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Abstract

Iterative bootstrapping algorithms are typ-
ically compared using a single set of hand-
picked seeds. However, we demonstrate
that performance varies greatly depend-
ing on these seeds, and favourable seeds
for one algorithm can perform very poorly
with others, making comparisons unreli-
able. We exploit this wide variation with
bagging, sampling from automatically ex-
tracted seeds to reduce semantic drift.

However, semantic drift still occurs in
later iterations. We propose an integrated
distributional similarity filter to identify
and censor potential semantic drifts, en-
suring over 10% higher precision when ex-
tracting large semantic lexicons.

1 Introduction

Iterative bootstrapping algorithms have been pro-
posed to extract semantic lexicons forNLP tasks
with limited linguistic resources. Bootstrapping
was initially proposed by Riloff and Jones (1999),
and has since been successfully applied to extract-
ing general semantic lexicons (Riloff and Jones,
1999; Thelen and Riloff, 2002), biomedical enti-
ties (Yu and Agichtein, 2003), facts (Paşca et al.,
2006), and coreference data (Yang and Su, 2007).

Bootstrapping approaches are attractive because
they are domain and language independent, re-
quire minimal linguistic pre-processing and can be
applied to raw text, and are efficient enough for
tera-scale extraction (Paşca et al., 2006).

Bootstrapping is minimally supervised, as it is
initialised with a small number of seed instances
of the information to extract. For semantic lexi-
cons, these seeds are terms from the category of in-
terest. The seeds identify contextual patterns that
express a particular semantic category, which in
turn recognise new terms (Riloff and Jones, 1999).

Unfortunately,semantic driftoften occurs when
ambiguous or erroneous terms and/or patterns are
introduced into and then dominate the iterative
process (Curran et al., 2007).

Bootstrapping algorithms are typically com-
pared using only a single set of hand-picked seeds.
We first show that different seeds cause these al-
gorithms to generate diverse lexicons which vary
greatly in precision. This makes evaluation un-
reliable – seeds which perform well on one algo-
rithm can perform surprisingly poorly on another.
In fact, random gold-standard seeds often outper-
form seeds carefully chosen by domain experts.

Our second contribution exploits this diversity
we have identified. We present an unsupervised
bagging algorithm which samples from the ex-
tracted lexicon rather than relying on existing
gazetteers or hand-selected seeds. Each sample is
then fed back as seeds to the bootstrapper and the
results combined using voting. This both improves
the precision of the lexicon and the robustness of
the algorithms to the choice of initial seeds.

Unfortunately, semantic drift still dominates in
later iterations, since erroneous extracted terms
and/or patterns eventually shift the category’s di-
rection. Our third contribution focuses on detect-
ing and censoring the terms introduced by seman-
tic drift. We integrate a distributional similarity
filter directly into WMEB (McIntosh and Curran,
2008). This filter judges whether a new term is
more similar to the earlier or most recently ex-
tracted terms, a sign of potential semantic drift.

We demonstrate these methods for extracting
biomedical semantic lexicons using two bootstrap-
ping algorithms. Our unsupervised bagging ap-
proach outperforms carefully hand-picked seeds
by ∼ 10% in later iterations. Our distributional
similarity filter gives a similar performance im-
provement. This allows us to produce large lexi-
cons accurately and efficiently for domain-specific
language processing.
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2 Background

Hearst (1992) exploited patterns for information
extraction, to acquireis-arelations using manually
devised patterns likesuch Z as X and/or YwhereX
andY are hyponyms ofZ. Riloff and Jones (1999)
extended this with an automated bootstrapping al-
gorithm,Multi-level Bootstrapping(MLB ), which
iteratively extracts semantic lexicons from text.

In MLB , bootstrapping alternates between two
stages: pattern extraction and selection, and term
extraction and selection.MB is seeded with a small
set of user selectedseedterms. These seeds are
used to identify contextual patterns they appear in,
which in turn identify new lexicon entries. This
process is repeated with the new lexicon terms
identifying new patterns. In each iteration, the top-
n candidates are selected, based on a metric scor-
ing their membership in the category and suitabil-
ity for extracting additional terms and patterns.

Bootstrapping eventually extracts polysemous
terms and patterns which weakly constrain the
semantic class, causing the lexicon’s meaning to
shift, calledsemantic driftby Curran et al. (2007).
For example, female firstnames may drift into
flowers whenIris andRoseare extracted. Many
variations on bootstrapping have been developed
to reduce semantic drift.1

One approach is to extract multiple semantic
categories simultaneously, where the individual
bootstrapping instances compete with one another
in an attempt to actively direct the categories away
from each other. Multi-category algorithms out-
perform MLB (Thelen and Riloff, 2002), and we
focus on these algorithms in our experiments.

In BASILISK, MEB, and WMEB, each compet-
ing category iterates simultaneously between the
term and pattern extraction and selection stages.
These algorithms differ in how terms and patterns
selected by multiple categories are handled, and
their scoring metrics. InBASILISK (Thelen and
Riloff, 2002), candidate terms are ranked highly if
they have strong evidence for a category and little
or no evidence for other categories. This typically
favours less frequent terms, as they will match far
fewer patterns and are thus more likely to belong
to one category. Patterns are selected similarly,
however patterns may also be selected by differ-
ent categories in later iterations.

Curran et al. (2007) introducedMutual Exclu-

1Komachi et al. (2008) used graph-based algorithms to
reduce semantic drift for Word Sense Disambiguation.

sion Bootstrapping(MEB) which forces stricter
boundaries between the competing categories than
BASILISK. In MEB, the key assumptions are that
terms only belong to a category and that patterns
only extract terms of a single category. Semantic
drift is reduced by eliminating patterns that collide
with multiple categories in an iteration and by ig-
noring colliding candidate terms (for the current
iteration). This excludes generic patterns that can
occur frequently with multiple categories, and re-
duces the chance of assigning ambiguous terms to
their less dominant sense.

2.1 Weighted MEB

The scoring of candidate terms and patterns in
MEB is näıve. Candidates which 1) match the most
input instances; and 2) have the potential to gen-
erate the most new candidates, are preferred (Cur-
ran et al., 2007). This second criterion aims to in-
crease recall. However, the selected instances are
highly likely to introduce drift.

Our WeightedMEB algorithm (McIntosh and
Curran, 2008), extendsMEB by incorporating term
and pattern weighting, and a cumulative pattern
pool. WMEB uses theχ2 statistic to identify pat-
terns and terms that are strongly associated with
the growing lexicon terms and their patterns re-
spectively. The terms and patterns are then ranked
first by the number of input instances they match
(as inMEB), but then by their weighted score.

In MEB and BASILISK2, the top-k patterns for
each iteration are used to extract new candidate
terms. As the lexicons grow, general patterns can
drift into the top-k and as a result the earlier pre-
cise patterns lose their extracting influence. In
WMEB, the pattern pool accumulates all top-k pat-
terns from previous iterations, to ensure previous
patterns can contribute.

2.2 Distributional Similarity

Distributional similarity has been used to ex-
tract semantic lexicons (Grefenstette, 1994), based
on thedistributional hypothesisthat semantically
similar words appear in similar contexts (Harris,
1954). Words are represented by context vectors,
and words are considered similar if their context
vectors are similar.

Patterns and distributional methods have been
combined previously. Pantel and Ravichandran

2In BASILISK, k is increased by one in each iteration, to
ensure at least one new pattern is introduced.
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TYPE (#) MEDLINE

Terms 1 347 002
Contexts 4 090 412
5-grams 72 796 760
Unfiltered tokens 6 642 802 776

Table 1: Filtered 5-gram dataset statistics.

(2004) used lexical-syntactic patterns to label
clusters of distributionally similar terms. Mirkin et
al. (2006) used 11 patterns, and the distributional
similarity score of each pair of terms, to construct
features for lexical entailment. Paşca et al. (2006)
used distributional similarity to find similar terms
for verifying the names in date-of-birth facts for
their tera-scale bootstrapping system.

2.3 Selecting seeds

For the majority of bootstrapping tasks, there is
little or no guidance on how to select seeds which
will generate the most accurate lexicons. Most
previous works used seeds selected based on a
user’s or domain expert’s intuition (Curran et al.,
2007), which may then have to meet a frequency
criterion (Riloff et al., 2003).

Eisner and Karakos (2005) focus on this issue
by considering an approach calledstrapping for
word sense disambiguation. In strapping, semi-
supervised bootstrapping instances are used to
train a meta-classifier, which given a bootstrap-
ping instance can predict the usefulness (fertility)
of its seeds. The most fertile seeds can then be
used in place of hand-picked seeds.

The design of a strapping algorithm is more
complex than that of a supervised learner (Eisner
and Karakos, 2005), and it is unclear how well
strapping will generalise to other bootstrapping
tasks. In our work, we build upon bootstrapping
using unsupervised approaches.

3 Experimental setup

In our experiments we consider the task of extract-
ing biomedical semantic lexicons from raw text
usingBASILISK andWMEB.

3.1 Data

We compared the performance ofBASILISK and
WMEB using 5-grams (t1, t2, t3, t4, t5) from raw
MEDLINE abstracts3. In our experiments, the can-
didate terms are the middle tokens (t3), and the
patterns are a tuple of the surrounding tokens (t1,

3The set contains allMEDLINE abstracts available up to
Oct 2007 (16 140 000 abstracts).

CAT DESCRIPTION

ANTI Antibodies: Immunoglobulin molecules that react
with a specific antigen that induced its synthesis
MAb IgG IgM rituximab infliximab(κ1:0.89,κ2:1.0)

CELL Cells: A morphological or functional form of a cell
RBC HUVEC BAEC VSMC SMC(κ1:0.91,κ2:1.0)

CLNE Cell lines: A population of cells that are totally de-
rived from a single common ancestor cell
PC12 CHO HeLa Jurkat COS(κ1:0.93,κ2: 1.0)

DISE Diseases: A definite pathological process that affects
humans, animals and or plants
asthma hepatitis tuberculosis HIV malaria
(κ1:0.98,κ2:1.0)

DRUG Drugs: A pharmaceutical preparation
acetylcholine carbachol heparin penicillin tetracy-
clin (κ1:0.86,κ2:0.99)

FUNC Molecular functions and processes
kinase ligase acetyltransferase helicase binding
(κ1:0.87,κ2:0.99)

MUTN Mutations: Gene and protein mutations, and mutants
Leiden C677T C282Y 35delG null(κ1:0.89,κ2:1.0)

PROT Proteins and genes
p53 actin collagen albumin IL-6(κ1:0.99,κ2:1.0)

SIGN Signs and symptoms of diseases
anemia hypertension hyperglycemia fever cough
(κ1:0.96,κ2:0.99)

TUMR Tumors: Types of tumors
lymphoma sarcoma melanoma neuroblastoma
osteosarcoma(κ1:0.89,κ2:0.95)

Table 2: TheMEDLINE semantic categories.

t2, t4, t5). Unlike Riloff and Jones (1999) and
Yangarber (2003), we do not use syntactic knowl-
edge, as we aim to take a language independent
approach.

The 5-grams were extracted from theMEDLINE

abstracts following McIntosh and Curran (2008).
The abstracts were tokenised and split into sen-
tences using bio-specificNLP tools (Grover et al.,
2006). The 5-grams were filtered to remove pat-
terns appearing with less than 7 terms4. The statis-
tics of the resulting dataset are shown in Table 1.

3.2 Semantic Categories

The semantic categories we extract fromMED-
LINE are shown in Table 2. These are a subset
of theTREC Genomics 2007 entities (Hersh et al.,
2007). Categories which are predominately multi-
term entities, e.g.Pathwaysand Toxicities, were
excluded.5 GenesandProteinswere merged into
PROT as they have a high degree of metonymy,
particularly out of context. TheCell or Tissue Type
category was split into two fine grained classes,
CELL andCLNE (cell line).

4This frequency was selected as it resulted in the largest
number of patterns and terms loadable byBASILISK

5Note that polysemous terms in these categories may be
correctly extracted by another category. For example, all
Pathwaysalso belong toFUNC.
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The five hand-picked seeds used for each cat-
egory are shown in italics in Table 2. These were
carefully chosen based on the evaluators’ intuition,
and are as unambiguous as possible with respect to
the other categories.

We also utilised terms instop categorieswhich
are known to cause semantic drift in specific
classes. These extra categories bound the lexi-
cal space and reduce ambiguity (Yangarber, 2003;
Curran et al., 2007). We used four stop cate-
gories introduced in McIntosh and Curran (2008):
AMINO ACID , ANIMAL , BODY andORGANISM.

3.3 Lexicon evaluation

The evaluation involves manually inspecting each
extracted term and judging whether it was a mem-
ber of the semantic class. This manual evaluation
is extremely time consuming and is necessary due
to the limited coverage of biomedical resources.
To make later evaluations more efficient, all eval-
uators’ decisions for each category are cached.

Unfamiliar terms were checked using online
resources includingMEDLINE, Medical Subject
Headings (MeSH), Wikipedia. Each ambiguous
term was counted as correct if it was classified into
one of its correct categories, such aslymphoma
which is a TUMR and DISE. If a term was un-
ambiguously part of a multi-word term we consid-
ered it correct. Abbreviations, acronyms and typo-
graphical variations were included. We also con-
sidered obvious spelling mistakes to be correct,
such asnuetrophilsinstead ofneutrophils(a type
of CELL). Non-specific modifiers are marked as
incorrect, for example,gastrointestinalmay be in-
correctly extracted forTUMR, as part of the entity
gastrointestinal carcinoma. However, the modi-
fier may also be used forDISE (gastrointestinal
infection) andCELL.

The terms were evaluated by two domain ex-
perts. Inter-annotator agreement was measured
on the top-100 terms extracted byBASILISK and
WMEB with the hand-picked seeds for each cat-
egory. All disagreements were discussed, and the
kappa scores, before (κ1) and after (κ2) the discus-
sions, are shown in Table 2. Each score is above
0.8 which reflects an agreement strength of “al-
most perfect” (Landis and Koch, 1977).

For comparing the accuracy of the systems we
evaluated the precision of samples of the lexicons
extracted for each category. We report average
precision over the 10 semantic categories on the

1-200, 401-600 and 801-1000 term samples, and
over the first 1000 terms. In each algorithm, each
category is initialised with 5 seed terms, and the
number of patterns,k, is set to 5. In each itera-
tion, 5 lexicon terms are extracted by each cate-
gory. Each algorithm is run for 200 iterations.

4 Seed diversity

The first step in bootstrapping is to select a set of
seeds by hand. Thesehand-pickedseeds are typi-
cally chosen by a domain expert who selects a rea-
sonably unambiguous representative sample of the
category with high coverage by introspection.

To improve the seeds, the frequency of the po-
tential seeds in the corpora is often considered, on
the assumption that highly frequent seeds are bet-
ter (Thelen and Riloff, 2002). Unfortunately, these
seeds may be too general and extract many non-
specific patterns. Another approach is to identify
seeds using hyponym patterns like,* is a [NAMED

ENTITY] (Meij and Katrenko, 2007).
This leads us to our first investigation of seed

variability and the methodology used to compare
bootstrapping algorithms. Typically algorithms
are compared using one set of hand-picked seeds
for each category (Pennacchiotti and Pantel, 2006;
McIntosh and Curran, 2008). This approach does
not provide a fair comparison or any detailed anal-
ysis of the algorithms under investigation. As
we shall see, it is possible that the seeds achieve
the maximum precision for one algorithm and the
minimum for another, and thus the single compar-
ison is inappropriate. Even evaluating on multiple
categories does not ensure the robustness of the
evaluation. Secondly, it provides no insight into
the sensitivity of an algorithm to different seeds.

4.1 Analysis with random gold seeds

Our initial analysis investigated the sensitivity and
variability of the lexicons generated using differ-
ent seeds. We instantiated each algorithm 10 times
with different random gold seeds (Sgold) for each
category. We randomly sample Sgold from two
sets of correct terms extracted from the evalua-
tion cache.UNION: the correct terms extracted by
BASILISK and WMEB; and UNIQUE: the correct
terms uniquely identified by only one algorithm.
The degree of ambiguity of each seed is unknown
and term frequency is not considered during the
random selection.

Firstly, we investigated the variability of the
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Figure 1: Performance relationship between
WMEB andBASILISK on Sgold UNION

extracted lexicons usingUNION. Each extracted
lexicon was compared with the other 9 lexicons
for each category and the term overlap calcu-
lated. For the top 100 terms,BASILISK had an
overlap of 18% andWMEB 44%. For the top
500 terms,BASILISK had an overlap of 39% and
WMEB 47%. ClearlyBASILISK is far more sensi-
tive to the choice of seeds – this also makes the
cache a lot less valuable for the manual evaluation
of BASILISK. These results match our annotators’
intuition that BASILISK retrieved far more of the
esoteric, rare and misspelt results. The overlap be-
tween algorithms was even worse: 6.3% for the
top 100 terms and 9.1% for the top 500 terms.

The plot in Figure 1 shows the variation in pre-
cision betweenWMEB andBASILISK with the 10
seed sets fromUNION. Precision is measured on
the first 100 terms and averaged over the 10 cate-
gories. The Shand is marked with a square, as well
as each algorithms’ average precision with 1 stan-
dard deviation (S.D.) error bars. The axes start
at 50% precision. Visually, the scatter is quite
obvious and theS.D. quite large. Note that on
our Shand evaluation,BASILISK performed signif-
icantly better than average.

We applied a linear regression analysis to iden-
tify any correlation between the algorithm’s per-
formances. The resulting regression line is shown
in Figure 1. The regression analysis identified no
correlation betweenWMEB andBASILISK (R2 =
0.13). It is almost impossible to predict the per-
formance of an algorithm with a given set of seeds
from another’s performance, and thus compar-
isons using only one seed set are unreliable.

Table 3 summarises the results on Sgold, in-
cluding the minimum and maximum averages over
the 10 categories. At only 100 terms, lexicon

Sgold Shand Avg. Min. Max. S.D.
UNION

BASILISK 80.5 68.3 58.3 78.8 7.31
WMEB 88.1 87.1 79.3 93.5 5.97
UNIQUE

BASILISK 80.5 67.1 56.7 83.5 9.75
WMEB 88.1 91.6 82.4 95.4 3.71

Table 3: Variation in precision with random gold
seed sets

variations are already obvious. As noted above,
Shand onBASILISK performed better than average,
whereasWMEB Sgold UNIQUE performed signifi-
cantly better on average than Shand. This clearly
indicates the difficulty of picking the best seeds
for an algorithm, and that comparing algorithms
with only one set has the potential to penalise an
algorithm. These results do show thatWMEB is
significantly better thanBASILISK.

In the UNIQUE experiments, we hypothesized
that each algorithm would perform well on its
own set, but BASILISK performs significantly
worse thanWMEB, with a S.D. greater than 9.7.
BASILISK ’s poor performance may be a direct re-
sult of it preferring low frequency terms, which are
unlikely to be good seeds.

These experiments have identified previously
unreported performance variations of these sys-
tems and their sensitivity to different seeds. The
standard evaluation paradigm, using one set of
hand-picked seeds over a few categories, does not
provide a robust and informative basis for compar-
ing bootstrapping algorithms.

5 Supervised Bagging

While the wide variation we reported in the pre-
vious section is an impediment to reliable evalua-
tion, it presents an opportunity to improve the per-
formance of bootstrapping algorithms. In the next
section, we present a novel unsupervised bagging
approach to reducing semantic drift. In this sec-
tion, we consider the standard bagging approach
introduced by Breiman (1996). Bagging was used
by Ng and Cardie (2003) to create committees of
classifiers for labelling unseen data for retraining.

Here, a bootstrapping algorithm is instantiated
n = 50 times with random seed sets selected from
theUNION evaluation cache. This generatesn new
lexiconsL1, L2, . . . , Ln for each category. The
next phase involves aggregating the predictions in
L1−n to form the final lexicon for each category,
using a weighted voting function.
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1-200 401-600 801-1000 1-1000
Shand

BASILISK 76.3 67.8 58.3 66.7
WMEB 90.3 82.3 62.0 78.6
Sgold BAG
BASILISK 84.2 80.2 58.2 78.2
WMEB 95.1 79.7 65.0 78.6

Table 4: Bagging with 50 gold seed sets

Our weighting function is based on two related
hypotheses of terms in highly accurate lexicons: 1)
the more category lexicons inL1−n a term appears
in, the more likely the term is a member of the
category; 2) terms ranked higher in lexicons are
more reliable category members. Firstly, we rank
the aggregated terms by the number of lexicons
they appear in, and to break ties, we take the term
that was extracted in the earliest iteration across
the lexicons.

5.1 Supervised results

Table 4 compares the average precisions of the
lexicons forBASILISK and WMEB using just the
hand-picked seeds (Shand) and 50 sample super-
vised bagging (Sgold BAG).

Bagging with samples from Sgold successfully
increased the performance of bothBASILISK and
WMEB in the top 200 terms. While the improve-
ment continued forBASILISK in later sections, it
had a more variable effect forWMEB. Overall,
BASILISK gets the greater improvement in perfor-
mance (a 12% gain), almost reaching the perfor-
mance ofWMEB across the top 1000 terms, while
WMEB’s performance is the same for both Shand

and Sgold BAG. We believe the greater variability
in BASILISK meant it benefited from bagging with
gold seeds.

6 Unsupervised bagging

A significant problem for supervised bagging ap-
proaches is that they require a larger set of gold-
standard seed terms to sample from – either an
existing gazetteer or a large hand-picked set. In
our case, we used the evaluation cache which took
considerable time to accumulate. This saddles
the major application of bootstrapping, the quick
construction of accurate semantic lexicons, with a
chicken-and-egg problem.

However, we propose a novel solution – sam-
pling from the terms extracted with the hand-
picked seeds (Lhand). WMEB already has very
high precision for the top extracted terms (88.1%

BAGGING 1-200 401-600 801-1000 1-1000
Top-100
BASILISK 72.3 63.5 58.8 65.1
WMEB 90.2 78.5 66.3 78.5
Top-200
BASILISK 70.7 60.7 45.5 59.8
WMEB 91.0 78.4 62.2 77.0
Top-500
BASILISK 63.5 60.5 45.4 56.3
WMEB 92.5 80.9 59.1 77.2
PDF-500
BASILISK 69.6 68.3 49.6 62.3
WMEB 92.9 80.7 72.1 81.0

Table 5: Bagging with 50 unsupervised seed sets

for the top 100 terms) and may provide an accept-
able source of seed terms. This approach now
only requires the original 50 hand-picked seed
terms across the 10 categories, rather than the
2100 terms used above. The process now uses two
rounds of bootstrapping: first to create Lhand to
sample from and then another round with the 50
sets of randomly unsupervised seeds, Srand.

The next decision is how to sample Srand from
Lhand. One approach is to use uniform random
sampling from restricted sections of Lhand. We
performed random sampling from the top 100,
200 and 500 terms of Lhand. The seeds from the
smaller samples will have higher precision, but
less diversity.

In a truly unsupervised approach, it is impossi-
ble to know if and when semantic drift occurs and
thus using arbitrary cut-offs can reduce the diver-
sity of the selected seeds. To increase diversity we
also sampled from the topn=500 using a proba-
bility density function (PDF) using rejection sam-
pling, wherer is the rank of the term in Lhand:

PDF(r) =

∑n
i=r i−1

∑n
i=1

∑n
j=i j

−1
(1)

6.1 Unsupervised results

Table 5 shows the average precision of the lex-
icons after bagging on the unsupervised seeds,
sampled from the top 100 – 500 terms from Lhand.
Using the top 100 seed sample is much less effec-
tive than Sgold BAG for BASILISK but nearly as ef-
fective for WMEB. As the sample size increases,
WMEB steadily improves with the increasing vari-
ability, howeverBASILISK is more effective when
the more precise seeds are sampled from higher
ranking terms in the lexicons.

Sampling withPDF-500 results in more accurate
lexicons over the first 1000 terms than the other
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Figure 2: Semantic drift inCELL (n=20, m=20)

sampling methods forWMEB. In particular,WMEB

is more accurate with the unsupervised seeds than
the Sgold and Shand (81.0% vs 78.6% and 78.6%).
WMEB benefits from the larger variability intro-
duced by the more diverse sets of seeds, and the
greater variability available out-weighs the poten-
tial noise from incorrect seeds. ThePDF-500 dis-
tribution allows some variability whilst still prefer-
ring the most reliable unsupervised seeds. In the
critical later iterations,WMEB PDF-500 improves
over supervised bagging (Sgold BAG) by 7% and
the original hand-picked seeds (Shand) by 10%.

7 Detecting semantic drift

As shown above, semantic drift still dominates the
later iterations of bootstrapping even after bag-
ging. In this section, we propose distributional
similarity measurements over the extracted lexi-
con to detect semantic drift during the bootstrap-
ping process. Our hypothesis is that semantic drift
has occurred when a candidate term is more sim-
ilar to recently added terms than to the seed and
high precision terms added in the earlier iterations.
We experiment with a range of values of both.

Given a growing lexicon of sizeN , LN , let
L1...n correspond to the firstn terms extracted into
L, andL(N−m)...N correspond to the lastm terms
added toLN . In an iteration, lett be the next can-
didate term to be added to the lexicon.

We calculate the average distributional similar-
ity (sim) of t with all terms inL1...n and those in
L(N−m)...N and call the ratio thedrift for termt:

drift(t, n, m) =
sim(L1...n, t)

sim(L(N−m)...N , t)
(2)

Smaller values ofdrift(t, n, m) correspond to
the current term moving further away from the

first terms. Adrift(t, n, m) of 0.2 corresponds
to a 20% difference in average similarity between
L1...n andL(N−m)...N for termt.

Drift can be used as a post-processing step to fil-
ter terms that are a possible consequence of drift.
However, our main proposal is to incorporate the
drift measure directly within theWMEB bootstrap-
ping algorithm, to detect and then prevent drift oc-
curing. In each iteration, the set of candidate terms
to be added to the lexicon are scored and ranked
for their suitability. We now additionally deter-
mine the drift of each candidate term before it is
added to the lexicon. If the term’s drift is below a
specified threshold, it is discarded from the extrac-
tion process. If the term has zero similarity with
the lastm terms, but is similar to at least one of
the firstn terms, the term is selected. Preventing
the drifted term from entering the lexicon during
the bootstrapping process, has a flow on effect as
it will not be able to extract additional divergent
patterns which would lead to accelerated drift.

For calculating drift we use the distributional
similarity approach described in Curran (2004).
We extracted window-based features from the
filtered 5-grams to form context vectors for
each term. We used the standard t-test weight
and weighted Jaccard measure functions (Curran,
2004). This system produces a distributional score
for each pair of terms presented by the bootstrap-
ping system.

7.1 Drift detection results

To evaluate our semantic drift detection we incor-
porate our process inWMEB. Candidate terms are
still weighted inWMEB using theχ2 statistic as de-
scribed in (McIntosh and Curran, 2008). Many of
theMEDLINE categories suffer from semantic drift
in WMEB in the later stages. Figure 2 shows the
distribution of correct and incorrect terms appear-
ing in theCELL lexicon extracted using Shand with
the term’s ranks plotted against their drift scores.
Firstly, it is evident that incorrect terms begin to
dominate in later iterations. Encouragingly, there
is a trend where low values of drift correspond to
incorrect terms being added. Drift also occurs in
ANTI andMUTN, with an average precision at 801-
1000 terms of 41.5% and 33.0% respectively.

We utilise drift in two ways with WMEB;
as a post-processing filter (WMEB+POST) and
internally during the term selection phase
(WMEB+DIST). Table 6 shows the performance
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1-200 401-600 801-1000 1000
WMEB 90.3 82.3 62.0 78.6
WMEB+POST
n:20 m:5 90.3 82.3 62.1 78.6
n:20 m:20 90.3 81.5 62.0 76.9
n:100 m:5 90.2 82.3 62.1 78.6
n:100 m:20 90.3 82.1 62.1 78.1
WMEB+DIST
n:20 m:5 90.8 79.7 72.1 80.2
n:20 m:20 90.6 80.1 76.3 81.4
n:100 m:5 90.5 82.0 79.3 82.8
n:100 m:20 90.5 81.5 77.5 81.9

Table 6: Semantic drift detection results

of drift detection withWMEB, using Shand. We
use a drift threshold of 0.2 which was selected
empirically. A higher value substantially reduced
the lexicons’ size, while a lower value resulted
in little improvements. We experimented with
various sizes of initial termsL1...n (n=20,n=100)
andL(N−m)...N (m=5,m=20).

There is little performance variation observed
in the variousWMEB+POST experiments. Over-
all, WMEB+POST was outperformed slightly by
WMEB. The post-filtering removed many incor-
rect terms, but did not address the underlying drift
problem. This only allowed additional incorrect
terms to enter the top 1000, resulting in no appre-
ciable difference.

Slight variations in precision are obtained using
WMEB+DIST in the first 600 terms, but noticeable
gains are achieved in the 801-1000 range. This is
not surprising as drift in many categories does not
start until later (cf. Figure 2).

With respect to the drift parametersn andm, we
found values ofn below 20 to be inadequate. We
experimented initially withn=5 terms, but this is
equivalent to comparing the new candidate terms
to the initial seeds. Settingm to 5 was also less
useful than a larger sample, unlessn was also
large. The best performance gain of 4.2% over-
all for 1000 terms and 17.3% at 801-1000 terms
was obtained usingn=100 andm=5. In different
phases ofWMEB+DIST we reduce semantic drift
significantly. In particular, at 801-1000,ANTI in-
crease by 46% to 87.5% andMUTN by 59% to
92.0%.

For our final experiments, we report the perfor-
mance of our best performingWMEB+DIST sys-
tem (n=100m=5) using the 10 randomGOLD seed
sets from section 4.1, in Table 7. On average
WMEB+DIST performs aboveWMEB, especially in
the later iterations where the difference is 6.3%.

Shand Avg. Min. Max. S.D.
1-200
WMEB 90.3 82.2 73.3 91.5 6.43
WMEB+DIST 90.7 84.8 78.0 91.0 4.61
401-600
WMEB 82.3 66.8 61.4 74.5 4.67
WMEB+DIST 82.0 73.1 65.2 79.3 4.52

Table 7: Final accuracy with drift detection

8 Conclusion

In this paper, we have proposed unsupervised
bagging and integrated distributional similarity to
minimise the problem of semantic drift in itera-
tive bootstrapping algorithms, particularly when
extracting large semantic lexicons.

There are a number of avenues that require fur-
ther examination. Firstly, we would like to take
our two-round unsupervised bagging further by
performing another iteration of sampling and then
bootstrapping, to see if we can get a further im-
provement. Secondly, we also intend to experi-
ment with machine learning methods for identify-
ing the correct cutoff for the drift score. Finally,
we intend to combine the bagging and distribu-
tional approaches to further improve the lexicons.

Our initial analysis demonstrated that the output
and accuracy of bootstrapping systems can be very
sensitive to the choice of seed terms and therefore
robust evaluation requires results averaged across
randomised seed sets. We exploited this variability
to create both supervised and unsupervised bag-
ging algorithms. The latter requires no more seeds
than the original algorithm but performs signifi-
cantly better and more reliably in later iterations.
Finally, we incorporated distributional similarity
measurements directly intoWMEB which detect
and censor terms which could lead to semantic
drift. This approach significantly outperformed
standardWMEB, with a 17.3% improvement over
the last 200 terms extracted (801-1000). The result
is an efficient, reliable and accurate system for ex-
tracting large-scale semantic lexicons.
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