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Abstract

The minimum Bayes risk (MBR) decoding ob-
jective improves BLEU scores for machine trans-
lation output relative to the standard Viterbi ob-
jective of maximizing model score. However,
MBR targeting BLEU is prohibitively slow to op-
timize over k-best lists for large k. In this pa-
per, we introduce and analyze an alternative to
MBR that is equally effective at improving per-
formance, yet is asymptotically faster — running
80 times faster than MBR in experiments with
1000-best lists. Furthermore, our fast decoding
procedure can select output sentences based on
distributions over entire forests of translations, in
addition to k-best lists. We evaluate our proce-
dure on translation forests from two large-scale,
state-of-the-art hierarchical machine translation
systems. Our forest-based decoding objective
consistently outperforms k-best list MBR, giving
improvements of up to 1.0 BLEU.

1 Introduction

In statistical machine translation, output transla-
tions are evaluated by their similarity to human
reference translations, where similarity is most of-
ten measured by BLEU (Papineni et al., 2002).
A decoding objective specifies how to derive final
translations from a system’s underlying statistical
model. The Bayes optimal decoding objective is
to minimize risk based on the similarity measure
used for evaluation. The corresponding minimum
Bayes risk (MBR) procedure maximizes the ex-
pected similarity score of a system’s translations
relative to the model’s distribution over possible
translations (Kumar and Byrne, 2004). Unfortu-
nately, with a non-linear similarity measure like
BLEU, we must resort to approximating the ex-
pected loss using a k-best list, which accounts for
only a tiny fraction of a model’s full posterior dis-
tribution. In this paper, we introduce a variant
of the MBR decoding procedure that applies effi-
ciently to translation forests. Instead of maximiz-
ing expected similarity, we express similarity in
terms of features of sentences, and choose transla-
tions that are similar to expected feature values.

Our exposition begins with algorithms over k-
best lists. A naı̈ve algorithm for finding MBR
translations computes the similarity between every
pair of k sentences, entailing O(k2) comparisons.
We show that if the similarity measure is linear in
features of a sentence, then computing expected
similarity for all k sentences requires only k sim-
ilarity evaluations. Specific instances of this gen-
eral algorithm have recently been proposed for two
linear similarity measures (Tromble et al., 2008;
Zhang and Gildea, 2008).

However, the sentence similarity measures we
want to optimize in MT are not linear functions,
and so this fast algorithm for MBR does not ap-
ply. For this reason, we propose a new objective
that retains the benefits of MBR, but can be op-
timized efficiently, even for non-linear similarity
measures. In experiments using BLEU over 1000-
best lists, we found that our objective provided
benefits very similar to MBR, only much faster.

This same decoding objective can also be com-
puted efficiently from forest-based expectations.
Translation forests compactly encode distributions
over much larger sets of derivations and arise nat-
urally in chart-based decoding for a wide variety
of hierarchical translation systems (Chiang, 2007;
Galley et al., 2006; Mi et al., 2008; Venugopal
et al., 2007). The resulting forest-based decoding
procedure compares favorably in both complexity
and performance to the recently proposed lattice-
based MBR (Tromble et al., 2008).

The contributions of this paper include a linear-
time algorithm for MBR using linear similarities,
a linear-time alternative to MBR using non-linear
similarity measures, and a forest-based extension
to this procedure for similarities based on n-gram
counts. In experiments, we show that our fast pro-
cedure is on average 80 times faster than MBR
using 1000-best lists. We also show that using
forests outperforms using k-best lists consistently
across language pairs. Finally, in the first pub-
lished multi-system experiments on consensus de-
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coding for translation, we demonstrate that bene-
fits can differ substantially across systems. In all,
we show improvements of up to 1.0 BLEU from
consensus approaches for state-of-the-art large-
scale hierarchical translation systems.

2 Consensus Decoding Algorithms

Let e be a candidate translation for a sentence f ,
where e may stand for a sentence or its derivation
as appropriate. Modern statistical machine trans-
lation systems take as input some f and score each
derivation e according to a linear model of fea-
tures:

∑
i λi ·θi(f, e). The standard Viterbi decod-

ing objective is to find e∗ = arg maxe λ · θ(f, e).
For MBR decoding, we instead leverage a sim-

ilarity measure S(e; e′) to choose a translation us-
ing the model’s probability distribution P(e|f),
which has support over a set of possible transla-
tions E. The Viterbi derivation e∗ is the mode of
this distribution. MBR is meant to choose a trans-
lation that will be similar, on expectation, to any
possible reference translation. To this end, MBR
chooses ẽ that maximizes expected similarity to
the sentences in E under P(e|f):1

ẽ = arg maxe EP(e′|f)

[
S(e; e′)

]
= arg maxe

∑
e′∈E

P(e′|f) · S(e; e′)

MBR can also be interpreted as a consensus de-
coding procedure: it chooses a translation similar
to other high-posterior translations. Minimizing
risk has been shown to improve performance for
MT (Kumar and Byrne, 2004), as well as other
language processing tasks (Goodman, 1996; Goel
and Byrne, 2000; Kumar and Byrne, 2002; Titov
and Henderson, 2006; Smith and Smith, 2007).

The distribution P(e|f) can be induced from a
translation system’s features and weights by expo-
nentiating with base b to form a log-linear model:

P (e|f) =
bλ·θ(f,e)∑

e′∈E bλ·θ(f,e′)

We follow Ehling et al. (2007) in choosing b using
a held-out tuning set. For algorithms in this sec-
tion, we assume that E is a k-best list and b has
been chosen already, so P(e|f) is fully specified.

1Typically, MBR is defined as arg mine∈EE[L(e; e′)] for
some loss function L, for example 1 − BLEU(e; e′). These
definitions are equivalent.

2.1 Minimum Bayes Risk over Sentence Pairs

Given any similarity measure S and a k-best
list E, the minimum Bayes risk translation can
be found by computing the similarity between all
pairs of sentences in E, as in Algorithm 1.

Algorithm 1 MBR over Sentence Pairs
1: A← −∞
2: for e ∈ E do
3: Ae ← 0
4: for e′ ∈ E do
5: Ae ← Ae + P (e′|f) · S(e; e′)
6: if Ae > A then A, ẽ← Ae, e
7: return ẽ

We can sometimes exit the inner for loop early,
whenever Ae can never become larger than A
(Ehling et al., 2007). Even with this shortcut, the
running time of Algorithm 1 is O(k2 · n), where
n is the maximum sentence length, assuming that
S(e; e′) can be computed in O(n) time.

2.2 Minimum Bayes Risk over Features

We now consider the case when S(e; e′) is a lin-
ear function of sentence features. Let S(e; e′) be
a function of the form

∑
j ωj(e) · φj(e′), where

φj(e′) are real-valued features of e′, and ωj(e) are
sentence-specific weights on those features. Then,
the MBR objective can be re-written as

arg maxe∈E EP(e′|f)

[
S(e; e′)

]
= arg maxe

∑
e′∈E

P (e′|f) ·
∑

j

ωj(e) · φj(e′)

= arg maxe

∑
j

ωj(e)

[∑
e′∈E

P (e′|f) · φj(e′)

]
= arg maxe

∑
j

ωj(e) · EP(e′|f)

[
φj(e′)

]
. (1)

Equation 1 implies that we can find MBR trans-
lations by first computing all feature expectations,
then applying S only once for each e. Algorithm 2
proceduralizes this idea: lines 1-4 compute feature
expectations, and lines 5-11 find the translation
with highest S relative to those expectations. The
time complexity is O(k ·n), assuming the number
of non-zero features φ(e′) and weights ω(e) grow
linearly in sentence length n and all features and
weights can be computed in constant time.
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Algorithm 2 MBR over Features
1: φ̄← [0 for j ∈ J ]
2: for e′ ∈ E do
3: for j ∈ J such that φj(e′) 6= 0 do
4: φ̄j ← φ̄j + P (e′|f) · φj(e′)
5: A← −∞
6: for e ∈ E do
7: Ae ← 0
8: for j ∈ J such that ωj(e) 6= 0 do
9: Ae ← Ae + ωj(e) · φ̄j

10: if Ae > A then A, ẽ← Ae, e
11: return ẽ

An example of a linear similarity measure is
bag-of-words precision, which can be written as:

U(e; e′) =
∑
t∈T1

δ(e, t)
|e|

· δ(e′, t)

where T1 is the set of unigrams in the language,
and δ(e, t) is an indicator function that equals 1
if t appears in e and 0 otherwise. Figure 1 com-
pares Algorithms 1 and 2 using U(e; e′). Other
linear functions have been explored for MBR, in-
cluding Taylor approximations to the logarithm of
BLEU (Tromble et al., 2008) and counts of match-
ing constituents (Zhang and Gildea, 2008), which
are discussed further in Section 3.3.

2.3 Fast Consensus Decoding using
Non-Linear Similarity Measures

Most similarity measures of interest for machine
translation are not linear, and so Algorithm 2 does
not apply. Computing MBR even with simple
non-linear measures such as BLEU, NIST or bag-
of-words F1 seems to require O(k2) computation
time. However, these measures are all functions
of features of e′. That is, they can be expressed as
S(e;φ(e′)) for a feature mapping φ : E → Rn.

For example, we can express BLEU(e; e′) =

exp

"„
1 − |e′|

|e|

«
−
+

1

4

4X
n=1

ln

P
t∈Tn

min(c(e, t), c(e′, t))P
t∈Tn

c(e, t)

#

In this expression, BLEU(e; e′) references e′ only
via its n-gram count features c(e′, t).2

2The length penalty
“
1 − |e′|

|e|

”
−

is also a function of n-

gram counts: |e′| =
P

t∈T1
c(e′, t). The negative part oper-

ator (·)− is equivalent to min(·, 0).
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P (e1|f) = 0.3 ; e1 = efficient forest decoding
P (e2|f) = 0.3 ; e2 = efficient for rusty coating
P (e3|f) = 0.4 ; e3 = A fish ain’t forest decoding

Figure 1: For the linear similarity measure U(e; e′), which
computes unigram precision, the MBR translation can be
found by iterating either over sentence pairs (Algorithm 1) or
over features (Algorithm 2). These two algorithms take the
same input (step 1), but diverge in their consensus computa-
tions (steps 2 & 3). However, they produce identical results
for U and any other linear similarity measure.

Following the structure of Equation 1, we can
choose a translation e based on the feature expec-
tations of e′. In particular, we can choose

ẽ = arg maxe∈ES(e; EP(e′|f)

[
φ(e′)

]
). (2)

This objective differs from MBR, but has a simi-
lar consensus-building structure. We have simply
moved the expectation inside the similarity func-
tion, just as we did in Equation 1. This new ob-
jective can be optimized by Algorithm 3, a pro-
cedure that runs in O(k · n) time if the count of
non-zero features in e′ and the computation time
of S(e;φ(e′)) are both linear in sentence length n.

This fast consensus decoding procedure shares
the same structure as linear MBR: first we com-
pute feature expectations, then we choose the sen-
tence that is most similar to those expectations. In
fact, Algorithm 2 is a special case of Algorithm 3.
Lines 7-9 of the former and line 7 of the latter are
equivalent for linear S(e; e′). Thus, for any linear
similarity measure, Algorithm 3 is an algorithm
for minimum Bayes risk decoding.
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Algorithm 3 Fast Consensus Decoding
1: φ̄← [0 for j ∈ J ]
2: for e′ ∈ E do
3: for j ∈ J such that φj(e′) 6= 0 do
4: φ̄j ← φ̄j + P (e′|f) · φj(e′)
5: A← −∞
6: for e ∈ E do
7: Ae ← S(e; φ̄)
8: if Ae > A then A, ẽ← Ae, e
9: return ẽ

As described, Algorithm 3 can use any sim-
ilarity measure that is defined in terms of real-
valued features of e′. There are some nuances
of this procedure, however. First, the precise
form of S(e;φ(e′)) will affect the output, but
S(e; E[φ(e′)]) is often an input point for which a
sentence similarity measure S was not originally
defined. For example, our definition of BLEU
above will have integer valued φ(e′) for any real
sentence e′, but E[φ(e′)] will not be integer valued.
As a result, we are extending the domain of BLEU
beyond its original intent. One could imagine dif-
ferent feature-based expressions that also produce
BLEU scores for real sentences, but produce dif-
ferent values for fractional features. Some care
must be taken to define S(e;φ(e′)) to extend nat-
urally from integer-valued to real-valued features.

Second, while any similarity measure can in
principle be expressed as S(e;φ(e′)) for a suffi-
ciently rich feature space, fast consensus decoding
will not apply effectively to all functions. For in-
stance, we cannot naturally use functions that in-
clude alignments or matchings between e and e′,
such as METEOR (Agarwal and Lavie, 2007) and
TER (Snover et al., 2006). Though these functions
can in principle be expressed in terms of features
of e′ (for instance with indicator features for whole
sentences), fast consensus decoding will only be
effective if different sentences share many fea-
tures, so that the feature expectations effectively
capture trends in the underlying distribution.

3 Computing Feature Expectations

We now turn our focus to efficiently comput-
ing feature expectations, in service of our fast
consensus decoding procedure. Computing fea-
ture expectations from k-best lists is trivial, but
k-best lists capture very little of the underlying
model’s posterior distribution. In place of k-best
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Figure 2: This translation forest for a Spanish sentence en-
codes two English parse trees. Hyper-edges (boxes) are an-
notated with normalized transition probabilities, as well as
the bigrams produced by each rule application. The expected
count of the bigram “man with” is the sum of posterior prob-
abilities of the two hyper-edges that produce it. In this exam-
ple, we normalized inside scores at all nodes to 1 for clarity.

lists, compact encodings of translation distribu-
tions have proven effective for MBR (Zhang and
Gildea, 2008; Tromble et al., 2008). In this sec-
tion, we consider BLEU in particular, for which
the relevant features φ(e) are n-gram counts up to
length n = 4. We show how to compute expec-
tations of these counts efficiently from translation
forests.

3.1 Translation Forests
Translation forests compactly encode an exponen-
tial number of output translations for an input
sentence, along with their model scores. Forests
arise naturally in chart-based decoding procedures
for many hierarchical translation systems (Chiang,
2007). Exploiting forests has proven a fruitful av-
enue of research in both parsing (Huang, 2008)
and machine translation (Mi et al., 2008).

Formally, translation forests are weighted
acyclic hyper-graphs. The nodes are states in the
decoding process that include the span (i, j) of the
sentence to be translated, the grammar symbol s
over that span, and the left and right context words
of the translation relevant for computing n-gram
language model scores.3 Each hyper-edge h rep-
resents the application of a synchronous rule r that
combines nodes corresponding to non-terminals in

3Decoder states can include additional information as
well, such as local configurations for dependency language
model scoring.
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r into a node spanning the union of the child spans
and perhaps some additional portion of the input
sentence covered directly by r’s lexical items. The
weight of h is the incremental score contributed
to all translations containing the rule application,
including translation model features on r and lan-
guage model features that depend on both r and
the English contexts of the child nodes. Figure 2
depicts a forest.

Each n-gram that appears in a translation e is as-
sociated with some h in its derivation: the h corre-
sponding to the rule that produces the n-gram. Un-
igrams are produced by lexical rules, while higher-
order n-grams can be produced either directly by
lexical rules, or by combining constituents. The
n-gram language model score of e similarly de-
composes over the h in e that produce n-grams.

3.2 Computing Expected N-Gram Counts

We can compute expected n-gram counts effi-
ciently from a translation forest by appealing to
the linearity of expectations. Let φ(e) be a vector
of n-gram counts for a sentence e. Then, φ(e) is
the sum of hyper-edge-specific n-gram count vec-
tors φ(h) for all h in e. Therefore, E[φ(e)] =∑

h∈e E[φ(h)].
To compute n-gram expectations for a hyper-

edge, we first compute the posterior probability of
each h, conditioned on the input sentence f :

P(h|f) =

(∑
e:h∈e

bλ·θ(f,e)

)(∑
e

bλ·θ(f,e)

)−1

,

where e iterates over translations in the forest. We
compute the numerator using the inside-outside al-
gorithm, while the denominator is the inside score
of the root node. Note that many possible deriva-
tions of f are pruned from the forest during decod-
ing, and so this posterior is approximate.

The expected n-gram count vector for a hyper-
edge is E[φ(h)] = P(h|f) · φ(h). Hence, after
computing P (h|f) for every h, we need only sum
P(h|f) · φ(h) for all h to compute E[φ(e)]. This
entire procedure is a linear-time computation in
the number of hyper-edges in the forest.

To complete forest-based fast consensus de-
coding, we then extract a k-best list of unique
translations from the forest (Huang et al., 2006)
and continue Algorithm 3 from line 5, which
chooses the ẽ from the k-best list that maximizes
BLEU(e; E[φ(e′)]).

3.3 Comparison to Related Work

Zhang and Gildea (2008) embed a consensus de-
coding procedure into a larger multi-pass decoding
framework. They focus on inversion transduction
grammars, but their ideas apply to richer models as
well. They propose an MBR decoding objective
of maximizing the expected number of matching
constituent counts relative to the model’s distri-
bution. The corresponding constituent-matching
similarity measure can be expressed as a linear
function of features of e′, which are indicators of
constituents. Expectations of constituent indicator
features are the same as posterior constituent prob-
abilities, which can be computed from a transla-
tion forest using the inside-outside algorithm. This
forest-based MBR approach improved translation
output relative to Viterbi translations.

Tromble et al. (2008) describe a similar ap-
proach using MBR with a linear similarity mea-
sure. They derive a first-order Taylor approxima-
tion to the logarithm of a slightly modified defini-
tion of corpus BLEU4, which is linear in n-gram
indicator features δ(e′, t) of e′. These features are
weighted by n-gram counts c(e, t) and constants
θ that are estimated from held-out data. The lin-
ear similarity measure takes the following form,
where Tn is the set of n-grams:

G(e; e′) = θ0|e|+
4∑

n=1

∑
t∈Tn

θt · c(e, t) · δ(e′, t).

Using G, Tromble et al. (2008) extend MBR to
word lattices, which improves performance over
k-best list MBR.

Our approach differs from Tromble et al. (2008)
primarily in that we propose decoding with an al-
ternative to MBR using BLEU, while they propose
decoding with MBR using a linear alternative to
BLEU. The specifics of our approaches also differ
in important ways.

First, word lattices are a subclass of forests that
have only one source node for each edge (i.e., a
graph, rather than a hyper-graph). While forests
are more general, the techniques for computing
posterior edge probabilities in lattices and forests
are similar. One practical difference is that the
forests needed for fast consensus decoding are

4The log-BLEU function must be modified slightly to
yield a linear Taylor approximation: Tromble et al. (2008)
replace the clipped n-gram count with the product of an n-
gram count and an n-gram indicator function.
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generated already by the decoder of a syntactic
translation system.

Second, rather than use BLEU as a sentence-
level similarity measure directly, Tromble et al.
(2008) approximate corpus BLEU with G above.
The parameters θ of the approximation must be es-
timated on a held-out data set, while our approach
requires no such estimation step.

Third, our approach is also simpler computa-
tionally. The features required to compute G are
indicators δ(e′, t); the features relevant to us are
counts c(e′, t). Tromble et al. (2008) compute ex-
pected feature values by intersecting the transla-
tion lattice with a lattices for each n-gram t. By
contrast, expectations of c(e′, t) can all be com-
puted with a single pass over the forest. This con-
trast implies a complexity difference. Let H be the
number of hyper-edges in the forest or lattice, and
T the number of n-grams that can potentially ap-
pear in a translation. Computing indicator expec-
tations seems to require O(H · T ) time because of
automata intersections. Computing count expec-
tations requires O(H) time, because only a con-
stant number of n-grams can be produced by each
hyper-edge.

Our approaches also differ in the space of trans-
lations from which ẽ is chosen. A linear similar-
ity measure like G allows for efficient search over
the lattice or forest, whereas fast consensus decod-
ing restricts this search to a k-best list. However,
Tromble et al. (2008) showed that most of the im-
provement from lattice-based consensus decoding
comes from lattice-based expectations, not search:
searching over lattices instead of k-best lists did
not change results for two language pairs, and im-
proved a third language pair by 0.3 BLEU. Thus,
we do not consider our use of k-best lists to be a
substantial liability of our approach.

Fast consensus decoding is also similar in char-
acter to the concurrently developed variational de-
coding approach of Li et al. (2009). Using BLEU,
both approaches choose outputs that match ex-
pected n-gram counts from forests, though differ
in the details. It is possible to define a similar-
ity measure under which the two approaches are
equivalent.5

5For example, decoding under a variational approxima-
tion to the model’s posterior that decomposes over bigram
probabilities is equivalent to fast consensus decoding with

the similarity measure B(e; e′) =
Q

t∈T2

h
c(e′,t)

c(e′,h(t))

ic(e,t)

,

where h(t) is the unigram prefix of bigram t.

4 Experimental Results

We evaluate these consensus decoding techniques
on two different full-scale state-of-the-art hierar-
chical machine translation systems. Both systems
were trained for 2008 GALE evaluations, in which
they outperformed a phrase-based system trained
on identical data.

4.1 Hiero: a Hierarchical MT Pipeline
Hiero is a hierarchical system that expresses its
translation model as a synchronous context-free
grammar (Chiang, 2007). No explicit syntactic in-
formation appears in the core model. A phrase
discovery procedure over word-aligned sentence
pairs provides rule frequency counts, which are
normalized to estimate features on rules.

The grammar rules of Hiero all share a single
non-terminal symbol X , and have at most two
non-terminals and six total items (non-terminals
and lexical items), for example:

my X2 ’s X1 → X1 de mi X2

We extracted the grammar from training data using
standard parameters. Rules were allowed to span
at most 15 words in the training data.

The log-linear model weights were trained us-
ing MIRA, a margin-based optimization proce-
dure that accommodates many features (Crammer
and Singer, 2003; Chiang et al., 2008). In addition
to standard rule frequency features, we included
the distortion and syntactic features described in
Chiang et al. (2008).

4.2 SBMT: a Syntax-Based MT Pipeline
SBMT is a string-to-tree translation system with
rich target-side syntactic information encoded in
the translation model. The synchronous grammar
rules are extracted from word aligned sentence
pairs where the target sentence is annotated with
a syntactic parse (Galley et al., 2004). Rules map
source-side strings to target-side parse tree frag-
ments, and non-terminal symbols correspond to
target-side grammatical categories:

(NP (NP (PRP$ my) NN2 (POS ’s)) NNS1)→
NNS1 de mi NN2

We extracted the grammar via an array of criteria
(Galley et al., 2006; DeNeefe et al., 2007; Marcu
et al., 2006). The model was trained using min-
imum error rate training for Arabic (Och, 2003)
and MIRA for Chinese (Chiang et al., 2008).
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Arabic-English
Objective Hiero SBMT
Min. Bayes Risk (Alg 1) 2h 47m 12h 42m
Fast Consensus (Alg 3) 5m 49s 5m 22s
Speed Ratio 29 142

Chinese-English
Objective Hiero SBMT
Min. Bayes Risk (Alg 1) 10h 24m 3h 52m
Fast Consensus (Alg 3) 4m 52s 6m 32s
Speed Ratio 128 36

Table 1: Fast consensus decoding is orders of magnitude
faster than MBR when using BLEU as a similarity measure.
Times only include reranking, not k-best list extraction.

4.3 Data Conditions
We evaluated on both Chinese-English and
Arabic-English translation tasks. Both Arabic-
English systems were trained on 220 million
words of word-aligned parallel text. For the
Chinese-English experiments, we used 260 mil-
lion words of word-aligned parallel text; the hi-
erarchical system used all of this data, and the
syntax-based system used a 65-million word sub-
set. All four systems used two language models:
one trained from the combined English sides of
both parallel texts, and another, larger, language
model trained on 2 billion words of English text
(1 billion for Chinese-English SBMT).

All systems were tuned on held-out data (1994
sentences for Arabic-English, 2010 sentences for
Chinese-English) and tested on another dataset
(2118 sentences for Arabic-English, 1994 sen-
tences for Chinese-English). These datasets were
drawn from the NIST 2004 and 2005 evaluation
data, plus some additional data from the GALE
program. There was no overlap at the segment or
document level between the tuning and test sets.

We tuned b, the base of the log-linear model,
to optimize consensus decoding performance. In-
terestingly, we found that tuning b on the same
dataset used for tuning λ was as effective as tuning
b on an additional held-out dataset.

4.4 Results over K-Best Lists
Taking expectations over 1000-best lists6 and us-
ing BLEU7 as a similarity measure, both MBR

6We ensured that k-best lists contained no duplicates.
7To prevent zero similarity scores, we also used a standard

smoothed version of BLEU that added 1 to the numerator and
denominator of all n-gram precisions. Performance results

Arabic-English
Expectations Similarity Hiero SBMT
Baseline - 52.0 53.9
104-best BLEU 52.2 53.9
Forest BLEU 53.0 54.0
Forest Linear G 52.3 54.0

Chinese-English
Expectations Similarity Hiero SBMT
Baseline - 37.8 40.6
104-best BLEU 38.0 40.7
Forest BLEU 38.2 40.8
Forest Linear G 38.1 40.8

Table 2: Translation performance improves when computing
expected sentences from translation forests rather than 104-
best lists, which in turn improve over Viterbi translations. We
also contrasted forest-based consensus decoding with BLEU
and its linear approximation, G. Both similarity measures are
effective, but BLEU outperforms G.

and our variant provided consistent small gains of
0.0–0.2 BLEU. Algorithms 1 and 3 gave the same
small BLEU improvements in each data condition
up to three significant figures.

The two algorithms differed greatly in speed,
as shown in Table 1. For Algorithm 1, we ter-
minated the computation of E[BLEU(e; e′)] for
each e whenever e could not become the maxi-
mal hypothesis. MBR speed depended on how
often this shortcut applied, which varied by lan-
guage and system. Despite this optimization, our
new Algorithm 3 was an average of 80 times faster
across systems and language pairs.

4.5 Results for Forest-Based Decoding

Table 2 contrasts Algorithm 3 over 104-best lists
and forests. Computing E[φ(e′)] from a transla-
tion forest rather than a 104-best list improved Hi-
ero by an additional 0.8 BLEU (1.0 over the base-
line). Forest-based expectations always outper-
formed k-best lists, but curiously the magnitude
of benefit was not consistent across systems. We
believe the difference is in part due to more ag-
gressive forest pruning within the SBMT decoder.

For forest-based decoding, we compared two
similarity measures: BLEU and its linear Taylor
approximation G from section 3.3.8 Table 2 shows

were identical to standard BLEU.
8We did not estimate the θ parameters of G ourselves;

instead we used the parameters listed in Tromble et al.
(2008), which were also estimated for GALE data. We
also approximated E[δ(e′, t)] with a clipped expected count
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Choose a distribution P over a set of translations E

MBR over Sentence Pairs

Compute pairwise similarity Compute expectations

Max expected similarity Max feature similarity

3/3 1/4 2/5

1/3 4/4 0/5

2/3 0/4 5/5

MBR over Features

E [δ(efficient)] = 0.6
E [δ(forest)] = 0.7
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P (e1|f) = 0.3 ; e1 = efficient forest decoding
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P (e3|f) = 0.4 ; e3 = A fish ain’t forest decoding
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Figure 3: N -grams with high expected count are more likely
to appear in the reference translation that n-grams in the
translation model’s Viterbi translation, e∗. Above, we com-
pare the precision, relative to reference translations, of sets of
n-grams chosen in two ways. The left bar is the precision of
the n-grams in e∗. The right bar is the precision of n-grams
with E[c(e, t)] > ρ. To justify this comparison, we chose ρ
so that both methods of choosing n-grams gave the same n-
gram recall: the fraction of n-grams in reference translations
that also appeared in e∗ or had E[c(e, t)] > ρ.

that both similarities were effective, but BLEU
outperformed its linear approximation.

4.6 Analysis

Forest-based consensus decoding leverages infor-
mation about the correct translation from the en-
tire forest. In particular, consensus decoding
with BLEU chooses translations using n-gram
count expectations E[c(e, t)]. Improvements in
translation quality should therefore be directly at-
tributable to information in these expected counts.

We endeavored to test the hypothesis that ex-
pected n-gram counts under the forest distribution
carry more predictive information than the base-
line Viterbi derivation e∗, which is the mode of the
distribution. To this end, we first tested the pre-
dictive accuracy of the n-grams proposed by e∗:
the fraction of the n-grams in e∗ that appear in a
reference translation. We compared this n-gram
precision to a similar measure of predictive accu-
racy for expected n-gram counts: the fraction of
the n-grams t with E[c(e, t)] ≥ ρ that appear in
a reference. To make these two precisions com-
parable, we chose ρ such that the recall of ref-
erence n-grams was equal. Figure 3 shows that
computing n-gram expectations—which sum over
translations—improves the model’s ability to pre-
dict which n-grams will appear in the reference.

min(1, E[c(e′, t)]). Assuming an n-gram appears at most
once per sentence, these expressions are equivalent, and this
assumption holds for most n-grams.

Reference translation:
Mubarak said that he received a telephone call from
Sharon in which he said he was “ready (to resume ne-
gotiations) but the Palestinians are hesitant.”

Baseline translation:
Mubarak said he had received a telephone call from
Sharon told him he was ready to resume talks with the
Palestinians.

Fast forest-based consensus translation:
Mubarak said that he had received a telephone call from
Sharon told him that he “was ready to resume the nego-
tiations) , but the Palestinians are hesitant.”

Figure 4: Three translations of an example Arabic sentence:
its human-generated reference, the translation with the high-
est model score under Hiero (Viterbi), and the translation
chosen by forest-based consensus decoding. The consensus
translation reconstructs content lost in the Viterbi translation.

We attribute gains from fast consensus decoding
to this increased predictive accuracy.

Examining the translations chosen by fast con-
sensus decoding, we found that gains in BLEU of-
ten arose from improved lexical choice. However,
in our hierarchical systems, consensus decoding
did occasionally trigger large reordering. We also
found examples where the translation quality im-
proved by recovering content that was missing
from the baseline translation, as in Figure 4.

5 Conclusion

We have demonstrated substantial speed increases
in k-best consensus decoding through a new pro-
cedure inspired by MBR under linear similarity
measures. To further improve this approach, we
computed expected n-gram counts from transla-
tion forests instead of k-best lists. Fast consensus
decoding using forest-based n-gram expectations
and BLEU as a similarity measure yielded con-
sistent improvements over MBR with k-best lists,
yet required only simple computations that scale
linearly with the size of the translation forest.

The space of similarity measures is large and
relatively unexplored, and the feature expectations
that can be computed from forests extend beyond
n-gram counts. Therefore, future work may show
additional benefits from fast consensus decoding.
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