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Abstract

We demonstrate that transformation-based
learning can be used to correct noisy
speech recognition transcripts in the lec-
ture domain with an average word error
rate reduction of 12.9%. Our method is
distinguished from earlier related work by
its robustness to small amounts of training
data, and its resulting efficiency, in spite of
its use of true word error rate computations
as a rule scoring function.

1 Introduction

Improving access to archives of recorded lectures
is a task that, by its very nature, requires research
efforts common to both Automatic Speech Recog-
nition (ASR) and Human-Computer Interaction
(HCI). One of the main challenges to integrating
text transcripts into archives of webcast lectures is
the poor performance of ASR systems on lecture
transcription. This is in part caused by the mis-
match between the language used in a lecture and
the predictive language models employed by most
ASR systems. Most ASR systems achieve Word
Error Rates (WERs) of about 40-45% in realis-
tic and uncontrolled lecture conditions (Leeuwis
et al., 2003; Hsu and Glass, 2006).

Progress in ASR for this genre requires both
better acoustic modelling (Park et al., 2005;
Fügen et al., 2006) and better language modelling
(Leeuwis et al., 2003; Kato et al., 2000; Munteanu
et al., 2007). In contrast to some unsupervised ap-
proaches to language modelling that require large
amounts of manual transcription, either from the
same instructor or on the same topic (Nanjo and
Kawahara, 2003; Niesler and Willett, 2002), the

solution proposed by Glass et al. (2007) uses half
of the lectures in a semester course to train an
ASR system for the other half or for when the
course is next offered, and still results in signifi-
cant WER reductions. And yet even in this sce-
nario, the business case for manually transcrib-
ing half of the lecture material in every recorded
course is difficult to make, to say the least. Manu-
ally transcribing a one-hour recorded lecture re-
quires at least 5 hours in the hands of qualified
transcribers (Hazen, 2006) and roughly 10 hours
by students enrolled in the course (Munteanu et
al., 2008). As argued by Hazen (2006), any ASR
improvements that rely on manual transcripts need
to offer a balance between the cost of producing
those transcripts and the amount of improvement
(i.e. WER reductions).

There is some work that specializes in adap-
tive language modelling with extremely limited
amounts of manual transcripts. Klakow (2000)
filters the corpus on which language models are
trained in order to retain the parts that are more
similar to the correct transcripts on a particular
topic. This technique resulted in relative WER
reductions of between 7% and 10%. Munteanu
et al. (2007) use an information retrieval tech-
nique that exploits lecture presentation slides, au-
tomatically mining the World Wide Web for doc-
uments related to the topic as attested by text
on the slides, and using these to build a better-
matching language model. This yields about an
11% relative WER reduction for lecture-specific
language models. Following upon other applica-
tions of computer-supported collaborative work to
address shortcomings of other systems in artificial
intelligence (von Ahn and Dabbish, 2004), a wiki-
based technique for collaboratively editing lecture
transcripts has been shown to produce entirely cor-
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rected transcripts, given the proper motivation for
students to participate (Munteanu et al., 2008).
Another approach is active learning, where the
goal is to select or generate a subset of the avail-
able data that would be the best candidate for ASR
adaptation or training (Riccardi and Hakkani-Tur,
2005; Huo and Li, 2007).1 Even with all of these,
however, there remains a significant gap between
this WER and the threshold of 25%, at which lec-
ture transcripts have been shown with statistical
significance to improve student performance on
a typical lecture browsing task (Munteanu et al.,
2006).

People have also tried to correct ASR output in
a second pass. Ringger and Allen (1996) treated
ASR errors as noise produced by an auxiliary
noisy channel, and tried to decode back to the per-
fect transcript. This reduced WER from 41% to
35% on a corpus of train dispatch dialogues. Oth-
ers combine the transcripts or word lattices (from
which transcripts are extracted) of two comple-
mentary ASR systems, a technique first proposed
in the context of NIST’s ROVER system (Fiscus,
1997) with a 12% relative error reduction (RER),
and subsequently widely employed in many ASR
systems.

This paper tries to correct ASR output using
transformation-based learning (TBL). This, too,
has been attempted, although on a professional
dictation corpus with a 35% initial WER (Peters
and Drexel, 2004). They had access to a very large
amount of manually transcribed data — so large,
in fact, that the computation of true WER in the
TBL rule selection loop was computationally in-
feasible, and so they used a set of faster heuristics
instead. Mangu and Padmanabhan (2001) used
TBL to improve the word lattices from which the
transcripts are decoded, but this method also has
efficiency problems (it begins with a reduction of
the lattice to a confusion network), is poorly suited
to word lattices that have already been heavily
domain-adapted because of the language model’s
low perplexity, and even with higher perplexity
models (the SWITCHBOARD corpus using a lan-

1This work generally measures progress by reduction in
the size of training data rather than relative WER reduction.
Riccardi and Hakkani-Tur (2005) achieved a 30% WER with
68% less training data than their baseline. Huo and Li (2007)
worked on a small-vocabulary name-selection task that com-
bined active learning with acoustic model adaptation. They
reduced the WER from 15% to 3% with 70 syllables of acous-
tic adaptation, relative to a baseline that reduced the WER to
3% with 300 syllables of acoustic adaptation.

guage model trained over a diverse range of broad-
cast news and telephone conversation transcripts),
was reported to produce only a 5% WER reduc-
tion.

What we show in this paper is that a true WER
calculation is so valuable that a manual transcrip-
tion of only about 10 minutes of a one-hour lecture
is necessary to learn the TBL rules, and that this
smaller amount of transcribed data in turn makes
the true WER calculation computationally feasi-
ble. With this combination, we achieve a greater
average relative error reduction (12.9%) than that
reported by Peters and Drexel (2004) on their dic-
tation corpus (9.6%), and an RER over three times
greater than that of our reimplementation of their
heuristics on our lecture data (3.6%). This is on
top of the average 11% RER from language model
adaptation on the same data. We also achieve
the RER from TBL without the obligatory round
of development-set parameter tuning required by
their heuristics, and in a manner that is robust to
perplexity. Less is more.

Section 2 briefly introduces Transformation-
Based Learning (TBL), a method used in various
Natural Language Processing tasks to correct the
output of a stochastic model, and then introduces
a TBL-based solution for improving ASR tran-
scripts for lectures. Section 3 describes our exper-
imental setup, and Section 4 analyses its results.

2 Transformation-Based Learning

Brill’s tagger introduced the concept of
Transformation-Based Learning (TBL) (Brill,
1992). The fundamental principle of TBL is
to employ a set of rules to correct the output
of a stochastic model. In contrast to traditional
rule-based approaches where rules are manually
developed, TBL rules are automatically learned
from training data. The training data consist of
sample output from the stochastic model, aligned
with the correct instances. For example, in Brill’s
tagger, the system assigns POSs to words in a text,
which are later corrected by TBL rules. These
rules are learned from manually-tagged sentences
that are aligned with the same sentences tagged
by the system. Typically, rules take the form of
context-dependent transformations, for example
“change the tag from verb to noun if one of the
two preceding words is tagged as a determiner.”

An important aspect of TBL is rule scor-
ing/ranking. While the training data may suggest
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a certain transformation rule, there is no guarantee
that the rule will indeed improve the system’s ac-
curacy. So a scoring function is used to rank rules.
From all the rules learned during training, only
those scoring higher than a certain threshold are
retained. For a particular task, the scoring func-
tion ideally reflects an objective quality function.

Since Brill’s tagger was first introduced, TBL
has been used for other NLP applications, includ-
ing ASR transcript correction (Peters and Drexel,
2004). A graphical illustration of this task is pre-
sented in Figure 1. Here, the rules consist of

Figure 1: General TBL algorithm. Transformation
rules are learned from the alignment of manually-
transcribed text (T ) with automatically-generated
transcripts (TASR) of training data, ranked accord-
ing to a scoring function (S) and applied to the
ASR output (T ′

ASR
) of test data.

word-level transformations that correct n-gram se-
quences. A typical challenge for TBL is the heavy
computational requirements of the rule scoring
function (Roche and Schabes, 1995; Ngai and
Florian, 2001). This is no less true in large-
vocabulary ASR correction, where large training
corpora are often needed to learn good rules over
a much larger space (larger than POS tagging, for
example). The training and development sets are
typically up to five times larger than the evaluation
test set, and all three sets must be sampled from the
same cohesive corpus.

While the objective function for improving the
ASR transcript is WER reduction, the use of this
for scoring TBL rules can be computationally pro-

hibitive over large data-sets. Peters and Drexel
(2004) address this problem by using an heuris-
tic approximation to WER instead, and it appears
that their approximation is indeed adequate when
large amounts of training data are available. Our
approach stands at the opposite side of this trade-
off — restrict the amount of training data to a bare
minimum so that true WER can be used in the
rule scoring function. As it happens, the mini-
mum amount of data is so small that we can au-
tomatically develop highly domain-specific lan-
guage models for single 1-hour lectures. We show
below that the rules selected by this function lead
to a significant WER reduction for individual lec-
tures even if a little less than the first ten minutes of
the lecture are manually transcribed. This combi-
nation of domain-specificity with true WER leads
to the superior performance of the present method,
at least in the lecture domain (we have not experi-
mented with a dictation corpus).

Another alternative would be to change the
scope over which TBL rules are ranked and eval-
uated, but it is well known that globally-scoped
ranking over the entire training set at once is so
useful to TBL-based approaches that this is not
a feasible option — one must either choose an
heuristic approach, such as that of Peters and
Drexel (2004) or reduce the amount of training
data to learn sufficiently robust rules.

2.1 Algorithm and Rule Discovery

As our proposed TBL adaptation operates di-
rectly on ASR transcripts, we employ an adapta-
tion of the specific algorithm proposed by Peters
and Drexel (2004), which is schematically repre-
sented in Figure 1. This in turn was adapted from
the general-purpose algorithm introduced by Brill
(1992).

The transformation rules are contextual word-
replacement rules to be applied to ASR tran-
scripts, and are learned by performing a word-
level alignment between corresponding utterances
in the manual and ASR transcripts of training
data, and then extracting the mismatched word
sequences, anchored by matching words. The
matching words serve as contexts for the rules’
application. The rule discovery algorithm is out-
lined in Figure 2; it is applied to every mismatch-
ing word sequence between the utterance-aligned
manual and ASR transcripts.

For every mismatching sequence of words, a set

766



⋄ for every sequence of words c0w1 . . . wnc1 in the
ASR output that is deemed to be aligned with a
corresponding sequence c0w

′

1 . . . w′

mc1 in the
manual transcript:

⋄ add the following contextual replacements to the
set of discovered rules:

/ c0w1 . . . wnc1 / c0w
′

1 . . . w
′

mc1 /
/ c0w1 . . . wn / c0w

′

1 . . . w
′

m /
/ w1 . . . wnc1 / w

′

1 . . . w
′

mc1 /
/ w1 . . . wn / w

′

1 . . . w
′

m /

⋄ for each i such that 1 ≤ i < min(n, m), add
the following contextual replacements to the set of
discovered rules:

/ c0w1 . . . wi / c0w
′

1 . . . w
′

a(i) /
/ wi+1 . . . wnc1 / w

′

a(i+1) . . . w
′

mc1 /
/ w1 . . . wi / w

′

1 . . . w
′

a(i) /
/ wi+1 . . . wn / w

′

a(i+1) . . . w
′

m /

Figure 2: The discovery of transformation rules.

of contextual replacement rules is generated. The
set contains the mismatched pair, by themselves
and together with three contexts formed from the
left, right, and both anchor context words. In
addition, all possible splices of the mismatched
pair and the surrounding context words are also
considered.2 Rules are shown here as replace-
ment expressions in a sed-like syntax. Given the
rule r = /w1 . . . wn/w′

1
. . . w′

m/, every instance
of the n-gramw1 . . . wn appearing in the current
transcript is replaced with the n-gramw′

1
. . . w′

m.
Rules cannot apply to their own output. Rules that
would result in arbitrary insertions of single words
(e.g./ /w1/) are discarded. An example of a rule
learned from transcripts is presented in Figure 3.

2.2 Scoring Function and Rule Application

The scoring function that ranks rules is the main
component of any TBL algorithm. Assuming a
relatively small size for the available training data,
a TBL scoring function that directly correlates
with WER can be conducted globally over the en-
tire training set. In keeping with TBL tradition,
however, rule selection itself is still greedily ap-
proximated. Our scoring function is defined as:

SWER(r, TASR, T ) = WER(TASR, T )
−WER(ρ(r, TASR), T ),

2The splicing preserves the original order of the word-
level utterance alignment, i.e., the output of a typical dynamic
programming implementation of the edit distance algorithm
(Gusfield, 1997). For this, word insertion and deletion oper-
ations are treated as insertions of blanks in either the manual
or ASR transcript.

Utterance-align ASR output and correct transcripts:

ASR: the okay one and you come and get your seats

Correct: ok why don’t you come and get your seats

⇓
Insert sentence delimiters (to serve as possible

anchors for the rules):

ASR: <s> the okay one and you come and get your seats</s>

Correct:<s> ok why don’t you come and get your seats</s>

⇓
Extract the mismatching sequence, enclosed by

matching anchors:

ASR: <s> the okay one and you

Correct:<s> ok why don’t you

⇓
Output all rules for replacing the incorrect ASR

sequence with the correct text, using the entire

sequence (a) or splices (b), with or without

surrounding anchors:

(a) the okay one and/ ok why don’t

(a) the okay one and you/ ok why don’t you

(a) <s> the okay one and/ <s> ok why don’t

(a) <s> the okay one and you/ <s> ok why don’t you

(b) the okay/ ok

(b) <s> the okay/ <s> ok

(b) one and/ why don’t

(b) one and you/ why don’t you

(b) the okay one/ ok why

(b) <s> the okay one/ <s> ok why

(b) and/ don’t

(b) and you/ don’t you

Figure 3: An example of rule discovery.

whereρ(r, TASR) is the result of applying ruler
on textTASR.

As outlined in Figure 1, rules that occur in the
training sample more often than an established
threshold are ranked according to the scoring func-
tion. The ranking process is iterative: in each iter-
ation, the highest-scoring rulerbest is selected. In
subsequent iterations, the training dataTASR are
replaced with the result of applying the selected
rule on them (TASR ← ρ(rbest, TASR)) and the re-
maining rules are scored on the transformed train-
ing text. This ensures that the scoring and ranking
of remaining rules takes into account the changes
brought by the application of the previously se-
lected rules. The iterations stop when the scoring
function reaches zero: none of the remaining rules
improves the WER on the training data.

On testing data, rules are applied to ASR tran-
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scripts in the same order in which they were se-
lected.

3 Experimental Design

Several combinations of TBL parameters were
tested with no tuning or modifications between
tests. As the proposed method was not refined dur-
ing the experiments, and since one of the goals of
our proposed approach is to eliminate the need for
developmental data sets, the available data were
partitioned only into training and test sets, with
one additional hour set aside for code development
and debugging.

It can be assumed that a one-hour lecture given
by the same instructor will exhibit a strong cohe-
sion, both in topic and in speaking style, between
its parts. Therefore, in contrast to typical TBL
solutions, we have evaluated our TBL-based ap-
proach by partitioning each 50 minute lecture into
a training and a test set, where the training set is
smaller than the test set. As mentioned in the intro-
duction, it is feasible to obtain manual transcripts
for the first 10 to 15 minutes of a lecture. As such,
the evaluation was carried out with two values for
the training size: the first fifth (TS = 20%) and
the first third (TS = 33%) of the lecture being
manually transcribed.

Besides the training size parameter, during all
experimental tests a second parameter was also
considered: the rule pruning threshold (RT ). As
described in Section 2.2, of all the rules learned
during the rule discovery step, only those that oc-
cur more often than the threshold are scored and
ranked. This parameter can be set as low as 1 (con-
sider all rules) or 2 (consider all rules that occur
at least twice over the training set). For larger-
scale tasks, the threshold serves as a pruning al-
ternative to the computational burden of scoring
several thousand rules. A large threshold could
potentially lead to discrediting low-frequency but
high-scoring rules. Due to the intentionally small
size of our training data for lecture TBL, the low-
est threshold was set toRT = 2. When a de-
velopment set is available, several values for the
RT parameter could be tested and the optimal one
chosen for the evaluation task. Since we used no
development set, we tested two more values for the
rule pruning threshold:RT = 5 andRT = 10.

Since our TBL solution is an extension of the
solution proposed in Peters and Drexel (2004),
their heuristic is our baseline. Their scoring func-

tion is theexpected error reduction:

XER = ErrLen · (GoodCnt−BadCnt),

a WER approximation computed over all instances
of rules applicable to the training set which reflects
the difference between true positives (the number
of times a rule is correctly applied to errorful tran-
scripts –GoodCnt) and false positives (the in-
stances of correct text being unnecessarily “cor-
rected” by a rule –BadCnt). These are weighted
by the length in words (ErrLen) of the text area
that matches the left-hand side of the replacement.

3.1 Acoustic Model

The experiments were conducted using the
SONIC toolkit (Pellom, 2001). We used the
acoustic model distributed with the toolkit, which
was trained on 30 hours of data from 283 speak-
ers from the WSJ0 and WSJ1 subsets of the
1992 development set of the Wall Street Jour-
nal (WSJ) Dictation Corpus. Our own lectures
consist of eleven lectures of approximately 50
minutes each, recorded in three separate courses,
each taught by a different instructor. For each
course, the recordings were performed in different
weeks of the same term. They were collected in
a large, amphitheatre-style, 200-seat lecture hall
using the AKG C420 head-mounted directional
microphone. The recordings were not intrusive,
and no alterations to the lecture environment or
proceedings were made. The 1-channel record-
ings were digitized using a TASCAM US-122 au-
dio interface as uncompressed audio files with a
16KHz sampling rate and 16-bit samples. The au-
dio recordings were segmented at pauses longer
than 200ms, manually for one instructor and au-
tomatically for the other two, using the silence
detection algorithm described in Placeway et al.
(1997). Our implementation was manually fine-
tuned for every instructor in order to detect all
pauses longer than 200ms while allowing a maxi-
mum of 20 seconds in between pauses.

The evaluation data are described in Table 1.
Four evaluations tasks were carried out; for in-
structorR, two separate evaluation sessions,R-1
andR-2, were conducted, using two different lan-
guage models.

The pronunciation dictionary was custom-built
to include all words appearing in the corpus on
which the language model was trained. Pronunci-
ations were extracted from the 5K-word WSJ dic-
tionary included with the SONIC toolkit and from
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Evaluation
task name R-1 R-2 G-1 K-1

Instructor R. G. K.
Gender Male Male Female

Age Early 60s Mid 40s Early 40s
Segmentation manual automatic automatic

# lectures 4 3 4
Lecture topic Interactive Software Unix pro-

media design design gramming
Language model WSJ-5K WEB ICSISWB WSJ-5K

Table 1: The evaluation data.

the 100K-word CMU pronunciation dictionary.
For all models, we allowed one non-dictionary
word per utterance, but only for lines longer than
four words. For allowable non-dictionary words,
SONIC’ssspell lexicon access tool was used to
generate pronunciations using letter-to-sound pre-
dictions. The language models were trained us-
ing the CMU-CAM Language Modelling Toolkit
(Clarkson and R., 1997) with a training vocabu-
lary size of 40K words.

3.2 Language Models

The four evaluations were carried out using the
language models given in Table 1, either custom-
built for a particular topic or the baseline models
included in the SONIC toolkit, as follows:

WSJ-5K is the baseline model of the SONIC
toolkit. It is a 5K-word model built using the same
corpus as the base acoustic model included in the
toolkit.

ICSISWB is a 40K-word model created
through the interpolation of language models built
on the entire transcripts of the ICSI Meeting cor-
pus and the Switchboard corpus. The ICSI Meet-
ing corpus consists of recordings of university-
based multi-speaker research meetings, totaling
about 72 hours from 75 meetings (Janin et al.,
2003). The Switchboard (SWB) corpus (Godfrey
et al., 1992) is a large collection of about 2500
scripted telephone conversations between approx-
imately 500 English-native speakers, suitable for
the conversational style of lectures, as also sug-
gested in (Park et al., 2005).

WEB is a language model built for each par-
ticular lecture, using information retrieval tech-
niques that exploit the lecture slides to automat-
ically mine the World Wide Web for documents
related to the presented topic. WEB adapts IC-
SISWB using these documents to build a language
model that better matches the lecture topic. It is
also a 40K-word model built on training corpora
with an average file size of approximately 200 MB

per lecture, and an average of 35 million word to-
kens per lecture.

It is appropriate to take the difference between
ICSISWB and WSJ-5K to be one of greater genre
specificity, whereas the difference between WEB
and ICSISWB is one of greater topic-specificity.
Our experiments on these three models (Munteanu
et al., 2007) shows that the topic adaptation pro-
vides nearly all of the benefit.

4 Results

Tables 2, 3 and 43 present the evaluation results

ICSISWB Lecture 1 Lecture 2 Lecture 3
TS = % 20 33 20 33 20 33

Initial WER 50.93 50.75 54.10 53.93 48.79 49.35

XER RT = 10 46.63 49.38 49.93 48.61 49.52 50.43
RT = 5 48.34 49.75 49.32 48.81 49.58 49.26
RT = 2 54.05 56.84 52.01 49.11 50.37 51.66

XER-NoS RT = 10 49.54 49.38 54.10 53.93 48.79 48.24
RT = 5 49.54 49.31 56.70 55.50 48.51 48.42
RT = 2 59.00 59.28 57.61 55.03 50.41 52.67

SWER RT = 10 46.63 46.53 49.80 48.44 45.83 45.42
RT = 5 46.63 45.60 47.75 47.23 44.76 44.44
RT = 2 44.48 44.30 47.46 47.02 43.60 44.13

Table 4: Experimental evaluation: WER values for
instructor G using the ICSISWB language model.

for instructors R and G. The transcripts were ob-
tained through ASR runs using three different lan-
guage models. The TBL implementation with our
scoring functionSWER brings relative WER re-
ductions ranging from 10.5% to 14.9%, with an
average of 12.9%.

These WER reductions are greater than those
produced by theXER baseline approach. It is not
possible to provide confidence intervals since the
proposed method does not tune parameters from
sampled data (which we regard as a very positive
quality for such a method to have). Our specu-
lative experimentation with several values forTS
andRT , however, leads us to conclude that this
method is significantly less sensitive to variations
in both the training sizeTS and the rule pruning
thresholdRT than earlier work, making it suitable
for application to tasks with limited training data
– a result somewhat expected since rules are vali-
dated through direct WER reductions over the en-
tire training set.

3Although WSJ-5K and ICSISWB exhibited nearly the
same WER in our earlier experiments on all lecturers, we
did find upon inspection of the transcripts in question that
ICSISWB was better interpretable on speakers that had more
casual speaking styles, whereas WSJ-5K was better on speak-
ers with more rehearsed styles. We have used whichever of
these baselines was the best interpretable in our experiments
here (WSJ-5K for R and K, ICSISWB for G).
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WSJ-5K Lecture 1 Lecture 2 Lecture 3 Lecture 4

TS = % 20 33 20 33 20 33 20 33
Initial WER 50.48 50.93 51.31 51.90 50.28 49.23 54.39 54.04

XER RT = 10 49.97 49.82 49.27 49.77 46.85 48.08 52.17 50.58
RT = 5 50.01 50.07 49.99 51.13 48.39 47.37 50.91 49.62
RT = 2 49.87 51.75 49.52 51.13 47.13 47.31 52.70 50.56

XER-NoS RT = 10 47.25 46.82 49.98 48.72 48.44 45.21 51.37 49.73
RT = 5 49.03 48.78 47.37 51.25 47.84 44.07 49.54 48.97
RT = 2 52.21 53.47 49.31 52.29 50.85 49.41 50.63 51.81

SWER RT = 10 45.18 44.58 49.06 45.97 46.49 45.30 49.60 47.95
RT = 5 44.82 43.82 46.73 45.52 45.64 43.18 47.79 46.74
RT = 2 44.04 43.99 45.81 45.16 44.35 41.49 46.89 44.28

Table 2: Experimental evaluation: WER values for instructor R using the WSJ-5K language model.

WEB Lecture 1 Lecture 2 Lecture 3 Lecture 4
TS = % 20 33 20 33 20 33 20 33

Initial WER 45.54 45.85 43.36 43.87 46.69 47.14 49.78 49.38

XER RT = 10 42.91 43.90 42.44 43.81 46.78 45.35 46.92 49.65
RT = 5 43.45 43.81 42.65 44.37 46.90 42.12 47.34 46.04
RT = 2 43.26 45.46 44.19 44.66 43.77 45.12 61.54 60.40

XER-NoS RT = 10 43.51 42.97 42.11 41.98 44.66 46.59 47.24 46.30
RT = 5 44.96 42.98 40.01 40.52 44.66 41.74 47.23 44.35
RT = 2 46.72 48.16 44.79 45.87 40.44 44.32 61.84 64.40

SWER RT = 10 41.98 41.44 42.11 40.75 44.66 45.27 47.24 45.85
RT = 5 40.97 40.56 38.85 39.08 44.66 40.84 45.27 42.39
RT = 2 40.67 40.47 38.00 38.07 40.00 40.08 43.31 41.52

Table 3: Experimental evaluation: WER values for instructor R using the WEB language models.

As for how the transcripts improve, words with
lower information content (e.g., a lower tf.idf
score) are corrected more often and with more
improvement than words with higher information
content. The topic-specific language model adap-
tation that the TBL follows upon benefits words
with higher information content more. It is possi-
ble that the favour observed in TBL withSWER

towards lower information content is a bias pro-
duced by the preceding round of language model
adaptation, but regardless, it provides a much-
needed complementary effect. This can be ob-
served in Tables 2 and 3, in which TBL produces
nearly the same RER in either table for any lecture.
We have also extensively experimented with the
usability of lecture transcripts on human subjects
(Munteanu et al., 2006), and have found that task-
based usability varies in linear relation to WER.

An analysis of the rules selected by both TBL
implementations revealed that using theXER ap-
proximation leads to several single-word rules be-
ing selected, such as rules removing all instances
of frequent stop-words such as “the” and “for” or
pronouns such as “he.” Therefore, an empirical
improvement (XER −NoS) of the baseline was
implemented that, beside pruning rules below the
RT threshold, omits such single-word rules from
being selected. As shown in Tables 2, 3 and 4,
this restriction slightly improves the performance

of the approximation-based TBL for some values
of the RT and TS parameters, although it still
does not consistently match the WER reductions
of our scoring function.

Although the experimental evaluation shows
positive improvements in transcript quality
through TBL, in particular when using theSWER

scoring function, an exception is illustrated in
Table 5. The recordings for this evaluation were
collected from a course on Unix programming,
and lectures were highly interactive. Instructor
K used numerous examples of C or Shell code,
many of them being developed and tested in
class. While the keywords from a programming
language can be easily added to the ASR lexicon,
the pronunciation of such abbreviated forms (es-
pecially for Shell programming) and of mostly all
variable and custom function names proved to be
a significant difficulty for the ASR system. This,
combined with a high speaking rate and often
inconsistently truncated words, led to few TBL
rules occurring even above the lowestRT = 2
threshold (despite many TBL rules being initially
discovered).

As previously mentioned, one of the drawbacks
of global TBL rule scoring is the heavy compu-
tational burden. The experiments conducted here,
however, showed an average learning time of one
hour per one-hour lecture, reaching at most three
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WSJ-5K Lecture 1 Lecture 2 Lecture 3 Lecture 4
TS = % 20 33 20 33 20 33 20 33

Initial WER 44.31 44.06 46.12 45.80 51.10 51.19 53.92 54.89

XER RT = 10 44.31 44.06 46.12 46.55 51.10 51.19 53.92 54.89
RT = 5 44.31 44.87 46.82 47.47 51.10 51.19 53.96 55.56
RT = 2 47.46 55.21 50.54 51.01 52.60 54.93 57.48 60.46

XER-NoS RT = 10 44.31 44.06 46.12 46.55 51.10 51.19 53.92 54.89
RT = 5 44.31 44.87 46.82 47.47 51.10 51.19 53.96 55.56
RT = 2 46.43 54.41 50.54 51.01 53.01 55.02 57.47 60.02

SWER RT = 10 44.31 44.06 46.12 45.80 51.10 51.19 53.92 54.89
RT = 5 44.31 44.05 46.11 45.88 51.10 51.19 53.92 54.89
RT = 2 44.34 44.07 46.03 45.89 50.96 50.93 54.01 55.16

Table 5: Experimental evaluation: WER values for instructor K using the WSJ-5K language model.

hours4 for a threshold of 2 when training over tran-
scripts for one third of a lecture. Therefore, it can
be concluded that, despite being computationally
more intensive than a heuristic approximation (for
which the learning time is on the order of just a
few minutes), a TBL system using a global, WER-
correlated scoring function not only produces bet-
ter transcripts, but also produces them in a feasible
amount of time with only a small amount of man-
ual transcription for each lecture.

5 Summary and Discussion

One of the challenges to reducing the WER of
ASR transcriptions of lecture recordings is the
lack of manual transcripts on which to train var-
ious ASR improvements. In particular, for one-
hour lectures given by different lecturers (such as,
for example, invited presentations), it is often im-
practical to manually transcribe parts of the lecture
that would be useful as training or development
data. However, transcripts for the first 10-15 min-
utes of a particular lecture can be easily obtained.

In this paper, we presented a solution that im-
proves the quality of ASR transcripts for lectures.
WER is reduced by 10% to 14%, with an average
reduction of 12.9%, relative to initial values. This
is achieved by making use of manual transcripts
from as little as the first 10 minutes of a one-hour
lecture. The proposed solution learns word-level
transformation-based rules that attempt to replace
parts of the ASR transcript with possible correc-
tions. The experimental evaluation carried out
over eleven lectures from three different courses
and instructors shows that this amount of manual
transcription can be sufficient to further improve a
lecture-specific ASR system.

4It should be noted that, in order to preserve compatibil-
ity with other software tools, the code developed for these
experiments was not optimized for speed. It is expected that
a dedicated implementation would result in even lower run-
times.

In particular, we demonstrated that a true WER-
based scoring function for the TBL algorithm is
both feasible and effective with a limited amount
of training data and no development data. The pro-
posed function assigns scores to TBL rules that di-
rectly correlate with reductions in the WER of the
entire training set, leading to a better performance
than that of a heuristic approximation. Further-
more, a scoring function that directly optimizes
for WER reductions is more robust to variations
in training size as well as to the value of the rule
pruning threshold. As little as a value of 2 can be
used for the threshold (scoring all rules that occur
at least twice), with limited impact on the com-
putational burden of learning the transformation
rules.
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