit. It is a 5K-word model built using the same scoring functionSy zx brings relative WER re-

corpus as the base acoustic model included in thﬁuctions ranging from 10.5% to 14.9%, with an
toolkit.

average of 12.9%.
ICSISWB is a 40K-word model created

) ' ~ These WER reductions are greater than those
through th_e mterpola_tlon of language mod_els bu'ltproduced by theX ER baseline approach. Itis not

on the entire transcripts of the ICSI Meeting cor-oqsipie to provide confidence intervals since the
pus and the Switchboard corpus. The ICSI Meety, 0564 method does not tune parameters from

ing corpus consists of recordings of university-sampled data (which we regard as a very positive
based multi-speaker research meetings, totalinguamy for such a method to have). Our specu-

about 72 hours from 75 meetings (Janin et al.j54ye experimentation with several values 66
2003). The Switchboard (SWB) corpus (Godfreyang rT . however, leads us to conclude that this

et al, 1992) is a large collection of about 25006tho is significantly less sensitive to variations
scripted telephone conversations between approx poth the training sizd'S and the rule pruning
imately 500 Engllsh-natlve speakers, suitable fOIihreshoIdRT than earlier work, making it suitable
the conversational style of lectures, as also SUgr gppication to tasks with limited training data

gested in (Park etal., 2005). — a result somewhat expected since rules are vali-

- WEB is a language model built for each par- gated through direct WER reductions over the en-

ticular lecture, using information retrieval tech- tjre training set.

niques that exploit the lecture slides to automat-

ically mine the World Wide Web for documents  °Although WSJ-5K and ICSISWB exhibited nearly the
same WER in our earlier experiments on all lecturers, we

related to the presented topic. WEB adapts IC?Jlid find upon inspection of the transcripts in question that

SISWB using these documents to build a languagecsisws was better interpretable on speakers that had more
model that better matches the lecture topic. It jcasual speaking styles, whereas WSJ-5K was better on speak-

| 40K d del built traini ers with more rehearsed styles. We have used whichever of
also a -word model bullt on training Corpora pese paselines was the best interpretable in our expelsmen

with an average file size of approximately 200 MB here (WSJ-5K for R and K, ICSISWB for G).
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[ WSJ-5K ] [ Lecturel [ Lecture2 | Lecture3 [ Lectured |
| [ 7S5=% | 20 | 33 | 20 | 33 | 20 [ 33 | 20 | 33 |
| Initial WER | 5048 | 50.93 | 51.31 | 5190 | 5008 | 49.23 | 54.39 | 54.04 |
XER RT=10 | 49.97 | 49.82 | 49.27 | 49.77 | 46.85 | 48.08 | 52.17 | 50.58
RT=5 50.01 | 50.07 | 49.99 | 51.13 | 48.39 | 47.37 | 50.91 | 49.62
RT=2 | 49.87 | 51.75 | 49.52 | 51.13 | 47.13 | 47.31 | 52.70 | 50.56
XER-NoS | RT=10 | 47.25 | 46.82 | 49.98 | 48.72 | 48.44 | 45.21 | 51.37 | 49.73
RT=5 | 49.03 | 48.78 | 47.37 | 51.25 | 47.84 | 44.07 | 49.54 | 48.97
RT=2 52.21 | 53.47 | 49.31 | 52.29 | 50.85 | 49.41 | 50.63 | 51.81
SWER RT=10 | 45.18 | 44.58 | 49.06 | 45.97 | 46.49 | 45.30 | 49.60 | 47.95
RT=5 | 44.82 | 43.82 | 46.73 | 45.52 | 45.64 | 43.18 | 47.79 | 46.74
RT=2 | 4404 | 4399 | 4581 | 4516 | 4435 | 4149 | 46.89 | 44.28

Table 2: Experimental evaluation: WER values for instru&®aising the WSJ-5K language model.

WEB Lecture 1 Lecture 2 Lecture 3 Lecture 4

| TS=% 20 | 33 20 [ 33 20 [ 33 20 | 33
Initial WER 4554 | 4585 | 4336 | 4387 | 46.69 | 47.14 | 49.78 | 49.38
XER RT=10 | 4291 | 43.90 | 42.44 | 4381 | 46.78 | 45.35 | 46.92 | 49.65
RT=5 | 43.45| 43.81 | 42.65 | 44.37 | 46.90 | 42.12 | 47.34 | 46.04
RT=2 | 43.26 | 45.46 | 44.19 | 44.66 | 43.77 | 45.12 | 61.54 | 60.40
XER-NoS | RT=10 | 4351 | 4297 | 42.11 | 41.98 | 44.66 | 46.50 | 47.24 | 46.30
RT=5 | 44.96 | 42.98 | 40.01 | 40.52 | 44.66 | 41.74 | 47.23 | 44.35
RT=2 | 46.72 | 48.16 | 44.79 | 45.87 | 40.44 | 44.32 | 61.84 | 64.40
SWER RT=10 | 41.98 | 4144 | 42.11 | 40.75 | 44.66 | 45.27 | 47.24 | 45.85
RT=5 | 40.97 | 40.56 | 38.85 | 39.08 | 44.66 | 40.84 | 45.27 | 42.39
RT=2 | 4067 | 4047 | 38.00 | 38.07 | 40.00 | 40.08 | 4331 | 4152

Table 3: Experimental evaluation: WER values for instru®aising the WEB language models.

As for how the transcripts improve, words with of the approximation-based TBL for some values
lower information content (e.g., a lower tf.idf of the RT and T'S parameters, although it still
score) are corrected more often and with moredoes not consistently match the WER reductions
improvement than words with higher information of our scoring function.
content. The topic-specific language model adap- Al
tation that the TBL follows upon benefits words
with higher information content more. It is possi-

ble that the favour observed in TBL withy 5r scoring function, an exception is illustrated in

towards lower mform_atlon content is a bias pro-rope 5 The recordings for this evaluation were
duced by the preceding round of language mOdeéollected from a course on Unix programming,

adaptation, but regardiess, it provides a mUChémd lectures were highly interactive. Instructor

neededd. C(_T_m;lemzentaéy?)effectr.]. :]-rjlisél_can ze ObK used numerous examples of C or Shell code,
Served in fables - and s, in whic pro ucesmany of them being developed and tested in

nearly the same RER in either table foranylectureClass While the keywords from a programming
We ha}ve also extensively. experimented With_ thqanguage can be easily added to the ASR lexicon,
usability of lecture transcripts on human subjects[he pronunciation of such abbreviated forms (es-
(Munteanu et al., 2006), and have found that taskl-Oecially for Shell programming) and of mostly all

based usability varies in linear relation to WER. variable and custom function names proved to be

An analysis of the rules selected by both TBL2 sign_ificant _O"fﬁcu'tY for the A,SR system. This,
implementations revealed that using tki¢’ R ap- combined with a high speaking rate and often

proximation leads to several single-word rules be_|ncon3|stentliy truncated words, led to few TBL
ing selected, such as rules removing all instance%flleS occurring even above the IOWGRfT :2

of frequent stop-words such as “the” and *for” or t _reshold (despite many TBL rules being initially
pronouns such as “he.” Therefore, an empiricap'scovered)'

improvement K ER — NoS) of the baseline was  As previously mentioned, one of the drawbacks
implemented that, beside pruning rules below thef global TBL rule scoring is the heavy compu-
RT threshold, omits such single-word rules fromtational burden. The experiments conducted here,
being selected. As shown in Tables 2, 3 and 4however, showed an average learning time of one
this restriction slightly improves the performancehour per one-hour lecture, reaching at most three

though the experimental evaluation shows
positive improvements in transcript quality
through TBL, in particular when using th8y zr
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WSJ-5K | Lecture 1 Lecture 2 Lecture 3 Lecture 4
| TS=% 20 [ 33 20 [ 33 20 [ 33 20 [ 33
Initial WER 4431 [ 44.06 | 46.12 | 45.80 [ 51.10 | 51.19 | 53.92 | 54.89
XER RT=10 | 44.31 | 44.06 | 46.12 | 46.55 | 51.10 | 51.19 | 53.92 | 54.89
RT=5 | 4431 | 4487 | 46.82 | 47.47 | 51.10 | 51.19 | 53.96 | 55.56
RT=2 | 4746 | 55.21 | 50.54 | 51.01 | 52.60 | 54.93 | 57.48 | 60.46

XER-NoS | RT=10 | 44.31 | 44.06 | 46.12 | 46.55 | 51.10 | 51.19 | 53.92 | 54.89
RT=5 | 4431 | 4487 | 46.82 | 47.47 | 51.10 | 51.19 | 53.96 | 55.56
RT=2 | 46.43 | 54.41 | 50.54 | 51.01 | 53.01 | 55.02 | 57.47 | 60.02
SWER RT=10 | 44.31 | 44.06 | 46.12 | 45.80 | 51.10 | 51.19 | 53.92 | 54.89
RT=5 | 4431 | 4405 | 46.11 | 45.88 | 51.10 | 51.19 | 53.92 | 54.89
RT=2 | 4434 | 44.07 | 46.03 | 45.89 | 50.96 | 50.93 | 54.01 | 55.16

Table 5: Experimental evaluation: WER values for instru&asing the WSJ-5K language model.

hourd for a threshold of 2 when training over tran-  In particular, we demonstrated that a true WER-
scripts for one third of a lecture. Therefore, it canbased scoring function for the TBL algorithm is
be concluded that, despite being computationallypoth feasible and effective with a limited amount
more intensive than a heuristic approximation (forof training data and no development data. The pro-
which the learning time is on the order of just aposed function assigns scores to TBL rules that di-
few minutes), a TBL system using a global, WER-rectly correlate with reductions in the WER of the
correlated scoring function not only produces bet-entire training set, leading to a better performance
ter transcripts, but also produces them in a feasibléhan that of a heuristic approximation. Further-
amount of time with only a small amount of man- more, a scoring function that directly optimizes

ual transcription for each lecture. for WER reductions is more robust to variations
_ _ in training size as well as to the value of the rule
5 Summary and Discussion pruning threshold. As little as a value of 2 can be

One of the challenges to reducing the WER ofused for th_e thres_hold_ (s_coring all rules that occur
ASR transcriptions of lecture recordings is the@t least twice), with limited impact on the com-
lack of manual transcripts on which to train var- putational burden of learning the transformation
ious ASR improvements. In particular, for one- "ules.

hour lectures given by different lecturers (such as,

for example, invited presentations), it is often im-

practical to manually transcribe parts of the IectureF\)GferenC&c
that would be useful as training or developmente. Brill. 1992. A simple rule-based part of speech
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