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Abstract

We describe an unsupervised system for learn-
ing narrative schemas, coherent sequences or sets
of events (arrested(POLICE,SUSPECT), convicted(
JUDGE, SUSPECT)) whose arguments are filled
with participant semantic roles defined over words
(JUDGE = {judge, jury, court}, POLICE = {police,
agent, authorities}). Unlike most previous work in
event structure or semantic role learning, our sys-
tem does not use supervised techniques, hand-built
knowledge, or predefined classes of events or roles.
Our unsupervised learning algorithm uses corefer-
ring arguments in chains of verbs to learn both rich
narrative event structure and argument roles. By
jointly addressing both tasks, we improve on pre-
vious results in narrative/frame learning and induce
rich frame-specific semantic roles.

1 Introduction

This paper describes a new approach to event se-
mantics that jointly learns event relations and their
participants from unlabeled corpora.

The early years of natural language processing
(NLP) took a “top-down” approach to language
understanding, using representations like scripts
(Schank and Abelson, 1977) (structured represen-
tations of events, their causal relationships, and
their participants) and frames to drive interpreta-
tion of syntax and word use. Knowledge structures
such as these provided the interpreter rich infor-
mation about many aspects of meaning.

The problem with these rich knowledge struc-
tures is that the need for hand construction, speci-
ficity, and domain dependence prevents robust and
flexible language understanding. Instead, mod-
ern work on understanding has focused on shal-
lower representations like semantic roles, which
express at least one aspect of the semantics of
events and have proved amenable to supervised
learning from corpora like PropBank (Palmer et
al., 2005) and Framenet (Baker et al., 1998). Un-
fortunately, creating these supervised corpora is an
expensive and difficult multi-year effort, requiring
complex decisions about the exact set of roles to

be learned. Even unsupervised attempts to learn
semantic roles have required a pre-defined set of
roles (Grenager and Manning, 2006) and often a
hand-labeled seed corpus (Swier and Stevenson,
2004; He and Gildea, 2006).

In this paper, we describe our attempts to learn
script-like information about the world, including
both event structures and the roles of their partic-
ipants, but without pre-defined frames, roles, or
tagged corpora.

Consider the following Narrative Schema, to be
defined more formally later. The events on the left
follow a set of participants through a series of con-
nected events that constitute a narrative:

A search B
A arrest B

D convict B
B plead C

D acquit B
D sentence B

A = Police
B = Suspect
C = Plea
D = Jury

Events Roles

Being able to robustly learn sets of related
events (left) and frame-specific role information
about the argument types that fill them (right)
could assist a variety of NLP applications, from
question answering to machine translation.

Our previous work (Chambers and Jurafsky,
2008) relied on the intuition that in a coherent text,
any two events that are about the same participants
are likely to be part of the same story or narra-
tive. The model learned simple aspects of nar-
rative structure (‘narrative chains’) by extracting
events that share a single participant, the protag-
onist. In this paper we extend this work to rep-
resent sets of situation-specific events not unlike
scripts, caseframes (Bean and Riloff, 2004), and
FrameNet frames (Baker et al., 1998). This paper
shows that verbs in distinct narrative chains can be
merged into an improved single narrative schema,
while the shared arguments across verbs can pro-
vide rich information for inducing semantic roles.
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2 Background

This paper addresses two areas of work in event
semantics, narrative event chains and semantic
role labeling. We begin by highlighting areas in
both that can mutually inform each other through
a narrative schema model.

2.1 Narrative Event Chains

Narrative Event Chains are partially ordered sets
of events that all involve the same shared par-
ticipant, the protagonist (Chambers and Jurafsky,
2008). A chain contains a set of verbs represent-
ing events, and for each verb, the grammatical role
filled by the shared protagonist.

An event is a verb together with its constellation
of arguments. An event slot is a tuple of an event
and a particular argument slot (grammatical rela-
tion), represented as a pair 〈v, d〉 where v is a verb
and d ∈ {subject, object, prep}. A chain is a tu-
ple (L,O) where L is a set of event slots and O is
a partial (temporal) ordering. We will write event
slots in shorthand as (X pleads) or (pleads X) for
〈pleads, subject〉 and 〈pleads, object〉. Below is
an example chain modeling criminal prosecution.

L = (X pleads), (X admits), (convicted X), (sentenced X)
O = {(pleads, convicted), (convicted, sentenced), ...}

A graphical view is often more intuitive:

admits

pleads

sentenced

convicted

(X admits)

(X pleads)

(convicted X)

(sentenced X)

In this example, the protagonist of the chain
is the person being prosecuted and the other un-
specified event slots remain unfilled and uncon-
strained. Chains in the Chambers and Jurafsky
(2008) model are ordered; in this paper rather than
address the ordering task we focus on event and ar-
gument induction, leaving ordering as future work.

The Chambers and Jurafsky (2008) model
learns chains completely unsupervised, (albeit af-
ter parsing and resolving coreference in the text)
by counting pairs of verbs that share corefer-
ring arguments within documents and computing
the pointwise mutual information (PMI) between
these verb-argument pairs. The algorithm creates
chains by clustering event slots using their PMI
scores, and we showed this use of co-referring ar-
guments improves event relatedness.

Our previous work, however, has two major
limitations. First, the model did not express
any information about the protagonist, such as its
type or role. Role information (such as knowing
whether a filler is a location, a person, a particular
class of people, or even an inanimate object) could
crucially inform learning and inference. Second,
the model only represents one participant (the pro-
tagonist). Representing the other entities involved
in all event slots in the narrative could potentially
provide valuable information. We discuss both of
these extensions next.

2.1.1 The Case for Arguments
The Chambers and Jurafsky (2008) narrative
chains do not specify what type of argument fills
the role of protagonist. Chain learning and clus-
tering is based only on the frequency with which
two verbs share arguments, ignoring any features
of the arguments themselves.

Take this example of an actual chain from an
article in our training data. Given this chain of five
events, we want to choose other events most likely
to occur in this scenario.

hunt

use

accuse

suspect

search

fly

charge
?

One of the top scoring event slots is (fly X). Nar-
rative chains incorrectly favor (fly X) because it is
observed during training with all five event slots,
although not frequently with any one of them. An
event slot like (charge X) is much more plausible,
but is unfortunately scored lower by the model.

Representing the types of the arguments can
help solve this problem. Few types of arguments
are shared between the chain and (fly X). How-
ever, (charge X) shares many arguments with (ac-
cuse X), (search X) and (suspect X) (e.g., criminal
and suspect). Even more telling is that these argu-
ments are jointly shared (the same or coreferent)
across all three events. Chains represent coherent
scenarios, not just a set of independent pairs, so we
want to model argument overlap across all pairs.

2.1.2 The Case for Joint Chains
The second problem with narrative chains is that
they make judgments only between protagonist ar-
guments, one slot per event. All entities and slots
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in the space of events should be jointly considered
when making event relatedness decisions.

As an illustration, consider the verb arrest.
Which verb is more related, convict or capture?
A narrative chain might only look at the objects
of these verbs and choose the one with the high-
est score, usually choosing convict. But in this
case the subjects offer additional information; the
subject of arrest (police) is different from that of
convict (judge). A more informed decision prefers
capture because both the objects (suspect) and
subjects (police) are identical. This joint reason-
ing is absent from the narrative chain model.

2.2 Semantic Role Labeling

The task of semantic role learning and labeling
is to identify classes of entities that fill predicate
slots; semantic roles seem like they’d be a good
model for the kind of argument types we’d like
to learn for narratives. Most work on semantic
role labeling, however, is supervised, using Prop-
bank (Palmer et al., 2005), FrameNet (Baker et
al., 1998) or VerbNet (Kipper et al., 2000) as
gold standard roles and training data. More re-
cent learning work has applied bootstrapping ap-
proaches (Swier and Stevenson, 2004; He and
Gildea, 2006), but these still rely on a hand la-
beled seed corpus as well as a pre-defined set of
roles. Grenegar and Manning (2006) use the EM
algorithm to learn PropBank roles from unlabeled
data, and unlike bootstrapping, they don’t need a
labeled corpus from which to start. However, they
do require a predefined set of roles (arg0, arg1,
etc.) to define the domain of their probabilistic
model.

Green and Dorr (2005) use WordNet’s graph
structure to cluster its verbs into FrameNet frames,
using glosses to name potential slots. We differ in
that we attempt to learn frame-like narrative struc-
ture from untagged newspaper text. Most sim-
ilar to us, Alishahi and Stevenson (2007) learn
verb specific semantic profiles of arguments us-
ing WordNet classes to define the roles. We learn
situation-specific classes of roles shared by multi-
ple verbs.

Thus, two open goals in role learning include
(1) unsupervised learning and (2) learning the
roles themselves rather than relying on pre-defined
role classes. As just described, Chambers and Ju-
rafsky (2008) offers an unsupervised approach to
event learning (goal 1), but lacks semantic role

knowledge (goal 2). The following sections de-
scribe a model that addresses both goals.

3 Narrative Schemas

The next sections introduce typed narrative chains
and chain merging, extensions that allow us to
jointly learn argument roles with event structure.

3.1 Typed Narrative Chains

The first step in describing a narrative schema is to
extend the definition of a narrative chain to include
argument types. We now constrain the protagonist
to be of a certain type or role. A Typed Narrative
Chain is a partially ordered set of event slots that
share an argument, but now the shared argument
is a role defined by being a member of a set of
types R. These types can be lexical units (such as
observed head words), noun clusters, or other se-
mantic representations. We use head words in the
examples below, but we also evaluate with argu-
ment clustering by mapping head words to mem-
ber clusters created with the CBC clustering algo-
rithm (Pantel and Lin, 2002).

We define a typed narrative chain as a tuple
(L,P,O) with L and O the set of event slots
and partial ordering as before. Let P be a set of
argument types (head words) representing a single
role. An example is given here:

L = {(hunt X), (X use), (suspect X), (accuse X), (search X)}
P = {person, government, company, criminal, ...}
O = {(use, hunt), (suspect, search), (suspect, accuse) ... }

3.2 Learning Argument Types

As mentioned above, narrative chains are learned
by parsing the text, resolving coreference, and ex-
tracting chains of events that share participants. In
our new model, argument types are learned simul-
taneously with narrative chains by finding salient
words that represent coreferential arguments. We
record counts of arguments that are observed with
each pair of event slots, build the referential set
for each word from its coreference chain, and then
represent each observed argument by the most fre-
quent head word in its referential set (ignoring pro-
nouns and mapping entity mentions with person
pronouns to a constant PERSON identifier).

As an example, the following contains four
worker mentions:
But for a growing proportion of U.S. workers, the troubles re-

ally set in when they apply for unemployment benefits. Many

workers find their benefits challenged.
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L = {X arrest, X charge, X raid, X seize,
X confiscate, X detain, X deport }

P = {police, agent, authority, government}

Figure 1: A typed narrative chain. The four top
arguments are given. The orderingO is not shown.

The four bolded terms are coreferential and
(hopefully) identified by coreference. Our algo-
rithm chooses the head word of each phrase and
ignores the pronouns. It then chooses the most
frequent head word as the most salient mention.
In this example, the most salient term is workers.
If any pair of event slots share arguments from this
set, we count workers. In this example, the pair (X
find) and (X apply) shares an argument (they and
workers). The pair ((X find),(X apply)) is counted
once for narrative chain induction, and ((X find),
(X apply), workers) once for argument induction.

Figure 1 shows the top occurring words across
all event slot pairs in a criminal scenario chain.
This chain will be part of a larger narrative
schema, described in section 3.4.

3.3 Event Slot Similarity with Arguments
We now formalize event slot similarity with argu-
ments. Narrative chains as defined in (Chambers
and Jurafsky, 2008) score a new event slot 〈f, g〉
against a chain of size n by summing over the
scores between all pairs:

chainsim(C, 〈f, g〉) =

nX
i=1

sim(〈ei, di〉 , 〈f, g〉) (1)

where C is a narrative chain, f is a verb with
grammatical argument g, and sim(e, e′) is the
pointwise mutual information pmi(e, e′). Grow-
ing a chain by one adds the highest scoring event.

We extend this function to include argument
types by defining similarity in the context of a spe-
cific argument a:

sim(〈e, d〉 ,
˙
e′, d′

¸
, a) =

pmi(〈e, d〉 ,
˙
e′, d′

¸
) + λ log freq(〈e, d〉 ,

˙
e′, d′

¸
, a)

(2)

where λ is a constant weighting factor and
freq(b, b′, a) is the corpus count of a filling the
arguments of events b and b′. We then score the
entire chain for a particular argument:

score(C, a) =

n−1X
i=1

nX
j=i+1

sim(〈ei, di〉 , 〈ej , dj〉 , a) (3)

Using this chain score, we finally extend
chainsim to score a new event slot based on the
argument that maximizes the entire chain’s score:
chainsim′(C, 〈f, g〉) =

max
a

(score(C, a) +

nX
i=1

sim(〈ei, di〉 , 〈f, g〉 , a))
(4)

The argument is now directly influencing event
slot similarity scores. We will use this definition
in the next section to build Narrative Schemas.

3.4 Narrative Schema: Multiple Chains
Whereas a narrative chain is a set of event slots,
a Narrative Schema is a set of typed narrative
chains. A schema thus models all actors in a set
of events. If (push X) is in one chain, (Y push) is
in another. This allows us to model a document’s
entire narrative, not just one main actor.

3.4.1 The Model
A narrative schema is defined as a 2-tuple N =
(E,C) with E a set of events (here defined as
verbs) and C a set of typed chains over the
event slots. We represent an event as a verb v
and its grammatical argument positions Dv ⊆
{subject, object, prep}. Thus, each event slot
〈v, d〉 for all d ∈ Dv belongs to a chain c ∈ C
in the schema. Further, each c must be unique for
each slot of a single verb. Using the criminal pros-
ecution domain as an example, a narrative schema
in this domain is built as in figure 2.

The three dotted boxes are graphical represen-
tations of the typed chains that are combined in
this schema. The first represents the event slots in
which the criminal is involved, the second the po-
lice, and the third is a court or judge. Although our
representation uses a set of chains, it is equivalent
to represent a schema as a constraint satisfaction
problem between 〈e, d〉 event slots. The next sec-
tion describes how to learn these schemas.

3.4.2 Learning Narrative Schemas
Previous work on narrative chains focused on re-
latedness scores between pairs of verb arguments
(event slots). The clustering step which built
chains depended on these pairwise scores. Narra-
tive schemas use a generalization of the entire verb
with all of its arguments. A joint decision can be
made such that a verb is added to a schema if both
its subject and object are assigned to chains in the
schema with high confidence.

For instance, it may be the case that (Y
pull over) scores well with the ‘police’ chain in

605



police,
agent

criminal,
suspect

guilty,
innocent

judge,
jury

arrest

charge

convict
sentence

arrest

charge

convict

plead

sentence
police,agent judge,jury

arrest

charge

convict

plead

sentence

criminal,suspect

Figure 2: Merging typed chains into a single unordered Narrative Schema.

figure 3. However, the object of (pull over A)
is not present in any of the other chains. Police
pull over cars, but this schema does not have a
chain involving cars. In contrast, (Y search) scores
well with the ‘police’ chain and (search X) scores
well in the ‘defendant’ chain too. Thus, we want
to favor search instead of pull over because the
schema is already modeling both arguments.

This intuition leads us to our event relatedness
function for the entire narrative schema N , not
just one chain. Instead of asking which event slot
〈v, d〉 is a best fit, we ask if v is best by considering
all slots at once:
narsim(N, v) =∑

d∈Dv

max(β, max
c∈CN

chainsim′(c, 〈v, d〉)) (5)

whereCN is the set of chains in our narrativeN . If
〈v, d〉 does not have strong enough similarity with
any chain, it creates a new one with base score β.
The β parameter balances this decision of adding
to an existing chain in N or creating a new one.

3.4.3 Building Schemas
We use equation 5 to build schemas from the set
of events as opposed to the set of event slots that
previous work on narrative chains used. In Cham-
bers and Jurafsky (2008), narrative chains add the
best 〈e, d〉 based on the following:

max
j:0<j<m

chainsim(c, 〈vj , gj〉) (6)

where m is the number of seen event slots in the
corpus and 〈vj , gj〉 is the jth such possible event
slot. Schemas are now learned by adding events
that maximize equation 5:

max
j:0<j<|v|

narsim(N, vj) (7)

where |v| is the number of observed verbs and vj

is the jth such verb. Verbs are incrementally added
to a narrative schema by strength of similarity.

arrest

charge

seize
confiscate

defendant, nichols, 
smith, simpson

police, agent, 
authorities, government

license

immigrant, reporter, 
cavalo, migrant, aliendetain

deport 

raid

Figure 3: Graphical view of an unordered schema
automatically built starting from the verb ‘arrest’.
A β value that encouraged splitting was used.

4 Sample Narrative Schemas

Figures 3 and 4 show two criminal schemas
learned completely automatically from the NYT
portion of the Gigaword Corpus (Graff, 2002).
We parse the text into dependency graphs and re-
solve coreferences. The figures result from learn-
ing over the event slot counts. In addition, figure 5
shows six of the top 20 scoring narrative schemas
learned by our system. We artificially required the
clustering procedure to stop (and sometimes con-
tinue) at six events per schema. Six was chosen
as the size to enable us to compare to FrameNet
in the next section; the mean number of verbs in
FrameNet frames is between five and six. A low
β was chosen to limit chain splitting. We built a
new schema starting from each verb that occurs in
more than 3000 and less than 50,000 documents
in the NYT section. This amounted to approxi-
mately 1800 verbs from which we show the top
20. Not surprisingly, most of the top schemas con-
cern business, politics, crime, or food.

5 Frames and Roles

Most previous work on unsupervised semantic
role labeling assumes that the set of possible
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A produce B
A sell B
A manufacture B
A *market B
A distribute B
A -develop B

A ∈ {company, inc, corp, microsoft,
iraq, co, unit, maker, ...}

B ∈ {drug, product, system, test,
software, funds, movie, ...}

B trade C
B fell C
A *quote B
B fall C
B -slip C
B rise C

A ∈ {}
B ∈ {dollar, share, index, mark, currency,

stock, yield, price, pound, ...}
C ∈ {friday, most, year, percent, thursday

monday, share, week, dollar, ...}

A boil B
A slice B
A -peel B
A saute B
A cook B
A chop B

A ∈ {wash, heat, thinly, onion, note}

B ∈ {potato, onion, mushroom, clove,
orange, gnocchi }

A detain B
A confiscate B
A seize B
A raid B
A search B
A arrest B

A ∈ {police, agent, officer, authorities,
troops, official, investigator, ... }

B ∈ {suspect, government, journalist,
monday, member, citizen, client, ... }

A *uphold B
A *challenge B
A rule B
A enforce B
A *overturn B
A *strike down B

A ∈ {court, judge, justice, panel, osteen,
circuit, nicolau, sporkin, majority, ...}

B ∈ {law, ban, rule, constitutionality,
conviction, ruling, lawmaker, tax, ...}

A own B
A *borrow B
A sell B
A buy back B
A buy B
A *repurchase B

A ∈ {company, investor, trader, corp,
enron, inc, government, bank, itt, ...}

B ∈ {share, stock, stocks, bond, company,
security, team, funds, house, ... }

Figure 5: Six of the top 20 scored Narrative Schemas. Events and arguments in italics were marked
misaligned by FrameNet definitions. * indicates verbs not in FrameNet. - indicates verb senses not in
FameNet.

found
convict
acquit

defendant, nichols, 
smith, simpson

jury, juror, court, 
judge, tribunal, senate

sentence

deliberate
deadlocked

Figure 4: Graphical view of an unordered schema
automatically built from the verb ‘convict’. Each
node shape is a chain in the schema.

classes is very small (i.e, PropBank roles ARG0
and ARG1) and is known in advance. By con-
trast, our approach induces sets of entities that ap-
pear in the argument positions of verbs in a nar-
rative schema. Our model thus does not assume
the set of roles is known in advance, and it learns
the roles at the same time as clustering verbs into
frame-like schemas. The resulting sets of entities
(such as {police, agent, authorities, government}
or {court, judge, justice}) can be viewed as a kind
of schema-specific semantic role.

How can this unsupervised method of learning
roles be evaluated? In Section 6 we evaluate the
schemas together with their arguments in a cloze
task. In this section we perform a more qualitative
evalation by comparing our schema to FrameNet.

FrameNet (Baker et al., 1998) is a database of
frames, structures that characterize particular sit-
uations. A frame consists of a set of events (the
verbs and nouns that describe them) and a set

of frame-specific semantic roles called frame el-
ements that can be arguments of the lexical units
in the frame. FrameNet frames share commonali-
ties with narrative schemas; both represent aspects
of situations in the world, and both link semanti-
cally related words into frame-like sets in which
each predicate draws its argument roles from a
frame-specific set. They differ in that schemas fo-
cus on events in a narrative, while frames focus on
events that share core participants. Nonetheless,
the fact that FrameNet defines frame-specific ar-
gument roles suggests that comparing our schemas
and roles to FrameNet would be elucidating.

We took the 20 learned narrative schemas de-
scribed in the previous section and used FrameNet
to perform qualitative evaluations on three aspects
of schema: verb groupings, linking structure (the
mapping of each argument role to syntactic sub-
ject or object), and the roles themselves (the set of
entities that constitutes the schema roles).

Verb groupings To compare a schema’s event
selection to a frame’s lexical units, we first map
the top 20 schemas to the FrameNet frames that
have the largest overlap with each schema’s six
verbs. We were able to map 13 of our 20 narra-
tives to FrameNet (for the remaining 7, no frame
contained more than one of the six verbs). The
remaining 13 schemas contained 6 verbs each for
a total of 78 verbs. 26 of these verbs, however,
did not occur in FrameNet, either at all, or with
the correct sense. Of the remaining 52 verb map-
pings, 35 (67%) occurred in the closest FrameNet
frame or in a frame one link away. 17 verbs (33%)
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occurred in a different frame than the one chosen.
We examined the 33% of verbs that occurred in

a different frame. Most occurred in related frames,
but did not have FrameNet links between them.
For instance, one schema includes the causal verb
trade with unaccusative verbs of change like rise
and fall. FrameNet separates these classes of verbs
into distinct frames, distinguishing motion frames
from caused-motion frames.

Even though trade and rise are in different
FrameNet frames, they do in fact have the narra-
tive relation that our system discovered. Of the 17
misaligned events, we judged all but one to be cor-
rect in a narrative sense. Thus although not exactly
aligned with FrameNet’s notion of event clusters,
our induction algorithm seems to do very well.

Linking structure Next, we compare a
schema’s linking structure, the grammatical
relation chosen for each verb event. We thus
decide, e.g., if the object of the verb arrest (arrest
B) plays the same role as the object of detain
(detain B), or if the subject of detain (B detain)
would have been more appropriate.

We evaluated the clustering decisions of the 13
schemas (78 verbs) that mapped to frames. For
each chain in a schema, we identified the frame
element that could correctly fill the most verb ar-
guments in the chain. The remaining arguments
were considered incorrect. Because we assumed
all verbs to be transitive, there were 156 arguments
(subjects and objects) in the 13 schema. Of these
156 arguments, 151 were correctly clustered to-
gether, achieving 96.8% accuracy.

The schema in figure 5 with events detain, seize,
arrest, etc. shows some of these errors. The object
of all of these verbs is an animate theme, but con-
fiscate B and raid B are incorrect; people cannot
be confiscated/raided. They should have been split
into their own chain within the schema.

Argument Roles Finally, we evaluate the
learned sets of entities that fill the argument slots.
As with the above linking evaluation, we first iden-
tify the best frame element for each argument. For
example, the events in the top left schema of fig-
ure 5 map to the Manufacturing frame. Argument
B was identified as the Product frame element. We
then evaluate the top 10 arguments in the argument
set, judging whether each is a reasonable filler of
the role. In our example, drug and product are cor-
rect Product arguments. An incorrect argument is

test, as it was judged that a test is not a product.
We evaluated all 20 schemas. The 13 mapped

schemas used their assigned frames, and we cre-
ated frame element definitions for the remaining 7
that were consistent with the syntactic positions.
There were 400 possible arguments (20 schemas,
2 chains each), and 289 were judged correct for a
precision of 72%. This number includes Person
and Organization names as correct fillers. A more
conservative metric removing these classes results
in 259 (65%) correct.

Most of the errors appear to be from parsing
mistakes. Several resulted from confusing objects
with adjuncts. Others misattached modifiers, such
as including most as an argument. The cooking
schema appears to have attached verbal arguments
learned from instruction lists (wash, heat, boil).
Two schemas require situations as arguments, but
the dependency graphs chose as arguments the
subjects of the embedded clauses, resulting in 20
incorrect arguments in these schema.

6 Evaluation: Cloze

The previous section compared our learned knowl-
edge to current work in event and role semantics.
We now provide a more formal evaluation against
untyped narrative chains. The two main contribu-
tions of schema are (1) adding typed arguments
and (2) considering joint chains in one model. We
evaluate each using the narrative cloze test as in
(Chambers and Jurafsky, 2008).

6.1 Narrative Cloze

The cloze task (Taylor, 1953) evaluates human un-
derstanding of lexical units by removing a random
word from a sentence and asking the subject to
guess what is missing. The narrative cloze is a
variation on this idea that removes an event slot
from a known narrative chain.Performance is mea-
sured by the position of the missing event slot in a
system’s ranked guess list.

This task is particularly attractive for narrative
schemas (and chains) because it aligns with one
of the original ideas behind Schankian scripts,
namely that scripts help humans ‘fill in the blanks’
when language is underspecified.

6.2 Training and Test Data

We count verb pairs and shared arguments over
the NYT portion of the Gigaword Corpus (years
1994-2004), approximately one million articles.
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Figure 6: Results with varying sizes of training
data.

We parse the text into typed dependency graphs
with the Stanford Parser (de Marneffe et al., 2006),
recording all verbs with subject, object, or prepo-
sitional typed dependencies. Unlike in (Chambers
and Jurafsky, 2008), we lemmatize verbs and ar-
gument head words. We use the OpenNLP1 coref-
erence engine to resolve entity mentions.

The test set is the same as in (Chambers and Ju-
rafsky, 2008). 100 random news articles were se-
lected from the 2001 NYT section of the Gigaword
Corpus. Articles that did not contain a protagonist
with five or more events were ignored, leaving a
test set of 69 articles. We used a smaller develop-
ment set of size 17 to tune parameters.

6.3 Typed Chains

The first evaluation compares untyped against
typed narrative event chains. The typed model
uses equation 4 for chain clustering. The dotted
line ‘Chain’ and solid ‘Typed Chain’ in figure 6
shows the average ranked position over the test set.
The untyped chains plateau and begin to worsen
as the amount of training data increases, but the
typed model is able to improve for some time af-
ter. We see a 6.9% gain at 2004 when both lines
trend upwards.

6.4 Narrative Schema

The second evaluation compares the performance
of the narrative schema model against single nar-
rative chains. We ignore argument types and use
untyped chains in both (using equation 1 instead

1http://opennlp.sourceforge.net/

of 4). The dotted line ‘Chain’ and solid ‘Schema’
show performance results in figure 6. Narrative
Schemas have better ranked scores in all data sizes
and follow the previous experiment in improving
results as more data is added even though untyped
chains trend upward. We see a 3.3% gain at 2004.

6.5 Typed Narrative Schema
The final evaluation combines schemas with ar-
gument types to measure overall gain. We eval-
uated with both head words and CBC clusters
as argument representations. Not only do typed
chains and schemas outperform untyped chains,
combining the two gives a further performance
boost. Clustered arguments improve the re-
sults further, helping with sparse argument counts
(‘Typed Schema’ in figure 6 uses CBC argu-
ments). Overall, using all the data (by year 2004)
shows a 10.1% improvement over untyped narra-
tive chains.

7 Discussion

Our significant improvement in the cloze evalua-
tion shows that even though narrative cloze does
not evaluate argument types, jointly modeling the
arguments with events improves event cluster-
ing. Likewise, the FrameNet comparison suggests
that modeling related events helps argument learn-
ing. The tasks mutually inform each other. Our
argument learning algorithm not only performs
unsupervised induction of situation-specific role
classes, but the resulting roles and linking struc-
tures may also offer the possibility of (unsuper-
vised) FrameNet-style semantic role labeling.

Finding the best argument representation is an
important future direction. The performance of
our noun clusters in figure 6 showed that while the
other approaches leveled off, clusters continually
improved with more data. The exact balance be-
tween lexical units, clusters, or more general (tra-
ditional) semantic roles remains to be solved, and
may be application specific.

We hope in the future to show that a range of
NLU applications can benefit from the rich infer-
ential structures that narrative schemas provide.
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