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Abstract

Most of previous approaches to automatic
prosodic event detection are based on su-
pervised learning, relying on the avail-
ability of a corpus that is annotated with
the prosodic labels of interest in order to
train the classification models. However,
creating such resources is an expensive
and time-consuming task. In this paper,
we exploit semi-supervised learning with
the co-training algorithm for automatic de-
tection of coarse level representation of
prosodic events such as pitch accents, in-
tonational phrase boundaries, and break
indices. We propose a confidence-based
method to assign labels to unlabeled data
and demonstrate improved results using
this method compared to the widely used
agreement-based method. In addition, we
examine various informative sample selec-
tion methods. In our experiments on the
Boston University radio news corpus, us-
ing only a small amount of the labeled data
as the initial training set, our proposed la-
beling method combined with most confi-
dence sample selection can effectively use
unlabeled data to improve performance
and finally reach performance closer to
that of the supervised method using all the
training data.

I ntroduction

insertion of pause. In spoken utterances, speakers
use prosody to convey emphasis, intent, attitude,
and emotion. These are important cues to aid the
listener for interpretation of speech. Prosody also
plays an important role in automatic spoken lan-
guage processing tasks, such as speech act detec-
tion and natural speech synthesis, because it in-
cludes aspect of higher level information that is
not completely revealed by segmental acoustics or
lexical information.

To represent prosodic events for the categorical
annotation schemes, one of the most popular label-
ing schemes is the Tones and Break Indices (ToBl)
framework (Silverman et al., 1992). The most im-
portant prosodic phenomena captured within this
framework include pitch accents (or prominence)
and prosodic phrase boundaries. Within the ToBI
framework, prosodic phrasing refers to the per-
ceived grouping of words in an utterance, and
accent refers to the greater perceived strength or
emphasis of some syllables in a phrase. Cor-
pora annotated with prosody information can be
used for speech analysis and to learn the relation-
ship between prosodic events and lexical, syntac-
tic and semantic structure of the utterance. How-
ever, it is very expensive and time-consuming to
perform prosody labeling manually. Therefore,
automatic labeling of prosodic events is an attrac-
tive alternative that has received attention over the
past decades. In addition, automatically detecting
prosodic events also benefits many other speech
understanding tasks.

Many previous efforts on prosodic event de-

Prosody represents suprasegmental information itection were supervised learning approaches that
speech since it normally extends over more thamsed acoustic, lexical, and syntactic cues. How-
one phoneme segment. Prosodic phenomena maever, the major drawback with these methods is
ifest themselves in speech in different ways, in-that they require a hand-labeled training corpus

cluding changes in relative intensity to emphasizeand depend on specific corpus used for training.
specific words or syllables, variations of the fun-Limited research has been conducted using unsu-
damental frequency range and contour, and subtlpervised and semi-supervised methods. In this pa-
timing variations, such as syllable lengthening andger, we exploit semi-supervised learning with the
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Figure 1: An example of ToBIl annotation on a sentetidennessy will be a hard act to follow.”

co-training algorithm (Blum and Mitchell, 1998) and accent (or prominence). Prosodic phrasing
for automatic prosodic event labeling. Two dif- refers to the perceived grouping of words in an ut-
ferent views according to acoustic and lexical-terance, and prominence refers to the greater per-
syntactic knowledge sources are used in the coeeived strength or emphasis of some syllables in
training framework. We propose a confidence-a phrase. In the ToBI framework, the pitch accent
based method to assign labels to unlabeled datanes (*) are marked at every accented syllable and
in training iterations and evaluate its performancehave five types according to pitch contour; H*, L*,
combined with different informative sample se-L*+H, L+H*, H+!H*. The phrase boundary tones
lection methods. Our experiments on the Bostorare marked at every intermediate phrase boundary
Radio News corpus show that the use of unla{L-, H-) or intonational phrase boundary (L-L%,
beled data can lead to significant improvement-H%, H-H%, H-L%) at certain word boundaries.
of prosodic event detection compared to usingThere are also the break indices at every word
the original small training set, and that the semi-boundary which range in value from 0 through
supervised learning result is comparable with su4, where 4 means intonational phrase boundary, 3
pervised learning with similar amount of training means intermediate phrase boundary, and a value
data. under 3 means phrase-medial word boundary. Fig-
The remainder of this paper is organized as fol-ure 1 shows a ToBI annotation example for a sen-
lows. In the next section, we provide details oftenceHennessy will be a hard act to follow.The
the corpus and the prosodic event detection taskérst and second tiers show the orthographic infor-
Section 3 reviews previous work briefly. In Sec-mation such as words and syllables of the utter-
tion 4, we describe the classification method forance. The third tier shows the accents and phrase
prosodic event detection, including the acoustidooundary tones. The accenttone is located on each
and syntactic prosodic models, and the featuregccented syllable, such as the first syllable of word
used. Section 5 introduces the co-training algo-Hennessy.” The boundary tone is marked on ev-
rithm we used. Section 6 presents our experimentery final syllable if there is a prosodic boundary.
and results. The final section gives a brief sum+or example, there are intermediate phrase bound-

mary along with future directions. aries after wordsHennessy”and“act” , and there
is an intonational phrase boundary after wifal-
2 Corpusand tasks low” The fourth tier shows the break indices at the

_ _ _ end of every word.
In this paper, our experiments were carried out

on the Boston University Radio News Corpus The detailed representation of prosodic events
(BU) (Ostendorf et al., 2003) which consistsin the ToBI framework creates a serious sparse
of broadcast news style read speech and hagata problem for automatic prosody detection.
ToBI-style prosodic annotations for a part of theThis problem can be alleviated by grouping ToBI
data. The corpus is annotated with orthographidabels into coarse categories, such as presence or
transcription, automatically generated and handabsence of pitch accents and phrasal tones. This
corrected part-of-speech (POS) tags, and autalso significantly reduces ambiguity of the task. In
matic phone alignments. this paper, we thus use coarse representation (pres-

The main prosodic events that we are concernednce versus absence) for three prosodic event de-
to detect automatically in this paper are phrasingection tasks:
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e Pitch accents: accent mark (*) means prese¢lustering based unsupervised approach on ac-
ence. cent detection with only acoustic evidence and
reported accuracy of 78.4% for accent detection
¢ Intonational phrase boundaries (IPB): all Ofcompared with 80.1% using supervised learning.
the IPB tones (%) are grouped into one categpe also exploited a semi-supervised approach us-
gory. ing Laplacian SVM classification on a small set of
examples. This approach achieved 81.5%, com-

e Break indices: value 3 and 4 are grouped to- o
; .pared to 84% accuracy for accent detection in a
gether to represent that there is a break. Thl{

. . . ully supervised fashion.
task is equivalent to detecting the presence of . .
. . . ) Since Blum and Mitchell (1998) proposed co-
intermediate and intonational phrase bound- > .. . L
aries training, it has received a lot of attention in the re-

search community. This multi-view setting applies
These three tasks are binary classification probell t0 leaming problems that have a natural way
lems. Similar setup has also been used in othdp divide their features into subsets, each of which

previous work. are sufficient to learn the target concept. Theo-
retical and empirical analysis has been performed
3 Previouswork for the effectiveness of co-training such as Blum

and Mitchell (1998), Goldman and Zhou (2000),
Many previous efforts on prosodic event detecNjgam and Ghani (2000), and Dasuta et al. (2001).
tion used supervised learning approaches. In thfjore recently, researchers have begun to explore
work by Wightman and Ostendorf (1994), binary ays of combing ideas from sample selection with
accent, IPB, and break index were assigned t¢yat of co-training. Steedman et al. (2003) ap-
syllables based on posterior probabilities comyjied co-training method to statistical parsing and
puted from acoustic evidence using decision tree§ptroduced sample selection heuristics. Clark et
combined with a bigram model of accent andy|. (2003) and Wang et al. (2007) applied co-
boundary patterns.  Their method achieved aRraining method in POS tagging using agreement-
accuracy of 84% for accent, 71% for IPB, andpased selection strategy. Co-testing (Muslea et

84% for break index detection at the syllableg| 2000), one of active learning approaches, has
level. Chen et al. (2004) used a Gaussian mixy similar spirit. Like co-training, it consists of
ture model for acoustic-prosodic information andyyg classifiers with redundant views and compares
neural network based syntactic-prosodic modejneir outputs for an unlabeled example. If they
and achieved pitch accent detection accuracy Qfisagree, then the example is considered as a con-

84% and IPB detection accuracy of 90% at thgention point, and therefore a good candidate for
word level. The experiments of Ananthakrish-pnyman labeling.

nan and Narayanan (2008) with neural network |, this paper, we apply co-training algorithm

based acoustic-prosodic model ar:)d a factored Ny, automatic prosodic event detection and propose
gram syntactic model reported 87% accuracy Ofnethods to better select samples to improve semi-

accent and break index detection at the Sy”abl%upervised learning performance for this task.
level. The work of Sridhar et al. (2008) using a

maximum entropy model achieved accentand IPB;  prosodic event detection method
detection accuracies of 86% and 93% on the word
level. We model the prosody detection problem as a clas-
Limited research has been done in prosodigification task. We separately develop acoustic-
detection using unsupervised or semi-supervisegdrosodic and syntactic-prosodic models accord-
methods. Ananthakrishnan and Narayanan (2006ihg to information sources and then combine the
proposed an unsupervised algorithm for prosodi¢wo models. Our previous supervised learning ap-
event detection. This algorithm was based on clusproach (Jeon and Liu, 2009) showed that a com-
tering techniques to make use of acoustic and syrbined model using Neural Network (NN) classifier
tactic cues and achieved accent and IPB detedor acoustic-prosodic evidence and Support Vector
tion accuracies of 77.8% and 88.5%, comparedilachine (SVM) classifier for syntactic-prosodic
with the accuracies of 86.5% and 91.6% with su-evidence performed better than other classifiers.
pervised methods. Similarly, Levow (2006) tried We therefore use NN and SVM in this study. Note
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that our feature extraction is performed at the syl- Among the duration features, the pause dura-
lable level. This is straightforward for accent de-tion and the ratio of vowel durations are only used
tection since stress is defined associated with syto detect IPB and break index, not for accent de-
lables. In the case of IPB and break index detectection.

tion, we use only the features from the final syl- ] ]

lable of a word since those events are associ(';\te%i2 The syntactic-prosodic model

with word boundaries. The prosodic event®* given the sequence of lex-
ical and syntactic evidenceés= {sy,..., s,} can

4.1 Theacoustic-prosodic model be found as following:

The most Iikely sequence of prosodic eveﬁt$: _ P* = argmaxp(P|S)

{p},...,pL} given the sequence of acoustic evi- p

dencesA = {ai,...,a,} can be found as follow- a

ing: tar,..,an} ~ argmax [[p(pilo(si)) ()
. =1

where ¢(s;) is chosen such that it contains lexi-
cal and syntactic evidence from a fixed window of
(1) syllables surrounding location
There is a very strong correlation between the
prosodic events in an utterance and its lexical and
wherea; = {aZ{ ...,at} is the acoustic feature syntactic structure. Previous studies have shown
vector corresponding to a syllable. Note that thisthat for pitch accent detection, the lexical features
assumes that the prosodic events are independe$iich as the canonical stress patterns from the pro-
and they are only dependent on the acoustic obsefunciation dictionary perform better than the syn-
vations in the corresponding locations. tactic features, while for IPB and break index de-
The primary acoustic cues for prosodic eventéection, the syntactic features such as POS work
are p|tch, energy and duration. In order to reduc@etter than the lexical features. We use different
the effect by both inter-speaker and intra-speaketeature types for each task and the detailed fea-
variation, both pitch and energy values were noriures are as follows:
malized (z-value) with utterance specific means
and variances. The acoustic features used in our
experiments are listed below. Again, all of the fea-
tures are computed for a syllable.

P* = arg mgxp(P|A)

n
Arg max H p(pilas)
i=1

Q

e Accent detection: syllable identity, lexical
stress (exist or not), word boundary informa-
tion (boundary or not), and POS tag. We
also include syllable identity, lexical stress,
and word boundary features from the previ-

e Pitch range (4 features): maximum pitch, ous and next context window.

minimum pitch, mean pitch, and pitch range

(difference between maximum and minimum e IPB and Break index detection: POS tag, the

pitch).

¢ Pitch slope (5 features): first pitch slope, last
pitch slope, maximum plus pitch slope, max-
imum minus pitch slope, and the number of
changes in the pitch slope patterns.

ratio of syntactic phrases the word initiates,
and the ratio of syntactic phrases the word
terminates. All of these features from the pre-
vious and next context windows are also in-
cluded.

4.3 Thecombined model

e Energy range (4 features): maximum en-The two models above can be coupled as a classi-
ergy, minimum energy, mean energy, andfier for prosodic event detection. If we assume that
energy range (difference between maximumthe acoustic observations are conditionally inde-

and minimum energy).

pendent of the syntactic features given the prosody

labels, the task of prosodic detection is to find the
e Duration (3 features): normalized vowel du- optimal sequenc®* as follows:

ration, pause duration after the word final syl-
lable, and the ratio of vowel durations be-
tween this syllable and the next syllable.
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~ argmax p(P|A)p(P|S) Algorithm 1 General co-training algorithm.
P n Given a seL of labeled training data and a set
~ arg m]gx H P(Pi|ai)/\p(]9i\¢(8i)) 3) U of unlabeled da/ta
i=1 Randomly seledt)’ from U, |U’|=u
whileiteration< k do
UselL to train classifiersil andh2
Apply hl andh2 to assign labels for all ex-

where ) is a parameter that can be used to adjust
the weighting between syntactic and the acoustic
model. In our experiments, the value bis esti-

ted based on development dat amples inJ
mated based on development data. Selectn self-labeled samples and addLio
5 Co-training strategy for prosodic event Remove thesa samples fronu
detection RecreateU’ by choosingu instances ran-
domly fromU

Co-training (Blum and Mitchell, 1998) is a semi-  end while
supervised multi-view algorithm that uses the ini-
tial training set to learn a (weak) classifier in each
view. Then each classifier is applied to all thelect more informative examples. We investigate
unlabeled examples. Those examples that eadtifferent approaches to address these issues for
classifier makes the most confident predictions aréhe prosodic event detection task. The first is-
selected and labeled with the estimated class lssue is how to assign possible labels accurately.
bels and added to the training set. Based on th&éhe general method is to let the two classifiers
new training set, a new classifier is learned in eaclpredict the class for a given sample, and if they
view, and the whole process is repeated for somegree, the hypothesized label is used. However,
iterations. At the end, a final hypothesis is cre-when this agreement-based approach is used for
ated by combining the predictions of the classifiergprosodic event detection, we notice that there is
learned in each view. not only difference in the labeling accuracy be-
As described in Section 4, we use two classitween positive and negative samples, but also an
fiers for the prosodic event detection task basedmbalance of the self-labeled positive and negative
on two different information sources: one is theexamples (details in Section 6). Therefore we be-
acoustic evidence extracted from the speech signdieve that using the hard decisions from the two
of an utterance; the other is the lexical and syn<lassifiers along with the agreement-based rule is
tactic evidence such as syllables, words, POS tagt enough to label the unlabeled samples. To ad-
and phrasal boundary information. These are twgalress this problem, we propose an approximated
different views for prosodic event detection and fitconfidence measure based on the combined classi-
the co-training framework. fier (Equation 3). First, we take a squared root of
The general co-training algorithm we used isthe classifier's posterior probabilities for the two
described in Algorithm 1. Given a sketof labeled ~ classes, denoted agore(pos) and score(neg),
data and a sdt/ of unlabeled data, the algorithm respectively. Our proposed confidence is the dis-
first creates a smaller pod)’ containingu unla-  tance between these two scores. For example, if
beled data. It then iterates in the following proce-the classifier's hypothesized label is positive, then:
dure. First, we usé to train two distinct classi-  Positive confidencescore(pos)score(neg)
fiers: the acoustic-prosodic classifiet, and the Similarly if the classifier’s hypothesis is negative,
syntactic classifien2. These two classifiers are we calculate a negative confidence:
used to examine the unlabeled &Etand assign Negative confidenescore(neg)score(pos)
“possible” labels. Then we select some samples Then we apply different thresholds of confi-
to add toL. Finally, the poolU’ is recreated from dence level for positive and negative labeling. The
U at random. This iteration continues until reach-thresholds are chosen based on the accuracy distri-
ing the defined number of iterationsdris empty.  bution obtained on the labeled development data
The main issue of co-training is to select train-and are reestimated at every iteration. Figure 2
ing samples for next iteration so as to minimizeshows the accuracy distribution for accent detec-
noise and maximize training utility. There are two tion according to different confidence levels in the
issues: (1) the accurate self-labeling method fofirst iteration. In Figure 2, if we choose 70% label-
unlabeled data and (2) effective heuristics to seing accuracy, the positive confidence level is about
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‘ utter. ‘ word ‘ syll ‘ Speaker ‘
Test Set| 102 5,448 8,962 fla, m1b

Accuracy

! . Development Set 20 1,356 | 2,275 f2b, 3b
0.61 R s ]
- % e Labeled set. 5 347 573 m2b, m3b
0.4&%«*1&% % ' i Unlabeled set | 1,027 | 77,207 | 129,305 m4b
02 i i i i
0 0.2 0.4 0.6 0.8 1

Confidence leve Table 1: Training and test sets.

Flg_ure 2: Approximated conf|der?ce level and Ia'faster since big mistakes of one of the two classi-
beling accuracy on accent detection task. fiers can be fixed. These sample selection strate-
gies share some similarity with those in previous

0.1 and the negative confidence level is about O.é/.vork (Steedman etal., 2003).

In our confidence-based approach, the samplegg Experiments and results

with a confidence level higher than these thresh- _ _ o

olds are assigned with the classifier's hypothesize®Ur goal is to determine whether the co-training

labels, and the other samples are disregarded. algorithm described above could successfully use
The second problem in co-training is how to the unlabeled data for prosodic event detection. In

select informative samples. Active learning ap-OUr experiment, 268 ToBI labeled utterances and

proaches, such as Muslea et al. (2000), can gene?86 unlabeled utterances in BU corpus were used.
ally select more informative samples, for example Among labeled data, 102 utterances offaé and
samples for which two classifiers disagree (sincdN1bspeakers are used for testing, 20 utterances
one of two classifiers is wrong) and ask for humarf@ndomly chosen froni2b, f3b, m2h m3h and
labels. Co-training approaches cannot, howevefn4bare used as development set to optimize pa-
use this selection method since there is a risk t6a@meters such a& and confidence level thresh-
label the disagreed samples. Usually co-trainingjld’ 5 utterances are used as the initial training
selects samples for which two classifiers have théetlL, and the rest of the data is used as unlabeled
same prediction but high difference in their con-S€tU, which has 1027 unlabeled utterances (we
fidence measures. Based on this idea, we appliggmoved the human labels for co-training exper-
three sampling strategies on top of our confidencelMents). The detailed training and test setting is

based labeling method: shown in Table 1.
First of all, we compare the learning curves us-

e Random selection: randomly select samplesng our proposed confidence-based method to as-
from those that the two classifiers have dif-sign possible labels with the simple agreement-
ferent posterior probabilities. based random selection method. We expect that if

, _ self-labeling is accurate, adding new samples ran-

e Most conflo_lent select|on_: select sa.mples thaEIome drawn from these self-labeled data gener-
have the highest posterior probability based, shoyid not make performance worse. For this
on one classifier, and at the same time therg, o iment in every iteration, we randomly se-
Is certain posterior probability difference be- oo the self-labeled samples that have at least 0.1
tween the two classifiers. difference between two classifiers’ posterior prob-

e Most different selection: select samples tha@Pilities. The number of new samples added to
have the most difference between the twdlr@ining is 5% of the size of the previous training
classifiers’ posterior probabilities. data. Figure 3 shows the learning curves for accent

detection. The number of samples in the x-axis

The first strategy is appropriate for base classiis the number of syllables. The F-measure score
fiers that lack the capability of estimating the pos-using the initial training data is 0.69. The dark
terior probability of their predictions. The second solid line in Figure 3 is the learning curve of the
is appropriate for base classifiers that have higlsupervised method when varying the size of the
classification accuracy and also with high postetraining data. Compared with supervised method,

rior probability. The last one is also appropriateour proposed relative confidence-based labeling

for accurate classifiers and expected to convergmethod shows better performance when there is
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Figure 3: The learning curve of agreement-basedfigure 4: The learning curve of 3 sample selection
and our proposed confidence-based random selemethods for accent detection.
tion methods for accent detection.

rates for the negative samples as well, thus leading

’ ‘ Confidence‘ Agreement‘ .
to performance improvement.

0, 0, 0, .
Accent |LofPsamples|  47% 38% Next we evaluate the efficacy of the three sam-
detection | Sampleeror]  0.17 0.09 ple selection methods described in Section 5,
N sample error 0.12 0.22

- . . namely, random, most confident, and most dif-
IPB % ofPsamples|  46% 19% ferent selections. Figure 4 shows the learning
Psample error]  0.12 0.01 curves for the three selection methods for accent
N sample error|  0.18 0.53 detection. The same configuration is used as in
Break | RofPsamples|  50% 25% the previous experiment, i.e., at least 0.1 posterior
Psampleerror|  0.15 0.03 probability difference between the two classifiers,
N sample error|  0.17 042 and adding 5% of new samples in each iteration.
N All of these sample selection approaches use the
Table 2: Percentage of positive samples, andonfigence-based labeling. For comparison, Fig-
averaged error rate for positivePX and nega- e 4 also shows the learning curve for supervised
tive (N) samples for the first 20 iterations using learning when varying the training size. We can
the agreement-based and our confidence labeling.e from the figure that compared to random selec-
methods. tion, the most confident selection method shows
similar performance in the first few iterations, but
less data, but after some iteration, the performancis performance continues to increase and the sat-
is saturated earlier. However, the agreement-basadation point is much later than random selection.
method does not yield any performance gain, inUnlike the other two sample selection methods,
stead, its performance is much worse after somenost different selection results in noticeable per-
iteration. The other two prosodic event detectionformance degradation after some iteration. This
tasks also show similar patterns. difference is caused by the high self-labeling er-
To analyze the reason for this performanceror rate of selected samples. Both random and
degradation using the agreement-based methodost confident selections perform better than su-
we compatre the labels of the newly added samplegervised learning at the first few iterations. This is
in random selection with the reference annotationbecause the new samples added have different pos-
Table 2 shows the percentage of the positive samerior probabilities by the two classifiers, and thus
ples added for the first 20 iterations, and the av-one of the classifiers benefits from these samples.
erage labeling error rate of those samples for the Learning curves for the other two tasks (break
self-labeled positive and negative classes for twandex and IPB detection) show similar pattern for
methods. The agreement-based random selectidghe random and most different selection methods,
added more negative samples that also have highbut some differences in the most confident selec-
error rate than the positive samples. Adding theséion results. For the IPB task, the learning curve of
samples has a negative impact on the classifierthe most confident selection fluctuates somewhat
performance. In contrast, our confidence-baseth the middle of the iterations with similar per-
approach balances the number of positive and nedermance to random selection, however, afterward
ative samples and significantly reduces the errothe performance is better than random selection.

detection

detection
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0 | e eaiogg0002080 || | Accent | IPB | Break |
L 0.78- & o i Supervised 0.82 | 0.74| 0.77
Co- Initial training (3%) | 0.69 | 0.59 | 0.62
training | After 74 iterations | 0.80 | 0.71| 0.75

measul
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# of sample proaches.

Figure 5: The learning curves for accent detectio
using different amounts of initial labeled training
data.

rbo.1%, and 86.7% respectively for accent, intona-
tional phrase boundary, and break index detection,
compared with 87.6%, 92.3%, and 88.9% in su-
pervised learning. Although the test condition is

For the break index detection, the learning curvdifferent, our result is significantly better than that
of most different selection increases more slowlyof other semi-supervised approaches of previous
than random selection at the beginning, but the saivork and comparable with supervised approaches.
uration point is much later and therefore outper-
forms the random selection at the later iterations.
We also evaluated the effect of the amount ofin this paper, we exploit the co-training method
initial labeled training data. In this experiment, for automatic prosodic event detection. We intro-
most confident selection is used, and the other corduced a confidence-based method to assign possi-
figurations are the same as the previous experble labels to unlabeled data and evaluated the per-
ment. The learning curve for accent detection iSormance combined with informative sample se-
shown in Figure 5 using different numbers of utter-lection methods. Our experimental results using
ances in the initial training data. The arrow marksco-training are significantly better than the origi-
indicate the start position of each learning curvenal supervised results using the small amount of
As we can see, the learning curve when using 2@aining data, and closer to that using supervised
utterances is slightly better than the others, butearning with a large amount of data. This sug-
there is no significant performance gain accordingyests that the use of unlabeled data can lead to sig-
to the size of initial labeled training data. nificant improvement for prosodic event detection.
Finally we compared our co-training perfor- In our experiment, we used some labeled data
mance with supervised learning. For superviseds development set to estimate some parameters.
learning, all labeled utterances except for the tesFor the future work, we will perform analysis
set are used for training. We used most confi-of loss function of each classifier in order to es-
dent selection with proposed self-labeling methodtimate parameters without labeled development
The initial training data in co-training is 3% of data. In addition, we plan to compare this to other
that used for supervised learning. After 74 iter-semi-supervised learning techniques such as ac-
ations, the size of samples of co-training is similartive learning. We also plan to use this algorithm
to that in the supervised method. Table 3 presentt® annotate different types of data, such as sponta-
the results of three prosodic event detection tasksieous speech, and incorporate prosodic events in
We can see that the performance of co-training fospoken language applications.
these three tasks is slightly worse than supervised
learning using all the labeled data, but is signifi-Acknowledgments
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