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Abstract

Current tree-to-tree models suffer from
parsing errors as they usually use only 1-
best parses for rule extraction and decod-
ing. We instead propose a forest-based

tree-to-tree model that uses packed forests.

The model is based on a probabilis-
tic synchronous tree substitution gram-
mar (STSG), which can be learned from
aligned forest pairs automatically. The de-
coder finds ways of decomposing trees in
the source forest into elementary trees us-
ing the source projection of STSG while
building target forest in parallel. Compa-
rable to the state-of-the-art phrase-based
system Moses, using packed forests in
tree-to-tree translation results in a signif-
icant absolute improvement of 3.6 BLEU
points over using 1-best trees.

Introduction

558

We believe that tree-to-tree models face two
major challenges. First, tree-to-tree models are
more vulnerable to parsing errors. Obtaining
syntactic annotations in quantity usually entails
running automatic parsers on a parallel corpus.
As the amount and domain of the data used to
train parsers are relatively limited, parsers will
inevitably output ill-formed trees when handling
real-world text. Guided by such noisy syntactic in-
formation, syntax-based models that relylebest
parses are prone to learn noisy translation rules
in training phase and produce degenerate trans-
lations in decoding phase (Quirk and Corston-
Oliver, 2006). This situation aggravates for tree-
to-tree models that use syntax on both sides.

Second, tree-to-tree rules provide poorer rule
coverage. As a tree-to-tree rule requires that there
must be trees on both sides, tree-to-tree mod-
els lose a larger amount of linguistically unmoti-
vated mappings. Studies reveal that the absence of
such non-syntactic mappings will impair transla-

Approaches to syntax-based statistical machinéon quality dramatically (Marcu et al., 2006; Liu
translation make use of parallel data with syntacticet al., 2007; DeNeefe et al., 2007; Zhang et al.,
annotations, either in the form of phrase structure2008).

trees or dependency trees. They can be roughly Compactly encoding exponentially many
divided into three categoriestring-to-tree mod-
els (e.g., (Galley et al., 2006; Marcu et al., 2006fit for alleviating the above two problems (Mi et
Shen et al., 2008))iree-to-string models (e.g.,
(Liu et al., 2006; Huang et al., 2006)), atrde-to-
tree models (e.g., (Eisner, 2003; Ding and Palmer]earn STSG rules from aligned forest pairs, we in-
2005; Cowan et al., 2006; Zhang et al., 2008))troduce a series of notions for identifying minimal
By modeling the syntax of both source and tar-tree-to-tree rules. Our decoder first converts the
get languages, tree-to-tree approaches have the pgurce forest to a translation forest and then finds
tential benefit of providing rules linguistically bet- the best derivation that has the source yield of one
ter motivated. However, while string-to-tree andsource tree in the forest. Comparable to Moses,
tree-to-string models demonstrate promising reour forest-based tree-to-tree model achieves an
sults in empirical evaluations, tree-to-tree modelsabsolute improvement of 3.6 BLEU points over
have still been underachieving.

parses,packed forests prove to be an excellent

al., 2008; Mi and Huang, 2008). In this paper,
we propose a forest-based tree-to-tree model. To

conventional tree-based model.
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Formally, a packed parse forest is a compact
representation of all the derivations (i.e., parse
trees) for a given sentence under a context-free
grammar. Huang and Chiang (2005) define a for-
est as a tupléV, £, v, R), whereV is a finite set
of nodes,F is a finite set of hyperedges,c V is
‘ a distinguished node that denotes the goal item in
N’ cg'%pll N2 v parsing, andR is the set of weights. For a given
busi Th  shalong juing Db hm‘mn sentenceav;,; = wi ... w;, €ach node € Visin

‘ S~ the form of X ;, which denotes the recognition of
<l non-terminalX spanning the substring from posi-
tions i throughyj (that is,w; 1 ... w;). Each hy-
peredgee € E is atriplee = (T'(e), h(e), f(e)),

T8 NN9  N20  NNp?! whereh(e) € V isits headT'(e) € V* is a vector
of tail nodes, andf(e) is a weight function from
Np2! RIT@) toR.

Our forest-based tree-to-tree model is based on
a probabilistic STSG (Eisner, 2003). Formally,
an STSG can be defined as a quintugle =
(Fs, Ft, Ss, St, P), where

1
1N

1

\

Bush hefd a talk “;ith S};éron

NNPl6 yBD!Y D
Bg22

Np25 pp26

e F, andF; are the source and target alphabets,
respectively,

Figure 1: An aligned packed forest pair. Each e S, andS; are the source and target start sym-
node is assigned a unique identity for reference.  bols, and

The solid lines denote hyperedges and the dashed

lines denote word alignments. Shaded nodes are e P is a set of production rules. A ruleis a

frontier nodes. triple (¢, t;, ~) that describes the correspon-
dence~ between a source trégand a target
treet;.

2 Model '

, . , , To integrate packed forests into tree-to-tree
Figurel shows an aligned forest pair for a Chinese, .
translation, we model the process of synchronous

sentence and an English sentence. The solid lines

denote hyperedges and the dashed lines denote %e:z?tlo; (;LE;;E;%?: fngeSET;Gar}(;ri::;gr;.et forest
word alignments between the two forests. Each t gap g '
node is assigned a unique identity for reference. _

Each hyperedge is associated with a probability, PriFuF) = >, ), Pr(TwT)

. L . . TseFs TieFy
which we omit in Figurel for clarity. In a forest,

anode usually has multiple incoming hyperedges. - Z Z Z Pr(d)
We usel N (v) to denote the set of incoming hy- Tseks TiekrdeD
peredges of node. For example, the source node = Z Z Z HP(T) 1)
“IP1” has following two incoming hyperedge$: Tsefs TrefrdeDred
e = <(NP_B67VP3)’ P! whereT, is a source treé;} i§ a target treeD is
ey = ((NPz, VP-B5), IP1> _the set of_all possible der_lva'gons that transfdfn
into T3, d is one such derivation, ands a tree-to-

!As there are both source and target forests, it might betree rule.

confusing by just using a span to refer to a node. In addition, Table1 shows a derivation of the forest pair in
some nodes will often have the same labels and spans. Thergigure1. A derivation is a sequence of tree-to-tree
fore, it is more convenient to use an identity for referringt | Note that t t i .
node. The notation “IP’ denotes the node that has a label of 'U/€S. NOte that we use 1o represent a nontermi-
“IP” and has an identity of “1”. nal.
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(1) IP@1:NP-B,z2:VP) — S(z1:NP,z2:VP)
(2) NP-B{1:NR) — NP(z1:NNP)

(3) NR(bushi)— NNP(Bush)

(4) VP(1:PP,VP-B(2:VV, AS(le), z3:NP-B)) — VP(z2:VBD, NP(DT(a),z3:NP),z1:PP)
(5) PP1:P,z2:NP-B) — PP{1:IN, z2:NP)
(6) P(yu)— IN(with)

(7)  NP-B{@1:NR) — NP(z1:NP)

(8) NR(shalong)~ NNP(Sharon)

(90 VV(juxing) — VBD(held)

(10) NP-B{r1:NN) — NP(x1:NN)

(11)  NN(huitan)— NN(talk)

Table 1: A minimal derivation of the forest pair in Figure 1.

span cspan complement | consistent [ frontier | counterparts

id . . .

T 16 | 1246 T T % dence between the nodes in forest pairs, (2) iden-
21 58| e 24 9 9 -8 tifying minimum rules, (3) inferring composed

M I B T2 : : 25,26 rules, and (4) estimating rule probabilities.

6 1-1 1 2,4-6 1 1 16, 22

sl e e : : o 3.1 Identifying Correspondence Between

9 1-1 1 2,4-6 1 1 16, 22

10 2-2 5 1-2,4,6 1 1 20 NOdes

11 2-2 5 1-2,4,6 1 1 20 . .

12 | 33 6 12,45 ; ; 21,24 To learn tree-to-tree rules, we need to find aligned
14 | 55 1-2,4-6 1 0 tree pairs in the forest pairs. To do this, the start-
15 6-6 4 1-2,5-6 1 1 19,23 . . . . .

6 | 11 1 24,6 T T 59 ing point is to identify the correspondence be-
17 2-2 4 1-3,6 1 1 13 .

18| 33 14,6 1 0 tween nodes. We propose a number of attributes
| 58 | 5 | 1346 : h 60 for nodes, most of which derive from GHKM, to
21 6-6 3 1-2,4,6 1 1 7,12 . . e .

2 | 11 1 24,6 1 1 6.9 facilitate the identification.

23 | 34 6 1-4 1 1 8,15 Lo . . .

240 86 3 12,46 L L n12 Definition 1 Given a nodev, its span o(v) is an

26 | 56 | 23 146 1 1 4 index set of the words it covers.

27 3-6 2-3,6 1,4 0 0

o e | e 1 : : 3 For example, the span of the source node

“VP-B®" is {4,5,6} as it covers three source
Table 2: Node attributes of the example forest painyorgs: juxing’, “le’, and “huitan”. For conve-
nience, we us¢4-6} to denotes a contiguous span
{4,5,6}.

Definition 2 Given a nodev, its corresponding
Given an aligned forest pair as shown in Figurespan ~(v) is the index set of aligned words on an-
1, how to extract all valid tree-to-tree rules thatother side.

explain its synchronous generation process? BY For example, the corresponding span of the

constructing a theory that gives formal semansoyrce node “VP-B' is {2,4}, corresponding to
tics to word alignments, Galley et al. (2004) the target wordsHeld” and “talk’.

give .prlnC|pIed answers to these.questlons for ®XDefinition 3 Given a node, its complement span
tracting tree-to-string rules. Their GHKM proce-

d q i d all ; d(v) is the union of corresponding spans of nodes
ure araws connections among word allgnMentSy, -+ are neither antecedents nor descendants of
derivations, and rules. They first identify the

tree nodes that subsume tree-string pairs consis- FO €xample, the complement span of the source
tent with word alignments and then extract ruleghode "VP-B"is {17 5-6}, corresponding to target
from these nodes. By this means, GHKM provegVords ‘Bush’, “with”, and “Sharon’.
to be able to extract all valid tree-to-string rulesDefinition 4 A nodev is said to beconsistent with
from training instances. Although originally de- alignment if and only itlosure(y(v))Né(v) = 0.
veloped for the tree-to-string case, it is possible to For example, the closure of the corresponding
extend GHKM to extract all valid tree-to-tree rules span of the source node “VPBis {2-4} and
from aligned packed forests. its complement span i§l, 5-6}. As the intersec-

In this section, we introduce our tree-to-tree ruletion of the closure and the complement span is an
extraction method adapted from GHKM, which empty set, the source node “VP-Hs consistent
involves four steps: (1) identifying the correspon-with the alignment.

3 Rule Extraction
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Figure 2: (a) A frontier tree; (b) a minimal frontier tree) @ frontier tree pair; (d) a minimal frontier
tree pair. All trees are taken from the example forest pakigure 1. Shaded nodes are frontier nodes.
Each node is assigned an identity for reference.

Definition 5 A nodew is said to be drontier node 3.2 Identifying Minimum Rules

if and only if: Given the frontier nodes, the next step is to iden-

tify aligned tree pairs, from which tree-to-tree
rules derive. Following Galley et al. (2006), we
distinguish betweeminimal andcomposed rules.

As a composed rule can be decomposed as a se-
guence of minimal rules, we are particularly inter-

o closure(y(v')) C o(v); ested in how to extract minimal rules. Also, we in-
troduce a number of notions to help identify mini-
mal rules.

1. v is consistent;

2. There exists at least one consistent ngdm
another side satisfying:

e closure(y(v)) C a(v').

v’ is said to be @ounterpart of v. We user(v) to  Definition 6 A frontier treeis a subtree in a forest
denote the set of counterparts:of satisfying:

A frontier node often has multiple counter- 1. |tsroot is a frontier node:
parts on another side due to the usage of unary
rules in parsers. For examp|e, the source node 2. If the tree contains only one node, it must be
“NP-BS” has two counterparts on the target side: @ lexicalized frontier node;
“NNP'6” and “NP*2”. Conversely, the target node
“NNP'6” also has two counterparts counterparts
on the source side: “NR and “NP-B°".

The node attributes of the example forest pair

are listed in Table. We use identities to refer to For example, Figure 2(a) shows a frontier tree

nodes. “cspan” denotes corresponding span ang which all nodes are frontier nodes.
“complement” denotes complement span. In Fig-

ure 1, there arel? frontier nodes (highlighted by Definition 7 A minimal frontier treeis a frontier

. : . tree such that all nodes other than the root and
shading) on the source side atifrontier nodes caves are non-frontier nodes
on the target side. Note that while a consisten{ '
node is equal to a frontier node in GHKM, this is  For example, Figure 2(b) shows a minimal fron-
not the case in our method because we have a tréeer tree.
on the target side. Frontier nod.es play a criticalpefinition 8 A frontier tree pair
_role_ in forest-based rule extraction becauge the)(ts,tt,~> satisfying:
indicate where to cut the forest pairs to obtain tree-
to-tree rules. 1. t, is a source frontier tree;

3. If the tree contains more than one nodes,
its leaves are either non-lexicalized frontier
nodes or lexicalized non-frontier nodes.

is a triple
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2. t, is a target frontier tree; procedure FIND TREEPAIRS(F5, Fy, v)

P=0
7, — FINDTREEY Fy, v)
T — 0

1:
2
3. The root oft, is a counterpart of that df; 3
4:
5: for v € 7(v) do
6
7
8
9

4. There is a one-to-one correspondencée-

tween the frontier leaves of andt;. T, — T,0 FINDTREESF}, v')

end for

For example, Figure 2(c) shows a frontier tree
for (ts,t;) € T x T, do

pair.
_ . ) ) i : if t, ~ t; then
Definition 9 A frontier tree pair(ts, t;, ~) is said 10: PP U{{ts,tr,~)}

to be asubgraph of another frontier tree pair

’ i 11: end if

(ts', t,~") if and only if: 12- end for

1. root(ts) = root(ts); 13 for (is,t,~) € P do

14: if 3t t, ~) e P (¢t t/,~) C
2. root(ty) = root(t); (ts,ty, ~) then
_ 15: P —P —{{ts,tr,~)}
/.
3. ts is a subgraph of,’; 16: end if
4. t, is a subgraph of;’. 17: end for

18: end procedure
For example, the frontier tree pair shown in Fig-
ure 2(d) is a subgraph of that in Figure 2(c). Figure 3: Algorithm for identifying minimal fron-

Definition 10 A frontier tree pair is said to be tier tree pairs.

minimal if and only if it is not a subgraph of any
other frontier tree pair that shares with the samérontier node “PP” has two counterparts on the
root. target side: “NP®” and “PP*%”. There are four

For example, Figure 2(d) shows a minimal fron-target frontier trees rooted at the two nodes:
tier tree pair. 90 .
Our goal is to find the minimal frontier tree NP’ (IN )(NP2 )
pairs, which correspond to minimal tree-to-tree NP2 (IN2°)(NP*(NNP*)))
INZ0)(NP?%))

(
(
rules. For example, the tree pair shown in Figure (PP( )(
2(d) denotes a minimal rule as follows: (PPS(IN20) (NP4 (NNP?L)))

PP1:Prs:NP-B) = PPE:IN, 25:NP) Therefore, there ar® x 4 = 8 pairs of trees.
We examine each tree pd(ts,t;) (line 8) to see
minimal frontier tree pairs. The input is a sourceWhether it is a frontier tree pair (line 9) and then
forest F, a target forest}, and a source frontier UPdateP (line 10). In the above example, all the
nodev (line 1). We use a seP to store collected €9Nt tree pairs are frontier tree pairs. _
minimal frontier tree pairs (line 2). We first call  Finally, we keep only minimal frontier tree pairs

the procedure IRDTREES F}, v) to identify aset 1N 7 (linés 13-15). As a result, we obtain the
of frontier trees rooted atin F, (line 3). For ex- following two minimal frontier tree pairs for the

ample, for the source frontier node “Pn Figure ~ Source frontier node “PP.
1, we obtain two frontier trees:

Figure 3 shows the algorithm for identifying

(PP(P)(NP-BT)) « (NP®(IN29)(NP*))
(PP (P)(NP-B")) (PP (P')(NP-B)) « (PP (IN?0)(NP*))
(PPY(P'1)(NP-B"(NR'?)))
To maintain a reasonable rule table size, we re-
Then, we try to find the set of corresponding strict that the number of nodes in a tree of an STSG
target frontier trees (i.e7;). For each counter- ruleis no greater tham, which we refer to amax-
partv’ of v (line 5), we call the procedurel®-  imal node count.
TREEY F}, ') to identify a set of frontier trees It seems more efficient to let the procedure
rooted aw’ in F; (line 6). For example, the source FINDTREEY F, v) to search for minimal frontier
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trees rather than frontier trees. However, a min- We extend the model in Eg. 1 to a log-linear
imal frontier tree pair is not necessarily a pair ofmodel (Och and Ney, 2002) that uses the follow-
minimal frontier trees. On our Chinese-Englishing eight features: relative frequencies in two di-
corpus, we find that 38% of minimal frontier tree rections, lexical weights in two directions, num-
pairs are not pairs of minimal frontier trees. As aber of rules used, language model score, number
result, we have to first collect all frontier tree pairsof target words produced, and the probability of

and then decide on the minimal ones. matched source tree (Mi et al., 2008).
Table 1 shows some minimal rules extracted Given a source parse forest and an STSG gram-
from the forest pair shown in Figure 1. mar GG, we first apply the conversion algorithm
_ proposed by Mi et al. (2008) to producdrans-
3.3 Inferring Composed Rules lation forest. The translation forest has a simi-

After minimal rules are learned, composed ruledar hypergraph structure. While the nodes are the
can be obtained by composing two or more min-same as those of the parse forest, each hyperedge
imal rules. For example, the composition of theis associated with an STSG rule. Then, the de-
second rule and the third rule in Tahlgproduces coder runs on the translation forest. We use the
a new rule: cube pruning method (Chiang, 2007) to approxi-
NP-B(NR@halong)) — NP(NNPEharon)) mately intersect the tra_nslation forest \(vith the Iaq—
guage model. Traversing the translation forest in
While minimal rules derive from minimal fron- 5 bottom-up order, the decoder tries to build tar-
tier tree pairs, composed rules correspond to NOMyet parses at each node. After the first pass, we
minimal frontier tree pairs. use lazy Algorithm3 (Huang and Chiang, 2005)
to generaté:-best translations for minimum error

3.4 Estimating Rule Probabilities L
rate training.

We follow Mi and Huang (2008) to estimate the
fractional count of a rule extracted from an aligned5 Experiments
forest pair. Intuitively, the relative frequency of a
subtree that occurs in a forest is the sum of all th
trees that traverse the subtree divided by the sutwe evaluated our model on Chinese-to-English
of all trees in the forest. Instead of enumeratingtranslation. The training corpus contains 840K
all trees explicitly and computing the sum of treeChinese words and 950K English words. A tri-
probabilities, we resort to inside and outside prob-gram language model was trained on the English
abilities for efficient calculation: sentences of the training corpus. We used the 2002
NIST MT Evaluation test set as our development
e(r) = 2 (s) x root(ts)) X Ilveteavest.) V) set, and used the 2005 NIST MT Evaluation test

-1 Data Preparation

B(vs) set as our test set. We evaluated the translation
Xp(tt) x a(root(tt)) X [Tyeieaves(ts) B(v)  quality using the BLEU metric, as calculated by
B(vy) mteval-v11b.pl with its default setting except that
we usedcase-insensitive matching ofn-grams.
wherec(r) is the fractional count of arule, is the To obtain packed forests, we used the Chinese

source tree im, ¢, is the target tree im, root(-) @  parser (Xiong et al., 2005) modified by Haitao
function that gets tree rodtzaves(-) is a function  \jj and the English parser (Charniak and Johnson,
that gets tree leaves, andv) and(v) are outside  2005) modified by Liang Huang to produce en-
and inside probabilities, respectively. tire parse forests. Then, we ran the Python scripts
(Huang, 2008) provided by Liang Huang to out-
put packed forests. To prune the packed forests,

Given a source packed foreft, our decoder finds Huang (2008) uses inside and outside probabili-

the target y|e|d of the Sing|e best derivatidnhat ties to Compute the distance of the best derivation
has source yield of}(d) € Fi: that traverses a hyperedge away from the glob-

ally best derivation. A hyperedge will be pruned
away if the difference is greater than a threshold
p. Nodes with all incoming hyperedges pruned
are also pruned. The greater the thresholid,

4 Decoding

é= e( argmax p(d)) (2)

d s.t. Ts(d)eFs
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p | avgtrees | # of rules BLEU p | extraction| decoding
0 1 73,614 | 0.2021 £ 0.0089 0 1.26 6.76
2 238.94 105,214 | 0.2165 + 0.0081 2 2.35 8.52
5 | 5.78 x 10° | 347,526 | 0.2336 & 0.0078 5 6.34 14.87
8 | 6.59 x 107 | 573,738 | 0.2373 £ 0.0082 8 8.51 19.78
10 | 1.05 x 10% | 743,211 | 0.2385 + 0.0084 10 10.21 25.81

Table 3: Comparison of BLEU scores for tree-Table 4. Comparison of rule extraction time (sec-
based and forest-based tree-to-tree models. onds/1000 sentence pairs) and decoding time (sec-
ond/sentence)

0.10 T T T T T T T T

0.09 | - Moreover, the more trees are encoded in packed

forests, the more rules are made available to
forest-based models. The number of rules when
1 p = 10 was almostl0 times ofp = 0. With the
increase of the number of rules used, the BLEU
score increased accordingly. This suggests that
% 4  packed forests enable tree-to-tree model to learn
more useful rules on the training data. However,
when a pack forest encodes ovidvl parses per
sentence, the improvements are less significant,
which echoes the results in (Mi et al., 2008).
Figure 4: Coverage of lexicalized STSG rules on The forest-based tree-to-tree model outper-
bilingual phrases. forms the original model that uses 1-best trees
dramatically. The absolute improvement &6
BLEU points (from0.2021 to 0.2385) is statis-
tically significant atp < 0.01 using thesign-

test as described by Collins et al. (2005), with
700(+1), 360(-1), and 15(0). We also ran Moses
(Koehn et al., 2007) with its default setting us-
ing the same data and obtained a BLEU score of
0.2366, slightly lower than our best result (i.e.,

Table 3 shows the BLEU scores of tree-based an?}ilziii)t Butthis difference is not statistically sig-

forest-based tree-to-tree models achieved on the
test set over different pruning thresholdsis the
threshold for pruning packed forests, “avg trees
is the average number of trees encoded in one folFigure4 demonstrates the effect of pruning thresh-
est on the test set, and “# of rules” is the numbenld and maximal node count on rule coverage.
of STSG rules used on the test set. We restrict thalve extracted phrase pairs from the training data
both source and target trees in a tree-to-tree rulto investigate how many phrase pairs can be cap-
can contain at most0 nodes (i.e., the maximal tured by lexicalized tree-to-tree rules that con-
node countn = 10). The95% confidence inter- tain only terminals. We set the maximal length
vals were computed using Zhang ’s significanceof phrase pairs td0. For tree-based tree-to-tree
tester (Zhang et al., 2004). model, the coverage was bel@i even the max-
We chose five different pruning thresholds inimal node count was set td). This suggests that
our experimentsp = 0,2,5,8,10. The forests conventional tree-to-tree models lose 0¥%
pruned byp = 0 contained only 1-best tree per linguistically unmotivated mappings due to hard
sentence. With the increaseygfthe average num- syntactic constraints. The absence of such non-
ber of trees encoded in one forest rose dramatisyntactic mappings prevents tree-based tree-to-

T
u
-8
_-X

0.08 -

0.07 -

coverage

0.06 -

0.05 |

0.04

0 1 2 3 4 5 6 7 8 9 10 11
maximal node count

the more parses are encoded in a packed forest.

We obtained word alignments of the training
data by first running GIZA++ (Och and Ney, 2003)
and then applying the refinement rule “grow-diag-
final-and” (Koehn et al., 2003).

5.2 Forests Vs. 1-best Trees

.3 Effect on Rule Coverage

cally. Whenp was set td 0, there were ovet00M
parses encoded in one forest on average.

tree models from achieving comparable results to
phrase-based models. With more parses included

564



0.20 the new training corpus contained about 260K sen-

0.19 | - tence pairs with 7.39M Chinese words and 9.41M
0.18 | . English words. We set the forest pruning threshold
0171 1  p = 5. Moses obtained a BLEU score of 0.3043
0.16 - s .
2 015k ] and our forest-based tree-to-tree system achieved
;1: 0.14 - . aBLEU score of 0.3059. The difference is still not
0.13 - s significant statistically.
0.12 -
0.11 | i
0.10 - . 6 Related Work
009 | | | | | | | | | |

01 2 3 4 5 6 7 8 9 10 11

In machine translation, the concept of packed for-
maximal node count

est is first used by Huang and Chiang (2007) to
characterize the search space of decoding with lan-
Figure 5: Effect of maximal node count on BLEU guage models. The first direct use of packed for-
Scores. est is proposed by Mi et al. (2008). They replace
1-best trees with packed forests both in training
in packed forests, the rule coverage increased a@nd decoding and show superior translation qual-
cordingly. Whenp = 10 andn = 10, the cov- ity over the state-of-the-art hierarchical phrase-
erage wa9).7%, higher than that op = 0. As based system. We follow the same direction and
a result, packed forests enable tree-to-tree modefPPly packed forests to tree-to-tree translation.
to capture more useful source-target mappings and Zhang et al. (2008) present a tree-to-tree model

therefore improve translation quality. that uses STSG. To capture non-syntactic phrases,
o _ _ they apply tree-sequence rules (Liu et al., 2007)
5.4 Training and Decoding Time to tree-to-tree models. Their extraction algorithm

Table 4 gives the rule extraction time (Sec_firstidentifies initial rules and then obtains abstract
onds/1000 sentence pairs) and decoding time (segules. While this method works for 1-best tree

ond/sentence) with varying pruning thresholdsPairs, it cannot be applied to packed forest pairs
We found that the extraction time grew faster tharP€cause itis impractical to enumerate all tree pairs
decoding time with the increase pf One possi- ©OVer a phrase pair.

ble reason is that the number of frontier tree pairs While Galley (2004) describes extracting tree-

(see Figure 3) rose dramatically when more parse®-string rules fromi-best trees, Mi and Huang et

were included in packed forests. al. (2008) go further by proposing a method for
extracting tree-to-string rules from aligned forest-
5.5 Effect of Maximal Node Count string pairs. We follow their work and focus on

Figure5 shows the effect of maximal node count identifying tree-tree pairs in a forest pair, which is
on BLEU scores. With the increase of maximalmore difficult than the tree-to-string case.

node count, the BLEU score increased dramati-

cally. This implies that allowing tree-to-tree rules 7 Conclusion

to capture larger contexts will strengthen the ex-

pressive power of tree-to-tree model. We have shown how to improve tree-to-tree trans-
lation with packed forests, which compactly en-
5.6 Results on Larger Data code exponentially many parses. To learn STSG

We also conducted an experiment on larger dat&ules from aligned forest pairs, we first identify

to further examine the effectiveness of our ap-minimal rules and then get composed rules. The
proach_ We concatenated the small corpus WgeCOder finds the best derivation that have the
used above and the FBIS corpus. After remov-sSource y|9|d of one source tree in the forest. Ex-

ing the sentences that we failed to obtain forestsPeriments show that using packed forests in tree-
to-tree translation results in dramatic improve-

*Note that even we used packed forests, the rule coveraggents over using-best trees. Our system also
was still very low. One reason is that we set the maximal

phrase length to 10 words, while an STSG rule with 10 node@cmeves comparable performance with the state-
in each tree usually cannot subsume 10 words. of-the-art phrase-based system Moses.
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