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Abstract

We present a new approach to learning a

semantic parser (a system that maps natu-

ral language sentences into logical form).

Unlike previous methods, it exploits an ex-

isting syntactic parser to produce disam-

biguated parse trees that drive the compo-

sitional semantic interpretation. The re-

sulting system produces improved results

on standard corpora on natural language

interfaces for database querying and sim-

ulated robot control.

1 Introduction

Semantic parsing is the task of mapping a natu-

ral language (NL) sentence into a completely for-

mal meaning representation (MR) or logical form.

A meaning representation language (MRL) is a

formal unambiguous language that supports au-

tomated inference, such as first-order predicate

logic. This distinguishes it from related tasks

such as semantic role labeling (SRL) (Carreras

and Marquez, 2004) and other forms of “shallow”

semantic analysis that do not produce completely

formal representations. A number of systems for

automatically learning semantic parsers have been

proposed (Ge and Mooney, 2005; Zettlemoyer and

Collins, 2005; Wong and Mooney, 2007; Lu et al.,

2008). Given a training corpus of NL sentences

annotated with their correct MRs, these systems

induce an interpreter for mapping novel sentences

into the given MRL.

Previous methods for learning semantic parsers

do not utilize an existing syntactic parser that pro-

vides disambiguated parse trees.1 However, ac-

curate syntactic parsers are available for many

1Ge and Mooney (2005) use training examples with
semantically annotated parse trees, and Zettlemoyer and
Collins (2005) learn a probabilistic semantic parsing model
which initially requires a hand-built, ambiguous CCG gram-
mar template.

(a) If our player 2 has the ball,
then position our player 5 in the midfield.
((bowner (player our {2}))
(do (player our {5}) (pos (midfield))))

(b) Which river is the longest?
answer(x1,longest(x1,river(x1)))

Figure 1: Sample NLs and their MRs in the

ROBOCUP and GEOQUERY domains respectively.

languages and could potentially be used to learn

more effective semantic analyzers. This paper

presents an approach to learning semantic parsers

that uses parse trees from an existing syntactic

analyzer to drive the interpretation process. The

learned parser uses standard compositional seman-

tics to construct alternative MRs for a sentence

based on its syntax tree, and then chooses the best

MR based on a trained statistical disambiguation

model. The learning system first employs a word

alignment method from statistical machine trans-

lation (GIZA++ (Och and Ney, 2003)) to acquire

a semantic lexicon that maps words to logical

predicates. Then it induces rules for composing

MRs and estimates the parameters of a maximum-

entropy model for disambiguating semantic inter-

pretations. After describing the details of our ap-

proach, we present experimental results on stan-

dard corpora demonstrating improved results on

learning NL interfaces for database querying and

simulated robot control.

2 Background

In this paper, we consider two domains. The

first is ROBOCUP (www.robocup.org). In the

ROBOCUP Coach Competition, soccer agents

compete on a simulated soccer field and receive

coaching instructions in a formal language called

CLANG (Chen et al., 2003). Figure 1(a) shows a

sample instruction. The second domain is GEO-

QUERY, where a logical query language based on

Prolog is used to query a database on U.S. geog-

raphy (Zelle and Mooney, 1996). The logical lan-
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Figure 2: Parses for the condition part of the CLANG in Figure 1(a): (a) The parse of the MR. (b) The

predicate argument structure of (a). (c) The parse of the NL.

PRODUCTION PREDICATE

RULE→(CONDITION DIRECTIVE) P RULE

CONDITION→(bowner PLAYER) P BOWNER

PLAYER→(player TEAM {UNUM}) P PLAYER

TEAM→our P OUR

UNUM→2 P UNUM

DIRECTIVE→(do PLAYER ACTION) P DO

ACTION→(pos REGION) P POS

REGION→(midfield) P MIDFIELD

Table 1: Sample production rules for parsing the

CLANG example in Figure 1(a) and their corre-

sponding predicates.

guage consists of both first-order and higher-order

predicates. Figure 1(b) shows a sample query in

this domain.

We assume that an MRL is defined by an un-

ambiguous context-free grammar (MRLG), so that

MRs can be uniquely parsed, a standard require-

ment for computer languages. In an MRLG, each

production rule introduces a single predicate in the

MRL, where the type of the predicate is given in

the left hand side (LHS), and the number and types

of its arguments are defined by the nonterminals in

the right hand side (RHS). Therefore, the parse of

an MR also gives its predicate-argument structure.

Figure 2(a) shows the parse of the condition

part of the MR in Figure 1(a) using the MRLG

described in (Wong, 2007), and its predicate-

argument structure is in Figure 2(b). Sample

MRLG productions and their predicates for pars-

ing this example are shown in Table 1, where the

predicate P PLAYER takes two arguments (a1 and

a2) of type TEAM and UNUM (uniform number).

3 Semantic Parsing Framework

This section describes our basic framework, which

is based on a fairly standard approach to computa-

tional semantics (Blackburn and Bos, 2005). The

framework is composed of three components: 1)

an existing syntactic parser to produce parse trees

for NL sentences; 2) learned semantic knowledge

(cf. Sec. 5), including a semantic lexicon to assign

possible predicates (meanings) to words, and a set

of semantic composition rules to construct possi-

ble MRs for each internal node in a syntactic parse

given its children’s MRs; and 3) a statistical dis-

ambiguation model (cf. Sec. 6) to choose among

multiple possible semantic constructs as defined

by the semantic knowledge.

The process of generating the semantic parse

for an NL sentence is as follows. First, the syn-

tactic parser produces a parse tree for the NL

sentence. Second, the semantic lexicon assigns

possible predicates to each word in the sentence.

Third, all possible MRs for the sentence are con-

structed compositionally in a recursive, bottom-up

fashion following its syntactic parse using com-

position rules. Lastly, the statistical disambigua-

tion model scores each possible MR and returns

the one with the highest score. Fig. 3(a) shows

one possible semantically-augmented parse tree

(SAPT) (Ge and Mooney, 2005) for the condition

part of the example in Fig. 1(a) given its syntac-

tic parse in Fig. 2(c). A SAPT adds a semantic

label to each non-leaf node in the syntactic parse

tree. The label specifies the MRL predicate for

the node and its remaining (unfilled) arguments.

The compositional process assumes a binary parse

tree suitable for predicate-argument composition;

parses in Penn-treebank style are binarized using

Collins’ (1999) method.

Consider the construction of the SAPT in

Fig. 3(a). First, each word is assigned a semantic

label. Most words are assigned an MRL predicate.

For example, the word player is assigned the pred-

icate P PLAYER with its two unbound arguments,

a1 and a2, indicated using λ. Words that do not

introduce a predicate are given the label NULL,

like the and ball.2 Next, a semantic label is as-

2The words the and ball are not truly “meaningless” since
the predicate P BOWNER (ball owner) is conveyed by the
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(b) Semantic Derivation

Figure 3: Semantic parse for the condition part of the example in Fig. 1(a) using the syntactic parse in

Fig. 2(c): (a) A SAPT with syntactic labels omitted for brevity. (b) The semantic derivation of the MR.

signed to each internal node using learned compo-

sition rules that specify how arguments are filled

when composing two MRs (cf. Sec. 5). The label

λa1P PLAYER indicates that the remaining argu-

ment a2 of the P PLAYER child is filled by the MR

of the other child (labeled P UNUM).

Finally, the SAPT is used to guide the composi-

tion of the sentence’s MR. At each internal node,

an MR for the node is built from the MRs of its

children by filling an argument of a predicate, as

illustrated in the semantic derivation shown in Fig.

3(b). Semantic composition rules (cf. Sec. 5) are

used to specify the argument to be filled. For the

node spanning player 2, the predicate P PLAYER

and its second argument P UNUM are composed to

form the MR: λa1 (player a1 {2}). Composing

an MR with NULL leaves the MR unchanged. An

MR is said to be complete when it contains no re-

maining λ variables. This process continues up the

phrase has the ball. For simplicity, predicates are intro-
duced by a single word, but statistical disambiguation (cf.
Sec. 6) uses surrounding words to choose a meaning for a
word whose lexicon entry contains multiple possible predi-
cates.

tree until a complete MR for the entire sentence is

constructed at the root.

4 Ensuring Meaning Composition

The basic compositional method in Sec. 3 only

works if the syntactic parse tree strictly follows

the predicate-argument structure of the MR, since

meaning composition at each node is assumed to

combine a predicate with one of its arguments.

However, this assumption is not always satisfied,

for example, in the case of verb gapping and flex-

ible word order. We use constructing the MR for

the directive part of the example in Fig. 1(a) ac-

cording to the syntactic parse in Fig. 4(b) as an

example. Given the appropriate possible predicate

attached to each word in Fig. 5(a), the node span-

ning position our player 5 has children, P POS and

P PLAYER, that are not in a predicate-argument re-

lation in the MR (see Fig. 4(a)).

To ensure meaning composition in this case,

we automatically create macro-predicates that

combine multiple predicates into one, so that

the children’s MRs can be composed as argu-
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Figure 4: Parses for the directive part of the CLANG in Fig. 1(a): (a) The predicate-argument structure

of the MR. (b) The parse of the NL (the parse of the phrase our player 5 is omitted for brevity).

ments to a macro-predicate. Fig. 5(b) shows

the macro-predicate P DO POS (DIRECTIVE→(do

PLAYER (pos REGION))) formed by merging the

P DO and P POS in Fig. 4(a). The macro-predicate

has two arguments, one of type PLAYER (a1)

and one of type REGION (a2). Now, P POS and

P PLAYER can be composed as arguments to this

macro-predicate as shown in Fig. 5(c). However,

it requires assuming a P DO predicate that has

not been formally introduced. To indicate this, a

lambda variable, p1, is introduced that ranges over

predicates and is provisionally bound to P DO, as

indicated in Fig. 5(c) using the notation p1:do.

Eventually, this predicate variable must be bound

to a matching predicate introduced from the lexi-

con. In the example, p1:do is eventually bound to

the P DO predicate introduced by the word then to

form a complete MR.

Macro-predicates are introduced as needed dur-

ing training in order to ensure that each MR in

the training set can be composed using the syn-

tactic parse of its corresponding NL given reason-

able assignments of predicates to words. For each

SAPT node that does not combine a predicate with

a legal argument, a macro-predicate is formed by

merging all predicates on the paths from the child

predicates to their lowest common ancestor (LCA)

in the MR parse. Specifically, a child MR be-

comes an argument of the macro-predicate if it

is complete (i.e. contains no λ variables); other-

wise, it also becomes part of the macro-predicate

and its λ variables become additional arguments

of the macro-predicate. For the node spanning po-

sition our player 5 in the example, the LCA of the

children P PLAYER and P POS is their immedi-

ate parent P DO, therefore P DO is included in the

macro-predicate. The complete child P PLAYER

becomes the first argument of the macro-predicate.

The incomplete child P POS is added to the macro-

predicate P DO POS and its λ variable becomes

another argument.

For improved generalization, once a predicate

in a macro-predicate becomes complete, it is re-

moved from the corresponding macro-predicate

label in the SAPT. For the node spanning position

our player 5 in the midfield in Fig. 5(a), P DO POS

becomes P DO once the arguments of pos are

filled.

In the following two sections, we describe the

two subtasks of inducing semantic knowledge and

a disambiguation model for this enhanced compo-

sitional framework. Both subtasks require a train-

ing set of NLs paired with their MRs. Each NL

sentence also requires a syntactic parse generated

using Bikel’s (2004) implementation of Collins

parsing model 2. Note that unlike SCISSOR (Ge

and Mooney, 2005), training our method does not

require gold-standard SAPTs.

5 Learning Semantic Knowledge

Learning semantic knowledge starts from learning

the mapping from words to predicates. We use

an approach based on Wong and Mooney (2006),

which constructs word alignments between NL

sentences and their MRs. Normally, word align-

ment is used in statistical machine translation to

match words in one NL to words in another; here

it is used to align words with predicates based on

a ”parallel corpus” of NL sentences and MRs. We

assume that each word alignment defines a possi-

ble mapping from words to predicates for building

a SAPT and semantic derivation which compose

the correct MR. A semantic lexicon and compo-

sition rules are then extracted directly from the
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Figure 5: Semantic parse for the directive part of the example in Fig. 1(a) using the syntactic parse in

Fig. 4(b): (a) A SAPT with syntactic labels omitted for brevity. (b) The predicate-argument structure of

macro-predicate P DO POS (c) The semantic derivation of the MR.

nodes of the resulting semantic derivations.

Generation of word alignments for each train-

ing example proceeds as follows. First, each MR

in the training corpus is parsed using the MRLG.

Next, each resulting parse tree is linearized to pro-

duce a sequence of predicates by using a top-

down, left-to-right traversal of the parse tree. Then

the GIZA++ implementation (Och and Ney, 2003)

of IBM Model 5 is used to generate the five best

word/predicate alignments from the corpus of NL

sentences each paired with the predicate sequence

for its MR.

After predicates are assigned to words using

word alignment, for each alignment of a training

example and its syntactic parse, a SAPT is gener-

ated for composing the correct MR using the pro-

cesses discussed in Sections 3 and 4. Specifically,

a semantic label is assigned to each internal node

of each SAPT, so that the MRs of its children are

composed correctly according to the MR for this

example.

There are two cases that require special han-

dling. First, when a predicate is not aligned to any

word, the predicate must be inferred from context.

For example, in CLANG, our player is frequently

just referred to as player and the our must be in-

ferred. When building a SAPT for such an align-

ment, the assumed predicates and arguments are

simply bound to their values in the MR. Second,

when a predicate is aligned to several words, i.e. it

is represented by a phrase, the alignment is trans-

formed into several alignments where each predi-

cate is aligned to each single word in order to fit

the assumptions of compositional semantics.

Given the SAPTs constructed from the results

of word-alignment, a semantic derivation for each

training sentence is constructed using the methods

described in Sections 3 and 4. Composition rules
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are then extracted from these derivations.

Formally, composition rules are of the form:

Λ1.P1 + Λ2.P2 ⇒ {Λp.Pp, R} (1)

where P1, P2 and Pp are predicates for the left

child, right child, and parent node, respectively.

Each predicate includes a lambda term Λ of

the form 〈λpi1 , . . . , λpim , λaj1 , . . . , λajn
〉, an un-

ordered set of all unbound predicate and argument

variables for the predicate. The component R

specifies how some arguments of the parent predi-

cate are filled when composing the MR for the par-

ent node. It is of the form: {ak1
=R1, . . . , akl

=Rl},

where Ri can be either a child (ci), or a child’s

complete argument (ci, aj) if the child itself is not

complete.

For instance, the rule extracted for the node for

player 2 in Fig. 3(b) is:

〈λa1λa2〉.P PLAYER + P UNUM ⇒ {λa1.P PLAYER, a2=c2},

and for position our player 5 in Fig. 5(c):

λa1.P POS + P PLAYER ⇒ {〈λp1λa2〉.P DO POS, a1=c2},

and for position our player 5 in the midfield:

〈λp1λa2〉.P DO POS + P MIDFIELD

⇒ {λp1.P DO POS, {a1=(c1,a1), a2=c2}}.

The learned semantic knowledge is necessary

for handling ambiguity, such as that involving

word senses and semantic roles. It is also used to

ensure that each MR is a legal string in the MRL.

6 Learning a Disambiguation Model

Usually, multiple possible semantic derivations for

an NL sentence are warranted by the acquired se-

mantic knowledge, thus disambiguation is needed.

To learn a disambiguation model, the learned se-

mantic knowledge (see Section 5) is applied to

each training example to generate all possible se-

mantic derivations for an NL sentence given its

syntactic parse. Here, unique word alignments are

not required, and alternative interpretations com-

pete for the best semantic parse.

We use a maximum-entropy model similar

to that of Zettlemoyer and Collins (2005) and

Wong and Mooney (2006). The model defines a

conditional probability distribution over semantic

derivations (D) given an NL sentence S and its

syntactic parse T :

Pr(D|S, T ; θ̄) =
exp

∑
i θifi(D)

Zθ̄(S, T )
(2)

where f̄ (f1, . . . , fn) is a feature vector parame-

terized by θ̄, and Zθ̄(S, T ) is a normalizing fac-

tor. Three simple types of features are used in

the model. First, are lexical features which count

the number of times a word is assigned a particu-

lar predicate. Second, are bilexical features which

count the number of times a word is assigned a

particular predicate and a particular word precedes

or follows it. Last, are rule features which count

the number of times a particular composition rule

is applied in the derivation.

The training process finds a parameter θ̄∗ that

(approximately) maximizes the sum of the condi-

tional log-likelihood of the MRs in the training set.

Since no specific semantic derivation for an MR is

provided in the training data, the conditional log-

likelihood of an MR is calculated as the sum of the

conditional probability of all semantic derivations

that lead to the MR. Formally, given a set of NL-

MR pairs {(S1, M1), (S2, M2), ..., (Sn, Mn)} and

the syntactic parses of the NLs {T1, T2, ..., Tn},

the parameter θ̄∗ is calculated as:

θ̄∗ = arg max
θ̄

n∑

i=1

log Pr(Mi|Si, Ti; θ̄) (3)

= arg max
θ̄

n∑

i=1

log
∑

D∗

i

Pr(D∗

i |Si, Ti; θ̄)

where D∗

i is a semantic derivation that produces

the correct MR Mi.

L-BFGS (Nocedal, 1980) is used to estimate the

parameters θ̄∗. The estimation requires statistics

that depend on all possible semantic derivations

and all correct semantic derivations of an exam-

ple, which are not feasibly enumerated. A vari-

ant of the Inside-Outside algorithm (Miyao and

Tsujii, 2002) is used to efficiently collect the nec-

essary statistics. Following Wong and Mooney

(2006), only candidate predicates and composi-

tion rules that are used in the best semantic deriva-

tions for the training set are retained for testing.

No smoothing is used to regularize the model; We

tried using a Gaussian prior (Chen and Rosenfeld,

1999), but it did not improve the results.

7 Experimental Evaluation

We evaluated our approach on two standard cor-

pora in CLANG and GEOQUERY. For CLANG,

300 instructions were randomly selected from

the log files of the 2003 ROBOCUP Coach

616



Competition and manually translated into En-

glish (Kuhlmann et al., 2004). For GEOQUERY,

880 English questions were gathered from vari-

ous sources and manually translated into Prolog

queries (Tang and Mooney, 2001). The average

sentence lengths for the CLANG and GEOQUERY

corpora are 22.52 and 7.48, respectively.

Our experiments used 10-fold cross validation

and proceeded as follows. First Bikel’s imple-

mentation of Collins parsing model 2 was trained

to generate syntactic parses. Second, a seman-

tic parser was learned from the training set aug-

mented with their syntactic parses. Finally, the

learned semantic parser was used to generate the

MRs for the test sentences using their syntactic

parses. If a test example contains constructs that

did not occur in training, the parser may fail to re-

turn an MR.

We measured the performance of semantic pars-

ing using precision (percentage of returned MRs

that were correct), recall (percentage of test exam-

ples with correct MRs returned), and F-measure

(harmonic mean of precision and recall). For

CLANG, an MR was correct if it exactly matched

the correct MR, up to reordering of arguments

of commutative predicates like and. For GEO-

QUERY, an MR was correct if it retrieved the same

answer as the gold-standard query, thereby reflect-

ing the quality of the final result returned to the

user.

The performance of a syntactic parser trained

only on the Wall Street Journal (WSJ) can de-

grade dramatically in new domains due to cor-

pus variation (Gildea, 2001). Experiments on

CLANG and GEOQUERY showed that the perfor-

mance can be greatly improved by adding a small

number of treebanked examples from the corre-

sponding training set together with the WSJ cor-

pus. Our semantic parser was evaluated using

three kinds of syntactic parses. Listed together

with their PARSEVAL F-measures these are:

gold-standard parses from the treebank (GoldSyn,

100%), a parser trained on WSJ plus a small

number of in-domain training sentences required

to achieve good performance, 20 for CLANG

(Syn20, 88.21%) and 40 for GEOQUERY (Syn40,

91.46%), and a parser trained on no in-domain

data (Syn0, 82.15% for CLANG and 76.44% for

GEOQUERY).

We compared our approach to the following al-

ternatives (where results for the given corpus were

Precision Recall F-measure
GOLDSYN 84.73 74.00 79.00

SYN20 85.37 70.00 76.92
SYN0 87.01 67.00 75.71
WASP 88.85 61.93 72.99
KRISP 85.20 61.85 71.67

SCISSOR 89.50 73.70 80.80
LU 82.50 67.70 74.40

Table 2: Performance on CLANG.

Precision Recall F-measure
GOLDSYN 91.94 88.18 90.02

SYN40 90.21 86.93 88.54
SYN0 81.76 78.98 80.35
WASP 91.95 86.59 89.19
Z&C 91.63 86.07 88.76

SCISSOR 95.50 77.20 85.38
KRISP 93.34 71.70 81.10

LU 89.30 81.50 85.20

Table 3: Performance on GEOQUERY.

available): SCISSOR (Ge and Mooney, 2005), an

integrated syntactic-semantic parser; KRISP (Kate

and Mooney, 2006), an SVM-based parser using

string kernels; WASP (Wong and Mooney, 2006;

Wong and Mooney, 2007), a system based on

synchronous grammars; Z&C (Zettlemoyer and

Collins, 2007)3, a probabilistic parser based on re-

laxed CCG grammars; and LU (Lu et al., 2008),

a generative model with discriminative reranking.

Note that some of these approaches require ad-

ditional human supervision, knowledge, or engi-

neered features that are unavailable to the other

systems; namely, SCISSOR requires gold-standard

SAPTs, Z&C requires hand-built template gram-

mar rules, LU requires a reranking model using

specially designed global features, and our ap-

proach requires an existing syntactic parser. The

F-measures for syntactic parses that generate cor-

rect MRs in CLANG are 85.50% for syn0 and

91.16% for syn20, showing that our method can

produce correct MRs even when given imperfect

syntactic parses. The results of semantic parsers

are shown in Tables 2 and 3.

First, not surprisingly, more accurate syntac-

tic parsers (i.e. ones trained on more in-domain

data) improved our approach. Second, in CLANG,

all of our methods outperform WASP and KRISP,

which also require no additional information dur-

ing training. In GEOQUERY, Syn0 has signifi-

cantly worse results than WASP and our other sys-

tems using better syntactic parses. This is not sur-

prising since Syn0’s F-measure for syntactic pars-

ing is only 76.44% in GEOQUERY due to a lack

3These results used a different experimental setup, train-
ing on 600 examples, and testing on 280 examples.
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Precision Recall F-measure
GOLDSYN 61.14 35.67 45.05

SYN20 57.76 31.00 40.35
SYN0 53.54 22.67 31.85
WASP 88.00 14.37 24.71
KRISP 68.35 20.00 30.95

SCISSOR 85.00 23.00 36.20

Table 4: Performance on CLANG40.

Precision Recall F-measure
GOLDSYN 95.73 89.60 92.56

SYN20 93.19 87.60 90.31
SYN0 91.81 85.20 88.38
WASP 91.76 75.60 82.90

SCISSOR 98.50 74.40 84.77
KRISP 84.43 71.60 77.49

LU 91.46 72.80 81.07

Table 5: Performance on GEO250 (20 in-domain

sentences are used in SYN20 to train the syntactic

parser).

of interrogative sentences (questions) in the WSJ

corpus. Note the results for SCISSOR, KRISP and

LU on GEOQUERY are based on a different mean-

ing representation language, FUNQL, which has

been shown to produce lower results (Wong and

Mooney, 2007). Third, SCISSOR performs better

than our methods on CLANG, but it requires extra

human supervision that is not available to the other

systems. Lastly, a detailed analysis showed that

our improved performance on CLANG compared

to WASP and KRISP is mainly for long sentences

(> 20 words), while performance on shorter sen-

tences is similar. This is consistent with their

relative performance on GEOQUERY, where sen-

tences are normally short. Longer sentences typ-

ically have more complex syntax, and the tradi-

tional syntactic analysis used by our approach re-

sults in better compositional semantic analysis in

this situation.

We also ran experiments with less training data.

For CLANG, 40 random examples from the train-

ing sets (CLANG40) were used. For GEOQUERY,

an existing 250-example subset (GEO250) (Zelle

and Mooney, 1996) was used. The results are

shown in Tables 4 and 5. Note the performance

of our systems on GEO250 is higher than that

on GEOQUERY since GEOQUERY includes more

complex queries (Tang and Mooney, 2001). First,

all of our systems gave the best F-measures (ex-

cept SYN0 compared to SCISSOR in CLANG40),

and the differences are generally quite substantial.

This shows that our approach significantly im-

proves results when limited training data is avail-

able. Second, in CLANG, reducing the training

data increased the difference between SYN20 and

SYN0. This suggests that the quality of syntactic

parsing becomes more important when less train-

ing data is available. This demonstrates the advan-

tage of utilizing existing syntactic parsers that are

learned from large open domain treebanks instead

of relying just on the training data.

We also evaluated the impact of the word align-

ment component by replacing Giza++ by gold-

standard word alignments manually annotated for

the CLANG corpus. The results consistently

showed that compared to using gold-standard

word alignment, Giza++ produced lower seman-

tic parsing accuracy when given very little training

data, but similar or better results when given suf-

ficient training data (> 160 examples). This sug-

gests that, given sufficient data, Giza++ can pro-

duce effective word alignments, and that imper-

fect word alignments do not seriously impair our

semantic parsers since the disambiguation model

evaluates multiple possible interpretations of am-

biguous words. Using multiple potential align-

ments from Giza++ sometimes performs even bet-

ter than using a single gold-standard word align-

ment because it allows multiple interpretations to

be evaluated by the global disambiguation model.

8 Conclusion and Future work

We have presented a new approach to learning a

semantic parser that utilizes an existing syntactic

parser to drive compositional semantic interpre-

tation. By exploiting an existing syntactic parser

trained on a large treebank, our approach produces

improved results on standard corpora, particularly

when training data is limited or sentences are long.

The approach also exploits methods from statisti-

cal MT (word alignment) and therefore integrates

techniques from statistical syntactic parsing, MT,

and compositional semantics to produce an effec-

tive semantic parser.

Currently, our results comparing performance

on long versus short sentences indicates that our

approach is particularly beneficial for syntactically

complex sentences. Follow up experiments us-

ing a more refined measure of syntactic complex-

ity could help confirm this hypothesis. Reranking

could also potentially improve the results (Ge and

Mooney, 2006; Lu et al., 2008).
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