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Abstract

Supervised polarity classification systems
are typically domain-specific. Building
these systems involves the expensive pro-
cess of annotating a large amount of data
for each domain. A potential solution
to this corpus annotation bottleneck is to
build unsupervised polarity classification
systems. However, unsupervised learning
of polarity is difficult, owing in part to the
prevalence of sentimentally ambiguous re-
views, where reviewers discuss both the
positive and negative aspects of a prod-
uct. To address this problem, we pro-
pose a semi-supervised approach to senti-
ment classification where we first mine the
unambiguous reviews using spectral tech-
niques and then exploit them to classify
the ambiguous reviews via a novel com-
bination of active learning, transductive
learning, and ensemble learning.

1 Introduction

Sentiment analysis has recently received a lot
of attention in the Natural Language Processing
(NLP) community. Polarity classification, whose
goal is to determine whether the sentiment ex-
pressed in a document is “thumbs up” or “thumbs
down”, is arguably one of the most popular tasks
in document-level sentiment analysis. Unlike
topic-based text classification, where a high accu-
racy can be achieved even for datasets with a large
number of classes (e.g., 20 Newsgroups), polarity
classification appears to be a more difficult task.
One reason topic-based text classification is easier
than polarity classification is that topic clusters are
typically well-separated from each other, result-
ing from the fact that word usage differs consid-
erably between two topically-different documents.
On the other hand, many reviews aresentimentally

ambiguousfor a variety of reasons. For instance,
an author of a movie review may have negative
opinions of the actors but at the same time talk
enthusiastically about how much she enjoyed the
plot. Here, the review is ambiguous because she
discussed both the positive and negative aspects of
the movie, which is not uncommon in reviews. As
another example, a large portion of a movie re-
view may be devoted exclusively to the plot, with
the author only briefly expressing her sentiment at
the end of the review. In this case, the review is
ambiguous because the objective material in the
review, which bears no sentiment orientation, sig-
nificantly outnumbers its subjective counterpart.

Realizing the challenges posed by ambiguous
reviews, researchers have explored a number of
techniques to improvesupervisedpolarity classi-
fiers. For instance, Pang and Lee (2004) train an
independentsubjectivityclassifier to identify and
remove objective sentences from a review prior to
polarity classification. Koppel and Schler (2006)
use neutral reviews to help improve the classi-
fication of positive and negative reviews. More
recently, McDonald et al. (2007) have investi-
gated a model for jointly performing sentence- and
document-level sentiment analysis, allowing the
relationship between the two tasks to be captured
and exploited. However, the increased sophistica-
tion of supervised polarity classifiers has also re-
sulted in their increased dependence on annotated
data. For instance, Koppel and Schler needed to
manually identify neutral reviews to train their po-
larity classifier, and McDonald et al.’s joint model
requires that each sentence in a review be labeled
with polarity information.

Given the difficulties of supervised polarity
classification, it is conceivable thatunsupervised
polarity classification is a very challenging task.
Nevertheless, a solution to unsupervised polarity
classification is of practical significance. One rea-
son is that the vast majority of supervised polarity
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classification systems aredomain-specific. Hence,
when given a new domain, a large amount of an-
notated data from the domain typically needs to be
collected in order to train a high-performance po-
larity classification system. As Blitzer et al. (2007)
point out, this data collection process can be “pro-
hibitively expensive, especially since product fea-
tures can change over time”. Unfortunately, to
our knowledge, unsupervised polarity classifica-
tion is largely an under-investigated task in NLP.
Turney’s (2002) work is perhaps one of the most
notable examples of unsupervised polarity clas-
sification. However, while his system learns the
semantic orientation of phrases in a review in an
unsupervised manner, such information is used to
heuristically predict the polarity of a review.

At first glance, it may seem plausible to apply
an unsupervised clustering algorithm such ask-
means to cluster the reviews according to their po-
larity. However, there is reason to believe that such
a clustering approach is doomed to fail: in the ab-
sence of annotated data, an unsupervised learner
is unable to identify which features are relevant
for polarity classification. The situation is further
complicated by the prevalence of ambiguous re-
views, which may contain a large amount of irrel-
evant and/or contradictory information.

In light of the difficulties posed by ambiguous
reviews, we differentiate between ambiguous and
unambiguous reviews in our classification process
by addressing the task of semi-supervised polar-
ity classification via a “mine the easy, classify the
hard” approach. Specifically, we propose a novel
system architecture where we first automatically
identify and label theunambiguous(i.e., “easy”)
reviews, then handle theambiguous(i.e., “hard”)
reviews using a discriminative learner to bootstrap
from the automatically labeled unambiguous re-
views and a small number of manually labeled re-
views that are identified by an active learner.

It is worth noting that our system differs from
existing work on unsupervised/active learning in
two aspects. First, while existing unsupervised
approaches typically rely on clustering or learn-
ing via a generative model, our approach distin-
guishes between easy and hard instances and ex-
ploits the strengths of discriminative models to
classify the hard instances. Second, while exist-
ing active learners typically start with manually la-
beled seeds, our active learner relies only on seeds
that are automatically extracted from the data. Ex-

perimental results on five sentiment classification
datasets demonstrate that our system can gener-
ate high-quality labeled data from unambiguous
reviews, which, together with a small number of
manually labeled reviews selected by the active
learner, can be used to effectively classify ambigu-
ous reviews in a discriminative fashion.

The rest of the paper is organized as follows.
Section 2 gives an overview of spectral cluster-
ing, which will facilitate the presentation of our
approach to unsupervised sentiment classification
in Section 3. We evaluate our approach in Section
4 and present our conclusions in Section 5.

2 Spectral Clustering

In this section, we give an overview of spectral
clustering, which is at the core of our algorithm
for identifying ambiguous reviews.

2.1 Motivation

When given a clustering task, an important ques-
tion to ask is: which clustering algorithm should
be used? A popular choice isk-means. Neverthe-
less, it is well-known thatk-means has the major
drawback of not being able to separate data points
that are not linearly separable in the given feature
space (e.g, see Dhillon et al. (2004)). Spectral
clustering algorithms were developed in response
to this problem withk-means clustering. The cen-
tral idea behind spectral clustering is to (1) con-
struct a low-dimensional space from the original
(typically high-dimensional) space while retaining
as much information about the original space as
possible, and (2) cluster the data points in this low-
dimensional space.

2.2 Algorithm

Although there are several well-known spectral
clustering algorithms in the literature (e.g., Weiss
(1999), Meilă and Shi (2001), Kannan et al.
(2004)), we adopt the one proposed by Ng et al.
(2002), as it is arguably the most widely used. The
algorithm takes as input a similarity matrixS cre-
ated by applying a user-defined similarity function
to each pair of data points. Below are the main
steps of the algorithm:

1. Create the diagonal matrixG whose (i,i)-
th entry is the sum of thei-th row of S,
and then construct the Laplacian matrixL =

G−1/2SG−1/2.
2. Find the eigenvalues and eigenvectors ofL.
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3. Create a new matrix from them eigenvectors
that correspond to them largest eigenvalues.1

4. Each data point is now rank-reduced to a
point in them-dimensional space. Normal-
ize each point to unit length (while retaining
the sign of each value).

5. Cluster the resulting data points usingk-
means.

In essence, each dimension in the reduced space
is defined by exactly one eigenvector. The rea-
son why eigenvectors with large eigenvalues are
retained is that they capture the largest variance in
the data. Therefore, each of them can be thought
of as revealing an important dimension of the data.

3 Our Approach

While spectral clustering addresses a major draw-
back ofk-means clustering, it still cannot be ex-
pected to accurately partition the reviews due to
the presence of ambiguous reviews. Motivated by
this observation, rather than attempting to cluster
all the reviews at the same time, we handle them in
different stages. As mentioned in the introduction,
we employ a “mine the easy, classify the hard”
approach to polarity classification, where we (1)
identify and classify the “easy” (i.e., unambigu-
ous) reviews with the help of a spectral cluster-
ing algorithm; (2) manually label a small number
of “hard” (i.e., ambiguous) reviews selected by an
active learner; and (3) using the reviews labeled
thus far, apply a transductive learner to label the
remaining (ambiguous) reviews. In this section,
we discuss each of these steps in detail.

3.1 Identifying Unambiguous Reviews

We begin by preprocessing the reviews to be clas-
sified. Specifically, we tokenize and downcase
each review and represent it as a vector of uni-
grams, using frequency as presence. In addition,
we remove from the vector punctuation, numbers,
words of length one, and words that occur in a
single review only. Finally, following the com-
mon practice in the information retrieval commu-
nity, we remove words with high document fre-
quency, many of which are stopwords or domain-
specific general-purpose words (e.g., “movies” in
the movie domain). A preliminary examination
of our evaluation datasets reveals that these words

1For brevity, we will refer to the eigenvector with then-th
largest eigenvalue simply as then-th eigenvector.

typically comprise 1–2% of a vocabulary. The de-
cision of exactly how many terms to remove from
each dataset is subjective: a large corpus typically
requires more removals than a small corpus. To be
consistent, we simply sort the vocabulary by doc-
ument frequency and remove the top 1.5%.

Recall that in this step we use spectral clustering
to identify unambiguous reviews. To make use of
spectral clustering, we first create a similarity ma-
trix, defining the similarity between two reviews
as the dot product of their feature vectors, but fol-
lowing Ng et al. (2002), we set its diagonal entries
to 0. We then perform an eigen-decomposition of
this matrix, as described in Section 2.2. Finally,
using the resulting eigenvectors, we partition the
length-normalized reviews into two sets.

As Ng et al. point out, “different authors still
disagree on which eigenvectors to use, and how to
derive clusters from them”. To create two clusters,
the most common way is to use only the second
eigenvector, as Shi and Malik (2000) proved that
this eigenvector induces an intuitively ideal par-
tition of the data — the partition induced by the
minimum normalized cut of the similarity graph2,
where the nodes are the data points and the edge
weights are the pairwise similarity values of the
points. Clustering in a one-dimensional space is
trivial: since we have a linearization of the points,
all we need to do is to determine a threshold for
partitioning the points. A common approach is to
set the threshold to zero. In other words, all points
whose value in the second eigenvector is positive
are classified as positive, and the remaining points
are classified as negative. However, we found that
the second eigenvector does not always induce a
partition of the nodes that corresponds to the min-
imum normalized cut. One possible reason is that
Shi and Malik’s proof assumes the use of a Lapla-
cian matrix that is different from the one used by
Ng et al. To address this problem, we use the first
five eigenvectors: for each eigenvector, we (1) use
each of itsn elements as a threshold to indepen-
dently generaten partitions, (2) compute the nor-
malized cut value for each partition, and (3) find
the minimum of then cut values. We then select
the eigenvector that corresponds to the smallest of
the five minimum cut values.

Next, we identify the ambiguous reviews from

2Using the normalized cut (as opposed to the usual cut)
ensures that the size of the two clusters are relatively bal-
anced, avoiding trivial cuts where one cluster is empty and
the other is full. See Shi and Malik (2000) for details.
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the resulting partition. To see how this is done,
consider the example in Figure 1, where the goal
is to produce two clusters from five data points.

(

1 1 1 0 0
1 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 1 1

) (−0.6983 0.7158
−0.6983 0.7158
−0.9869 −0.1616
−0.6224 −0.7827
−0.6224 −0.7827

)

Figure 1: Sample data and the top two eigenvec-
tors of its Laplacian

In the matrix on the left, each row is the feature
vector generated forDi, thei-th data point. By in-
spection, one can identify two clusters,{D1,D2}
and{D4,D5}. D3 is ambiguous, as it bears re-
semblance to the points in both clusters and there-
fore can be assigned to any of them. In the ma-
trix on the right, the two columns correspond to
the top two eigenvectors obtained via an eigen-
decomposition of the Laplacian matrix formed
from the five data points. As we can see, the sec-
ond eigenvector gives us a natural cluster assign-
ment: all the points whose corresponding values
in the second eigenvector arestrongly positivewill
be in one cluster, and thestrongly negativepoints
will be in another cluster. Being ambiguous,D3 is
weakly negativeand will be assigned to the “neg-
ative” cluster. Before describing our algorithm for
identifying ambiguous data points, we make two
additional observations regardingD3.

First, if we removedD3, we could easily clus-
ter the remaining (unambiguous) points, since the
similarity graph becomes more disconnected as
we remove more ambiguous data points. The
question then is: why is it important to produce
a good clustering of the unambiguous points? Re-
call that the goal of this step is not only toiden-
tify the unambiguous reviews, but also toannotate
them asPOSITIVE or NEGATIVE, so that they can
serve as seeds for semi-supervised learning in a
later step. If we have a good 2-way clustering of
the seeds, we can simply annotate each cluster (by
sampling a handful of its reviews) rather than each
seed. To reiterate, removing the ambiguous data
points can help produce a good clustering of their
unambiguous counterparts.

Second, as an ambiguous data point,D3 can in
principle be assigned to any of the two clusters.
According to the second eigenvector, it should be
assigned to the “negative” cluster; but if feature
#4 were irrelevant, it should be assigned to the
“positive” cluster. In other words, the ability to
determine the relevance of each feature is crucial

to the accurate clustering of the ambiguous data
points. However, in the absence of labeled data,
it is not easy to assess feature relevance. Even if
labeled data were present, the ambiguous points
might be better handled by a discriminative learn-
ing system than a clustering algorithm, as discrim-
inative learners are more sophisticated, and can
handle ambiguous feature space more effectively.

Taking into account these two observations, we
aim to (1) remove the ambiguous data points while
clustering their unambiguous counterparts, and
then (2) employ a discriminative learner to label
the ambiguous points in a later step.

The question is: how can we identify the
ambiguous data points? To do this, we ex-
ploit an important observation regarding eigen-
decomposition. In the computation of eigenvalues,
each data point factors out the orthogonal projec-
tions of each of the other data points with which
they have an affinity. Ambiguous data points re-
ceive the orthogonal projections from both the
positive and negative data points, and hence they
have near-zero values in the pivot eigenvectors.
Given this observation, our algorithm uses the
eight steps below to remove the ambiguous points
in an iterative fashion and produce a clustering of
the unambiguous points.

1. Create a similarity matrixS from the data
pointsD.

2. Form the Laplacian matrixL from S.
3. Find the top five eigenvectors ofL.
4. Row-normalize the five eigenvectors.
5. Pick the eigenvectore for which we get the

minimum normalized cut.
6. SortD according toe and removeα points in

the middle ofD (i.e., the points indexed from
|D|
2

− α
2

+ 1 to |D|
2

+
α
2
).

7. If |D| = β, goto Step 8; else goto Step 1.
8. Run 2-means one to cluster the points inD.

This algorithm can be thought of as the oppo-
site of self-training. In self-training, we iteratively
train a classifier on the data labeled so far, use it
to classify the unlabeled instances, and augment
the labeled data with the most confidently labeled
instances. In our algorithm, we start with an ini-
tial clustering of all of the data points, and then
iteratively remove theα most ambiguous points
from the dataset and cluster the remaining points.
Given this analogy, it should not be difficult to see
the advantage of removing the data points in an it-
erative fashion (as opposed to removing them in a
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single iteration): the clusters produced in a given
iteration are supposed to be better than those in
the previous iterations, as subsequent clusterings
are generated from less ambiguous points. In our
experiments, we setα to 50 andβ to 500.3

Finally, we label the two clusters. To do this,
we first randomly sample 10 reviews from each
cluster and manually label each of them asPOS-
ITIVE or NEGATIVE. Then, we label a cluster as
POSITIVE if more than half of the 10 reviews from
the cluster arePOSITIVE; otherwise, it is labeled
asNEGATIVE. For each of our evaluation datasets,
this labeling scheme always produces onePOSI-
TIVE cluster and oneNEGATIVE cluster. In the rest
of the paper, we will refer to these 500 automati-
cally labeled reviews asseeds.

A natural question is: can this algorithm pro-
duce high-quality seeds? To answer this question,
we show in the middle column of Table 1 the label-
ing accuracy of the 500 reviews produced by our
iterative algorithm for our five evaluation datasets
(see Section 4.1 for details on these datasets). To
better understand whether it is indeed beneficial
to remove the ambiguous points in an iterative
fashion, we also show the results of a version of
this algorithm in which we remove all but the 500
least ambiguous points in just one iteration (see
the rightmost column). As we can see, for three
datasets (Movie, Kitchen, and Electronics), the
accuracy is above 80%. For the remaining two
(Book and DVD), the accuracy is not particularly
good. One plausible reason is that the ambiguous
reviews in Book and DVD are relatively tougher
to identify. Another reason can be attributed to
the failure of the chosen eigenvector to capture the
sentiment dimension. Recall that each eigenvector
captures an important dimension of the data, and
if the eigenvector that corresponds to the minimum
normalized cut (i.e., the eigenvector that we chose)
does not reveal the sentiment dimension, the re-
sulting clustering (and hence the seed accuracy)
will be poor. However, even with imperfectly la-
beled seeds, we will show in the next section how
we exploit these seeds to learn a better classifier.

3.2 Incorporating Active Learning

Spectral clustering allows us to focus on a small
number of dimensions that are relevant as far as
creating well-separated clusters is concerned, but

3Additional experiments indicate that the accuracy of our
approach is not sensitive to small changes to these values.

Dataset Iterative Single Step
Movie 89.3 86.5
Kitchen 87.9 87.1
Electronics 80.4 77.6
Book 68.5 70.3
DVD 66.3 65.4

Table 1: Seed accuracies on five datasets.

they are not necessarily relevant for creating po-
larity clusters. In fact, owing to the absence of la-
beled data, unsupervised clustering algorithms are
unable to distinguish between useful and irrelevant
features for polarity classification. Nevertheless,
being able to distinguish between relevant and ir-
relevant information is important for polarity clas-
sification, as discussed before. Now that we have
a small, high-quality seed set, we can potentially
make better use of the available features by train-
ing adiscriminativeclassifier on the seed set and
having it identify the relevant and irrelevant fea-
tures for polarity classification.

Despite the high quality of the seed set, the re-
sulting classifier may not perform well when ap-
plied to the remaining (unlabeled) points, as there
is no reason to believe that a classifier trained
solely on unambiguous reviews can achieve a
high accuracy when classifying ambiguous re-
views. We hypothesize that a high accuracy can
be achieved only if the classifier is trained on both
ambiguous and unambiguous reviews.

As a result, we applyactive learning(Cohn
et al., 1994) to identify the ambiguous reviews.
Specifically, we train a discriminative classifier us-
ing the support vector machine (SVM) learning al-
gorithm (Joachims, 1999) on the set of unambigu-
ous reviews, and then apply the resulting classifier
to all the reviews in thetraining folds4 that are not
seeds. Since this classifier is trained solely on the
unambiguous reviews, it is reasonable to assume
that the reviews whose labels the classifier is most
uncertain about (and therefore are most informa-
tive to the classifier) are those that are ambigu-
ous. Following previous work on active learning
for SVMs (e.g., Campbell et al. (2000), Schohn
and Cohn (2000), Tong and Koller (2002)), we de-
fine the uncertainty of a data point as its distance
from the separating hyperplane. In other words,

4Following Dredze and Crammer (2008), we perform
cross-validation experiments on the 2000 labeled reviews in
each evaluation dataset, choosing the active learning points
from the training folds. Note that the seeds obtained in the
previous step were also acquired using the training folds only.
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points that are closer to the hyperplane are more
uncertain than those that are farther away.

We perform active learning for five iterations.
In each iteration, we select the 10 most uncertain
points from each side of the hyperplane for human
annotation, and then re-train a classifier on all of
the points annotated so far. This yields a total of
100 manually labeled reviews.

3.3 Applying Transductive Learning

Given that we now have alabeled set(composed
of 100 manually labeled points selected by active
learning and 500 unambiguous points) as well as
a larger set of points that are yet to be labeled
(i.e., the remaining unlabeled points in the train-
ing folds and those in the test fold), we aim to
train a better classifier by using a weakly super-
vised learner to learn from both the labeled and
unlabeled data. As our weakly supervised learner,
we employ a transductive SVM.

To begin with, note that the automatically ac-
quired 500 unambiguous data points are not per-
fectly labeled (see Section 3.1). Since these unam-
biguous points significantly outnumber the manu-
ally labeled points, they could undesirably domi-
nate the acquisition of the hyperplane and dimin-
ish the benefits that we could have obtained from
the more informative and perfectly labeled active
learning points otherwise. We desire a system that
can use the active learning points effectively and at
the same time is noise-tolerant to the imperfectly
labeled unambiguous data points. Hence, instead
of training just one SVM classifier, we aim to re-
duce classification errors by training an ensemble
of five classifiers, each of which uses all 100 man-
ually labeled reviews and a different subset of the
500 automatically labeled reviews.

Specifically, we partition the 500 automatically
labeled reviews into five equal-sized sets as fol-
lows. First, we sort the 500 reviews in ascending
order of their corresponding values in the eigen-
vector selected in the last iteration of our algorithm
for removing ambiguous points (see Section 3.1).
We then put pointi into setLi mod 5. This ensures
that each set consists of not only an equal number
of positive and negative points, but also a mix of
very confidently labeled points and comparatively
less confidently labeled points. Each classifierCi

will then be trained transductively, using the 100
manually labeled points and the points inLi as la-
beled data, and the remaining points (including all

points inLj, wherei 6= j) as unlabeled data.
After training the ensemble, we classify each

unlabeled point as follows: we sum the (signed)
confidence values assigned to it by the five ensem-
ble classifiers, labeling it asPOSITIVE if the sum
is greater than zero (andNEGATIVE otherwise).
Since the points in the test fold are included in the
unlabeled data, they are all classified in this step.

4 Evaluation

4.1 Experimental Setup

For evaluation, we use five sentiment classifica-
tion datasets, including the widely-used movie re-
view dataset [MOV] (Pang et al., 2002) as well as
four datasets that contain reviews of four differ-
ent types of product from Amazon [books (BOO),
DVDs (DVD), electronics (ELE), and kitchen ap-
pliances (KIT)] (Blitzer et al., 2007). Each dataset
has 2000 labeled reviews (1000 positives and 1000
negatives). We divide the 2000 reviews into 10
equal-sized folds for cross-validation purposes,
maintaining balanced class distributions in each
fold. It is important to note that while the test fold
is accessible to the transductive learner (Step 3),
only the reviews in training folds (but not their la-
bels) are used for the acquisition of seeds (Step 1)
and the selection of active learning points (Step 2).

We report averaged 10-fold cross-validation re-
sults in terms of accuracy. Following Kamvar et al.
(2003), we also evaluate the clusters produced by
our approach against the gold-standard clusters us-
ing Adjusted Rand Index (ARI). ARI ranges from
−1 to 1; better clusterings have higher ARI values.

4.2 Baseline Systems

Recall that our approach uses 100 hand-labeled re-
views chosen by active learning. To ensure a fair
comparison, each of our three baselines has ac-
cess to 100 labeled points chosen from the train-
ing folds. Owing to the randomness involved in
the choice of labeled data, all baseline results are
averaged over ten independent runs for each fold.

Semi-supervised spectral clustering. We im-
plemented Kamvar et al.’s (2003) semi-supervised
spectral clustering algorithm, which incorporates
labeled data into the clustering framework in the
form of must-link and cannot-link constraints. In-
stead of computing the similarity between each
pair of points, the algorithm computes the similar-
ity between a point and itsk most similar points
only. Since its performance is highly sensitive to
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Accuracy Adjusted Rand Index
System Variation MOV KIT ELE BOO DVD MOV KIT ELE BOO DVD

1 Semi-supervised spectral learning 67.3 63.7 57.7 55.8 56.2 0.12 0.08 0.01 0.02 0.02
2 Transductive SVM 68.7 65.5 62.9 58.7 57.3 0.14 0.09 0.07 0.03 0.02
3 Active learning 68.9 68.1 63.3 58.6 58.0 0.14 0.14 0.08 0.03 0.03
4 Our approach (after 1st step) 69.8 70.8 65.7 58.6 55.8 0.15 0.17 0.10 0.03 0.01
5 Our approach (after 2nd step) 73.5 73.0 69.9 60.6 59.8 0.22 0.21 0.16 0.04 0.04
6 Our approach (after 3rd step) 76.2 74.1 70.6 62.1 62.7 0.27 0.23 0.17 0.06 0.06

Table 2: Results in terms of accuracy and Adjusted Rand Indexfor the five datasets.

k, we tested values of 10, 15,. . ., 50 fork and re-
ported in row 1 of Table 2 thebestresults. As we
can see, accuracy ranges from 56.2% to 67.3%,
whereas ARI ranges from 0.02 to 0.12.

Transductive SVM. We employ as our second
baseline a transductive SVM5 trained using 100
points randomly sampled from the training folds
as labeled data and the remaining 1900 points as
unlabeled data. Results of this baseline are shown
in row 2 of Table 3. As we can see, accuracy
ranges from 57.3% to 68.7% and ARI ranges from
0.02 to 0.14, which are significantly better than
those of semi-supervised spectral learning.

Active learning. Our last baseline implements
the active learning procedure as described in Tong
and Koller (2002). Specifically, we begin by train-
ing an inductive SVM on one labeled example
from each class, iteratively labeling the most un-
certain unlabeled point on each side of the hyper-
plane and re-training the SVM until 100 points are
labeled. Finally, we train a transductive SVM on
the 100 labeled points and the remaining 1900 un-
labeled points, obtaining the results in row 3 of Ta-
ble 1. As we can see, accuracy ranges from 58%
to 68.9%, whereas ARI ranges from 0.03 to 0.14.
Active learning is the best of the three baselines,
presumably because it has the ability to choose the
labeled data more intelligently than the other two.

4.3 Our Approach

Results of our approach are shown in rows 4–6 of
Table 2. Specifically, rows 4 and 5 show the re-
sults of the SVM classifier when it is trained on
the labeled data obtained after the first step (unsu-
pervised extraction of unambiguous reviews) and
the second step (active learning), respectively. Af-
ter the first step, our approach can already achieve

5All the SVM classifiers in this paper are trained using
the SVMlight package (Joachims, 1999). All SVM-related
learning parameters are set to their default values, exceptin
transductive learning, where we setp (the fraction of unla-
beled examples to be classified as positive) to 0.5 so that the
system does not have any bias towards any class.

comparable results to the best baseline. Per-
formance increases substantially after the second
step, indicating the benefits of active learning.

Row 6 shows the results of transductive learn-
ing with ensemble. Comparing rows 5 and 6,
we see that performance rises by 0.7%-2.9% for
all five datasets after “ensembled” transduction.
This could be attributed to (1) the unlabeled data,
which may have provided the transductive learner
with useful information that are not accessible to
the other learners, and (2) the ensemble, which is
more noise-tolerant to the imperfect seeds.

4.4 Additional Experiments

To gain insight into how the design decisions we
made in our approach impact performance, we
conducted the following additional experiments.

Importance of seeds. Table 1 showed that for
all but one dataset, the seeds obtained through
multiple iterations are more accurate than those
obtained in a single iteration. To envisage the im-
portance of seeds, we conducted an experiment
where we repeated our approach using the seeds
learned in a single iteration. Results are shown in
the first row of Table 3. In comparison to row 6 of
Table 2, we can see that results are indeed better
when we bootstrap from higher-quality seeds.

To further understand the role of seeds, we ex-
perimented with a version of our approach that
bootstraps fromno seeds. Specifically, we used
the 500 seeds to guide the selection of active learn-
ing points, but trained a transductive SVM using
only the active learning points as labeled data (and
the rest as unlabeled data). As can be seen in row
2 of Table 3, the results are poor, suggesting that
our approach yields better performance than the
baselines not only because of the way the active
learning points were chosen, but also because of
contributions from the imperfectly labeled seeds.

We also experimented with training a transduc-
tive SVM using only the 100 least ambiguous
seeds (i.e., the points with the largest unsigned
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Accuracy Adjusted Rand Index
System Variation MOV KIT ELE BOO DVD MOV KIT ELE BOO DVD

1 Single-step cluster purification 74.9 72.7 70.1 66.9 60.7 0.25 0.21 0.16 0.11 0.05
2 Using no seeds 58.3 55.6 59.7 54.0 56.1 0.04 0.04 0.02 0.01 0.01
3 Using the least ambiguous seeds 74.6 69.7 69.1 60.9 63.3 0.24 0.16 0.14 0.05 0.07
4 No Ensemble 74.1 72.7 68.8 61.5 59.9 0.23 0.21 0.14 0.05 0.04
5 Passive learning 74.1 72.4 68.0 63.7 58.6 0.23 0.20 0.13 0.07 0.03
6 Using 500 active learning points 82.5 78.4 77.5 73.5 73.4 0.42 0.32 0.30 0.22 0.22
7 Fully supervised results 86.1 81.7 79.3 77.6 80.6 0.53 0.41 0.34 0.30 0.38

Table 3: Additional results in terms of accuracy and Adjusted Rand Index for the five datasets.

second eigenvector values) in combination with
the active learning points as labeled data (and the
rest as unlabeled data). Note that the accuracy of
these 100 least ambiguous seeds is 4–5% higher
than that of the 500 least ambiguous seeds shown
in Table 1. Results are shown in row 3 of Table 3.
As we can see, using only 100 seeds turns out to be
less beneficial than using all of them via an ensem-
ble. One reason is that since these 100 seeds are
the most unambiguous, they may also be the least
informative as far as learning is concerned. Re-
member that SVM uses only the support vectors to
acquire the hyperplane, and since an unambiguous
seed is likely to be far away from the hyperplane,
it is less likely to be a support vector.

Role of ensemble learning To get a better idea
of the role of the ensemble in the transductive
learning step, we used all 500 seeds in combina-
tion with the 100 active learning points to train a
single transductive SVM. Results of this experi-
ment (shown in row 4 of Table 3) are worse than
those in row 6 of Table 2, meaning that the en-
semble has contributed positively to performance.
This should not be surprising: as noted before,
since the seeds are not perfectly labeled, using all
of them without an ensemble might overwhelm the
more informative active learning points.

Passive learning. To better understand the role
of active learning in our approach, we replaced it
with passive learning, where we randomly picked
100 data points from the training folds and used
them as labeled data. Results, shown in row 5 of
Table 3, are averaged over ten independent runs
for each fold. In comparison to row 6 of Table 2,
we see that employing points chosen by an active
learner yields significantly better results than em-
ploying randomly chosen points, which suggests
that the way the points are chosen is important.

Using more active learning points. An interest-
ing question is: how much improvement can we
obtain if we employ more active learning points?

In row 6 of Table 3, we show the results when the
experiment in row 6 of Table 2 was repeated using
500 active learning points. Perhaps not surpris-
ingly, the 400 additional labeled points yield a 4–
11% increase in accuracy. For further comparison,
we trained afully supervisedSVM classifier using
all of the training data. Results are shown in row
7 of Table 3. As we can see, employing only 500
active learning points enables us to almost reach
fully-supervised performance for three datasets.

5 Conclusions

We have proposed a novel semi-supervised ap-
proach to polarity classification. Our key idea
is to distinguish between unambiguous, easy-to-
mine reviews and ambiguous, hard-to-classify re-
views. Specifically, given a set of reviews, we
applied (1) an unsupervised algorithm to identify
and classify those that are unambiguous, (2) an
active learner that is trained solely on automati-
cally labeled unambiguous reviews to identify a
small number of prototypical ambiguous reviews
for manual labeling, and (3) an ensembled trans-
ductive learner to train a sophisticated classifier
on the reviews labeled so far to handle the am-
biguous reviews. Experimental results on five sen-
timent datasets demonstrate that our “mine the
easy, classify the hard” approach, which only re-
quires manual labeling of a small number of am-
biguous reviews, can be employed to train a high-
performance polarity classification system.

We plan to extend our approach by exploring
two of its appealing features. First, none of the
steps in our approach is designed specifically for
sentiment classification. This makes it applica-
ble to other text classification tasks. Second, our
approach is easily extensible. Since the semi-
supervised learner is discriminative, our approach
can adopt a richer representation that makes use
of more sophisticated features such as bigrams or
manually labeled sentiment-oriented words.
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