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Abstract

Pure statistical parsing systems achieves
high in-domain accuracy but performs
poorly out-domain. In this paper, we
propose two different approaches to pro-
duce syntactic dependency structures us-
ing a large-scale hand-crafted HPSG gram-
mar. The dependency backbone of an
HPSG analysis is used to provide general
linguistic insights which, when combined
with state-of-the-art statistical dependency
parsing models, achieves performance im-
provements on out-domain tests.†

1 Introduction

Syntactic dependency parsing is attracting more
and more research focus in recent years, par-
tially due to its theory-neutral representation, but
also thanks to its wide deployment in various
NLP tasks (machine translation, textual entailment
recognition, question answering, information ex-
traction, etc.). In combination with machine learn-
ing methods, several statistical dependency pars-
ing models have reached comparable high parsing
accuracy (McDonald et al., 2005b; Nivre et al.,
2007b). In the meantime, successful continuation
of CoNLL Shared Tasks since 2006 (Buchholz and
Marsi, 2006; Nivre et al., 2007a; Surdeanu et al.,
2008) have witnessed how easy it has become to
train a statistical syntactic dependency parser pro-
vided that there is annotated treebank.

While the dissemination continues towards var-
ious languages, several issues arise with such
purely data-driven approaches. One common
observation is that statistical parser performance
drops significantly when tested on a dataset differ-
ent from the training set. For instance, when using

†The first author thanks the German Excellence Cluster
of Multimodal Computing and Interaction for the support of
the work. The second author is funded by the PIRE PhD
scholarship program.

the Wall Street Journal (WSJ) sections of the Penn
Treebank (Marcus et al., 1993) as training set, tests
on BROWN Sections typically result in a 6-8%
drop in labeled attachment scores, although the av-
erage sentence length is much shorter in BROWN

than that in WSJ. The common interpretation is
that the test set is heterogeneous to the training set,
hence in a different “domain” (in a loose sense).
The typical cause of this is that the model overfits
the training domain. The concerns over random
choice of training corpus leading to linguistically
inadequate parsing systems increase over time.

While the statistical revolution in the field
of computational linguistics gaining high pub-
licity, the conventional symbolic grammar-based
parsing approaches have undergone a quiet pe-
riod of development during the past decade, and
reemerged very recently with several large scale
grammar-driven parsing systems, benefiting from
the combination of well-established linguistic the-
ories and data-driven stochastic models. The ob-
vious advantage of such systems over pure statis-
tical parsers is their usage of hand-coded linguis-
tic knowledge irrespective of the training data. A
common problem with grammar-based parser is
the lack of robustness. Also it is difficult to de-
rive grammar compatible annotations to train the
statistical components.

2 Parser Domain Adaptation

In recent years, two statistical dependency parsing
systems, MaltParser (Nivre et al., 2007b) and
MSTParser (McDonald et al., 2005b), repre-
senting different threads of research in data-driven
machine learning approaches have obtained high
publicity, for their state-of-the-art performances in
open competitions such as CoNLL Shared Tasks.
MaltParser follows the transition-based ap-
proach, where parsing is done through a series
of actions deterministically predicted by an oracle
model. MSTParser, on the other hand, follows
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the graph-based approach where the best parse
tree is acquired by searching for a spanning tree
which maximizes the score on either a partially
or a fully connected graph with all words in the
sentence as nodes (Eisner, 1996; McDonald et al.,
2005b).

As reported in various evaluation competitions,
the two systems achieved comparable perfor-
mances. More recently, approaches of combining
these two parsers achieved even better dependency
accuracy (Nivre and McDonald, 2008). Granted
for the differences between their approaches, both
systems heavily rely on machine learning methods
to estimate the parsing model from an annotated
corpus as training set. Due to the heavy cost of
developing high quality large scale syntactically
annotated corpora, even for a resource-rich lan-
guage like English, only very few of them meets
the criteria for training a general purpose statisti-
cal parsing model. For instance, the text style of
WSJ is newswire, and most of the sentences are
statements. Being lack of non-statements in the
training data could cause problems, when the test-
ing data contain many interrogative or imperative
sentences as in the BROWN corpus. Therefore, the
unbalanced distribution of linguistic phenomena
in the training data leads to inadequate parser out-
put structures. Also, the financial domain specific
terminology seen in WSJ can skew the interpreta-
tion of daily life sentences seen in BROWN.

There has been a substantial amount of work on
parser adaptation, especially from WSJ to BROWN.
Gildea (2001) compared results from different
combinations of the training and testing data to
demonstrate that the size of the feature model
can be reduced via excluding “domain-dependent”
features, while the performance could still be pre-
served. Furthermore, he also pointed out that if the
additional training data is heterogeneous from the
original one, the parser will not obtain a substan-
tially better performance. Bacchiani et al. (2006)
generalized the previous approaches using a maxi-
mum a posteriori (MAP) framework and proposed
both supervised and unsupervised adaptation of
statistical parsers. McClosky et al. (2006) and Mc-
Closky et al. (2008) have shown that out-domain
parser performance can be improved with self-
training on a large amount of unlabeled data. Most
of these approaches focused on the machine learn-
ing perspective instead of the linguistic knowledge
embraced in the parsers. Little study has been re-

ported on approaches of incorporating linguistic
features to make the parser less dependent on the
nature of training and testing dataset, without re-
sorting to huge amount of unlabeled out-domain
data. In addition, most of the previous work have
been focusing on constituent-based parsing, while
the domain adaptation of the dependency parsing
has not been fully explored.

Taking a different approach towards parsing,
grammar-based parsers appear to have much
linguistic knowledge encoded within the gram-
mars. In recent years, several of these linguisti-
cally motivated grammar-driven parsing systems
achieved high accuracy which are comparable to
the treebank-based statistical parsers. Notably are
the constraint-based linguistic frameworks with
mathematical rigor, and provide grammatical anal-
yses for a large variety of phenomena. For in-
stance, the Head-Driven Phrase Structure Gram-
mar (Pollard and Sag, 1994) has been success-
fully applied in several parsing systems for more
than a dozen of languages. Some of these gram-
mars, such as the English Resource Grammar
(ERG; Flickinger (2002)), have undergone over
decades of continuous development, and provide
precise linguistic analyses for a broad range of
phenomena. These linguistic knowledge are en-
coded in highly generalized form according to lin-
guists’ reflection for the target languages, and tend
to be largely independent from any specific do-
main.

The main issue of parsing with precision gram-
mars is that broad coverage and high precision on
linguistic phenomena do not directly guarantee ro-
bustness of the parser with noisy real world texts.
Also, the detailed linguistic analysis is not always
of the highest interest to all NLP applications. It
is not always straightforward to scale down the
detailed analyses embraced by deep grammars to
a shallower representation which is more acces-
sible for specific NLP tasks. On the other hand,
since the dependency representation is relatively
theory-neutral, it is possible to convert from other
frameworks into its backbone representation in de-
pendencies. For HPSG, this is further assisted by
the clear marking of head daughters in headed
phrases. Although the statistical components of
the grammar-driven parser might be still biased
by the training domain, the hand-coded grammar
rules guarantee the basic linguistic constraints to
be met. This not to say that domain adaptation is
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Figure 1: Different dependency parsing models
and their combinations. DB stands for dependency
backbone.

not an issue for grammar-based parsing systems,
but the built-in linguistic knowledge can be ex-
plored to reduce the performance drop in pure sta-
tistical approaches.

3 Dependency Parsing with HPSG

In this section, we explore two possible applica-
tions of the HPSG parsing onto the syntactic de-
pendency parsing task. One is to extract depen-
dency backbone from the HPSG analyses of the
sentences and directly convert them into the tar-
get representation; the other way is to encode the
HPSG outputs as additional features into the ex-
isting statistical dependency parsing models. In
the previous work, Nivre and McDonald (2008)
have integrated MSTParser and MaltParser
by feeding one parser’s output as features into the
other. The relationships between our work and
their work are roughly shown in Figure 1.

3.1 Extracting Dependency Backbone from
HPSG Derivation Tree

Given a sentence, each parse produced by the
parser is represented by a typed feature structure,
which recursively embeds smaller feature struc-
tures for lower level phrases or words. For the
purpose of dependency backbone extraction, we
only look at the derivation tree which corresponds
to the constituent tree of an HPSG analysis, with
all non-terminal nodes labeled by the names of the
grammar rules applied. Figure 2 shows an exam-
ple. Note that all grammar rules in ERG are ei-
ther unary or binary, giving us relatively deep trees
when compared with annotations such as Penn
Treebank. Conceptually, this conversion is sim-
ilar to the conversions from deeper structures to
GR reprsentations reported by Clark and Curran
(2007) and Miyao et al. (2007).

np_title_cmpnd

ms_n2 proper_np

subjh

generic_proper_ne

Haag

play_v1

hcomp

proper_np

generic_proper_ne

Elianti.

playsMs.

Figure 2: An example of an HPSG derivation tree
with ERG

Ms. Haag plays Elianti.

hcompnp_title_cmpnd subjh

Figure 3: An HPSG dependency backbone struc-
ture

The dependency backbone extraction works by
first identifying the head daughter for each bi-
nary grammar rule, and then propagating the head
word of the head daughter upwards to their par-
ents, and finally creating a dependency relation, la-
beled with the HPSG rule name of the parent node,
from the head word of the parent to the head word
of the non-head daughter. See Figure 3 for an ex-
ample of such an extracted backbone.

For the experiments in this paper, we used July-
08 version of the ERG, which contains in total
185 grammar rules (morphological rules are not
counted). Among them, 61 are unary rules, and
124 are binary. Many of the binary rules are
clearly marked as headed phrases. The gram-
mar also indicates whether the head is on the left
(head-initial) or on the right (head-final). How-
ever, there are still quite a few binary rules which
are not marked as headed-phrases (according to
the linguistic theory), e.g. rules to handle coor-
dinations, appositions, compound nouns, etc. For
these rules, we refer to the conversion of the Penn
Treebank into dependency structures used in the
CoNLL 2008 Shared Task, and mark the heads of
these rules in a way that will arrive at a compat-
ible dependency backbone. For instance, the left
most daughters of coordination rules are marked
as heads. In combination with the right-branching
analysis of coordination in ERG, this leads to the
same dependency attachment in the CoNLL syn-
tax. Eventually, 37 binary rules are marked with
a head daughter on the left, and 86 with a head
daughter on the right.

Although the extracted dependency is similar to
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the CoNLL shared task dependency structures, mi-
nor systematic differences still exist for some phe-
nomena. For example, the possessive “’s” is an-
notated to be governed by its preceding word in
CoNLL dependency; while in HPSG, it is treated as
the head of a “specifier-head” construction, hence
governing the preceding word in the dependency
backbone. With several simple tree rewriting
rules, we are able to fix the most frequent inconsis-
tencies. With the rule-based backbone extraction
and repair, we can finally turn our HPSG parser
outputs into dependency structures1. The unla-
beled attachment agreement between the HPSG
backbone and CoNLL dependency annotation will
be shown in Section 4.2.

3.2 Robust Parsing with HPSG

As mentioned in Section 2, one pitfall of using a
precision-oriented grammar in parsing is its lack
of robustness. Even with a large scale broad cover-
age grammar like ERG, using our settings we only
achieved 75% of sentential coverage2. Given that
the grammar has never been fine-tuned for the fi-
nancial domain, such coverage is very encourag-
ing. But still, the remaining unparsed sentences
comprise a big coverage gap.

Different strategies can be taken here. One
can either keep the high precision by only look-
ing at full parses from the HPSG parser, of which
the analyses are completely admitted by gram-
mar constraints. Or one can trade precision for
extra robustness by looking at the most proba-
ble incomplete analysis. Several partial parsing
strategies have been proposed (Kasper et al., 1999;
Zhang and Kordoni, 2008) as the robust fallbacks
for the parser when no available analysis can be
derived. In our experiment, we select the se-
quence of most likely fragment analyses accord-
ing to their local disambiguation scores as the par-
tial parse. When combined with the dependency
backbone extraction, partial parses generate dis-
joint tree fragments. We simply attach all frag-
ments onto the virtual root node.

1It is also possible map from HPSG rule names (together
with the part-of-speech of head and dependent) to CoNLL
dependency labels. This remains to be explored in the future.

2More recent study shows that with carefully designed
retokenization and preprocessing rules, over 80% sentential
coverage can be achieved on the WSJ sections of the Penn
Treebank data using the same version of ERG. The numbers
reported in this paper are based on a simpler preprocessor,
using rather strict time/memory limits for the parser. Hence
the coverage number reported here should not be taken as an
absolute measure of grammar performance.

3.3 Using Feature-Based Models
Besides directly using the dependency backbone
of the HPSG output, we could also use it for build-
ing feature-based models of statistical dependency
parsers. Since we focus on the domain adapta-
tion issue, we incorporate a less domain dependent
language resource (i.e. the HPSG parsing outputs
using ERG) into the features models of statistical
parsers. As mordern grammar-based parsers has
achieved high runtime efficency (with our HPSG
parser parsing at an average speed of∼3 sentences
per second), this adds up to an acceptable over-
head.

3.3.1 Feature Model with MSTParser
As mentioned before, MSTParser is a graph-
based statistical dependency parser, whose learn-
ing procedure can be viewed as the assignment
of different weights to all kinds of dependency
arcs. Therefore, the feature model focuses on each
kind of head-child pair in the dependency tree, and
mainly contains four categories of features (Mc-
donald et al., 2005a): basic uni-gram features, ba-
sic bi-gram features, in-between POS features, and
surrounding POS features. It is emphasized by the
authors that the last two categories contribute a
large improvement to the performance and bring
the parser to the state-of-the-art accuracy.

Therefore, we extend this feature set by adding
four more feature categories, which are similar to
the original ones, but the dependency relation was
replaced by the dependency backbone of the HPSG
outputs. The extended feature set is shown in Ta-
ble 1.

3.3.2 Feature Model with MaltParser
MaltParser is another trend of dependency
parser, which is based on transitions. The learning
procedure is to train a statistical model, which can
help the parser to decide which operation to take at
each parsing status. The basic data structures are a
stack, where the constructed dependency graph is
stored, and an input queue, where the unprocessed
data are put. Therefore, the feature model focuses
on the tokens close to the top of the stack and also
the head of the queue.

Provided with the original features used in
MaltParser, we add extra ones about the top
token in the stack and the head token of the queue
derived from the HPSG dependency backbone.
The extended feature set is shown in Table 2 (the
new features are listed separately).
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Uni-gram Features: h-w,h-p; h-w; h-p; c-w,c-p; c-w; c-p
Bi-gram Features: h-w,h-p,c-w,c-p; h-p,c-w,c-p; h-w,c-w,c-p; h-w,h-p,c-p; h-w,h-p,c-w; h-w,c-w; h-p,c-p
POS Features of words in between: h-p,b-p,c-p
POS Features of words surround: h-p,h-p+1,c-p-1,c-p; h-p-1,h-p,c-p-1,c-p; h-p,h-p+1,c-p,c-p+1; h-p-1,h-p,c-p,c-p+1

Table 1: The Extra Feature Set for MSTParser. h: the HPSG head of the current token; c: the current
token; b: each token in between; -1/+1: the previous/next token; w: word form; p: POS

POS Features: s[0]-p; s[1]-p; i[0]-p; i[1]-p; i[2]-p; i[3]-p
Word Form Features: s[0]-h-w; s[0]-w; i[0]-w; i[1]-w
Dependency Features: s[0]-lmc-d; s[0]-d; s[0]-rmc-d; i[0]-lmc-d
New Features: s[0]-hh-w; s[0]-hh-p; s[0]-hr; i[0]-hh-w; i[0]-hh-p; i[0]-hr

Table 2: The Extended Feature Set for MaltParser. s[0]/s[1]: the first and second token on the top of
the stack; i[0]/i[1]/i[2]/i[3]: front tokens in the input queue; h: head of the token; hh: HPSG DB head of
the token; w: word form; p: POS; d: dependency relation; hr: HPSG rule; lmc/rmc: left-/right-most child

With the extra features, we hope that the train-
ing of the statistical model will not overfit the in-
domain data, but be able to deal with domain in-
dependent linguistic phenomena as well.

4 Experiment Results & Error Analyses

To evaluate the performance of our different
dependency parsing models, we tested our ap-
proaches on several dependency treebanks for En-
glish in a similar spirit to the CoNLL 2006-2008
Shared Tasks. In this section, we will first de-
scribe the datasets, then present the results. An
error analysis is also carried out to show both pros
and cons of different models.

4.1 Datasets

In previous years of CoNLL Shared Tasks, sev-
eral datasets have been created for the purpose
of dependency parser evaluation. Most of them
are converted automatically from existing tree-
banks in various forms. Our experiments adhere
to the CoNLL 2008 dependency syntax (Yamada
et al. 2003, Johansson et al. 2007) which was
used to convert Penn-Treebank constituent trees
into single-head, single-root, traceless and non-
projective dependencies.

WSJ This dataset comprises of three portions.
The larger part is converted from the Penn Tree-
bank Wall Street Journal Sections #2–#21, and
is used for training statistical dependency parsing
models; the smaller part, which covers sentences
from Section #23, is used for testing.

Brown This dataset contains a subset of con-
verted sentences from BROWN sections of the
Penn Treebank. It is used for the out-domain test.

PChemtb This dataset was extracted from the
PennBioIE CYP corpus, containing 195 sentences
from biomedical domain. The same dataset has
been used for the domain adaptation track of the
CoNLL 2007 Shared Task. Although the original
annotation scheme is similar to the Penn Treebank,
the dependency extraction setting is slightly dif-
ferent to the CoNLLWSJ dependencies (e.g. the
coordinations).

Childes This is another out-domain test set from
the children language component of the TalkBank,
containing dialogs between parents and children.
This is the other datasets used in the domain adap-
tation track of the CoNLL 2007 Shared Task. The
dataset is annotated with unlabeled dependencies.
As have been reported by others, several system-
atic differences in the original CHILDES annota-
tion scheme has led to the poor system perfor-
mances on this track of the Shared Task in 2007.
Two main differences concern a) root attach-
ments, and b) coordinations. With several sim-
ple heuristics, we change the annotation scheme of
the original dataset to match the Penn Treebank-
based datasets. The new dataset is referred to as
CHILDES*.

4.2 HPSG Backbone as Dependency Parser

First we test the agreement between HPSG depen-
dency backbone and CoNLL dependency. While
approximating a target dependency structure with
rule-based conversion is not the main focus of this
work, the agreement between two representations
gives indication on how similar and consistent the
two representations are, and a rough impression of
whether the feature-based models can benefit from
the HPSG backbone.
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# sentence φ w/s DB(F)% DB(P)%
WSJ 2399 24.04 50.68 63.85
BROWN 425 16.96 66.36 76.25
PCHEMTB 195 25.65 50.27 61.60
CHILDES* 666 7.51 67.37 70.66
WSJ-P 1796 (75%) 22.25 71.33 –
BROWN-P 375 (88%) 15.74 80.04 –
PCHEMTB-P 147 (75%) 23.99 69.27 –
CHILDES*-P 595 (89%) 7.49 73.91 –

Table 3: Agreement between HPSG dependency
backbone and CoNLL 2008 dependency in unla-
beled attachment score. DB(F): full parsing mode;
DB(P): partial parsing mode; Punctuations are ex-
cluded from the evaluation.

The PET parser, an efficient parser HPSG parser
is used in combination with ERG to parse the
test sets. Note that the training set is not used.
The grammar is not adapted for any of these spe-
cific domain. To pick the most probable read-
ing from HPSG parsing outputs, we used a dis-
criminative parse selection model as described
in (Toutanova et al., 2002) trained on the LOGON
Treebank (Oepen et al., 2004), which is signifi-
cantly different from any of the test domain. The
treebank contains about 9K sentences for which
HPSG analyses are manually disambiguated. The
difference in annotation make it difficult to sim-
ply merge this HPSG treebank into the training set
of the dependency parser. Also, as Gildea (2001)
suggests, adding such heterogeneous data to the
training set will not automatically lead to perfor-
mance improvement. It should be noted that do-
main adaptation also presents a challenge to the
disambiguation model of the HPSG parser. All
datasets we use in our should be considered out-
domain to the HPSG disambiguation model.

Table 3 shows the agreement between the HPSG
backbone and CoNLL dependency in unlabeled at-
tachment score (UAS). The parser is set in either
full parsing or partial parsing mode. Partial pars-
ing is used as a fallback when full parse is not
available. UAS are reported on all complete test
sets, as well as fully parsed subsets (suffixed with
“-p”).

It is not surprising to see that, without a de-
cent fallback strategy, the full parse HPSG back-
bone suffers from insufficient coverage. Since the
grammar coverage is statistically correlated to the
average sentence length, the worst performance is
observed for the PCHEMTB. Although sentences
in CHILDES* are significantly shorter than those

in BROWN, there is a fairly large amount of less
well-formed sentences (either as a nature of child
language, or due to the transcription from spoken
dialogs). This leads to the close performance be-
tween these two datasets. PCHEMTB appears to be
the most difficult one for the HPSG parser. The
partial parsing fallback sets up a good safe net for
sentences that fail to parse. Without resorting to
any external resource, the performance was sig-
nificantly improved on all complete test sets.

When we set the coverage of the HPSG gram-
mar aside and only compare performance on the
subsets of these datasets which are fully parsed
by the HPSG grammar, the unlabeled attachment
score jumps up significantly. Most notable is
that the dependency backbone achieved over 80%
UAS on BROWN, which is close to the perfor-
mance of state-of-the-art statistical dependency
parsing systems trained on WSJ (see Table 5 and
Table 4). The performance difference across data
sets correlates to varying levels of difficulties in
linguists’ view. Our error analysis does confirm
that frequent errors occur in WSJ test with finan-
cial terminology missing from the grammar lexi-
con. The relative performance difference between
the WSJ and BROWN test is contrary to the results
observed for statistical parsers trained on WSJ.

To further investigate the effect of HPSG parse
disambiguation model on the dependency back-
bone accuracy, we used a set of 222 sentences
from section of WSJ which have been parsed with
ERG and manually disambiguated. Comparing
to the WSJ-P result in Table 3, we improved the
agreement with CoNLL dependency by another
8% (an upper-bound in case of a perfect disam-
biguation model).

4.3 Statistical Dependency Parsing with
HPSG Features

Similar evaluations were carried out for the statis-
tical parsers using extra HPSG dependency back-
bone as features. It should be noted that the per-
formance comparison between MSTParser and
MaltParser is not the aim of this experiment,
and the difference might be introduced by the spe-
cific settings we use for each parser. Instead, per-
formance variance using different feature models
is the main subject. Also, performance drop on
out-domain tests shows how domain dependent
the feature models are.

For MaltParser, we use Arc-Eager algo-
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rithm, and polynomial kernel with d = 2. For
MSTParser, we use 1st order features and a pro-
jective decoder (Eisner, 1996).

When incorporating HPSG features, two set-
tings are used. The PARTIAL model is derived by
robust-parsing the entire training data set and ex-
tract features from every sentence to train a uni-
fied model. When testing, the PARTIAL model is
used alone to determine the dependency structures
of the input sentences. The FULL model, on the
other hand is only trained on the full parsed subset
of sentences, and only used to predict dependency
structures for sentences that the grammar parses.
For the unparsed sentences, the original models
without HPSG features are used.

Parser performances are measured using
both labeled and unlabeled attachment scores
(LAS/UAS). For unlabeled CHILDES* data, only
UAS numbers are reported. Table 4 and 5 summa-
rize results for MSTParser and MaltParser,
respectively.

With both parsers, we see slight performance
drops with both HPSG feature models on in-
domain tests (WSJ), compared with the original
models. However, on out-domain tests, full-parse
HPSG feature models consistently outperform the
original models for both parsers. The difference is
even larger when only the HPSG fully parsed sub-
sets of the test sets are concerned. When we look
at the performance difference between in-domain
and out-domain tests for each feature model, we
observe that the drop is significantly smaller for
the extended models with HPSG features.

We should note that we have not done any
feature selection for our HPSG feature models.
Nor have we used the best known configurations
of the existing parsers (e.g. second order fea-
tures in MSTParser). Admittedly the results on
PCHEMTB are lower than the best reported results
in CoNLL 2007 Shared Task, we shall note that we
are not using any in-domain unlabeled data. Also,
the poor performance of the HPSG parser on this
dataset indicates that the parser performance drop
is more related to domain-specific phenomena and
not general linguistic knowledge. Nevertheless,
the drops when compared to in-domain tests are
constantly decreased with the help of HPSG analy-
ses features. With the results on BROWN, the per-
formance of our HPSG feature models will rank
2nd on the out-domain test for the CoNLL 2008
Shared Task.

Unlike the observations in Section 4.2, the par-
tial parsing mode does not work well as a fall-
back in the feature models. In most cases, its
performances are between the original models and
the full-parse HPSG feature models. The partial
parsing features obscure the linguistic certainty of
grammatical structures produced in the full model.
When used as features, such uncertainty leads
to further confusion. Practically, falling back to
the original models works better when HPSG full
parse is not available.

4.4 Error Analyses

Qualitative error analysis is also performed. Since
our work focuses on the domain adaptation, we
manually compare the outputs of the original sta-
tistical models, the dependency backbone, and the
feature-based models on the out-domain data, i.e.
the BROWN data set (both labeled and unlabeled
results) and the CHILDES* data set (only unlabeled
results).

For the dependency attachment (i.e. unlabeled
dependency relation), fine-grained HPSG features
do help the parser to deal with colloquial sen-
tences, such as “What’s wrong with you?”. The
original parser wrongly takes “what” as the root of
the dependency tree and “’s” is attached to “what”.
The dependency backbone correctly finds out the
root, and thus guide the extended model to make
the right prediction. A correct structure of “...,
were now neither active nor really relaxed.” is also
predicted by our model, while the original model
wrongly attaches “really” to “nor” and “relaxed”
to “were”. The rich linguistic knowledge from
the HPSG outputs also shows its usefulness. For
example, in a sentence from the CHILDES* data,
“Did you put dolly’s shoes on?”, the verb phrase
“put on” can be captured by the HPSG backbone,
while the original model attaches “on” to the adja-
cent token “shoes”.

For the dependency labels, the most diffi-
culty comes from the prepositions. For example,
“Scotty drove home alone in the Plymouth”, all
the systems get the head of “in” correct, which
is “drove”. However, none of the dependency la-
bels is correct. The original model predicts the
“DIR” relation, the extended feature-based model
says “TMP”, but the gold standard annotation is
“LOC”. This is because the HPSG dependency
backbone knows that “in the Plymouth” is an ad-
junct of “drove”, but whether it is a temporal or
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Original PARTIAL FULL
LAS% UAS% LAS% UAS% LAS% UAS%

WSJ 87.38 90.35 87.06 90.03 86.87 89.91
BROWN 80.46 (-6.92) 86.26 (-4.09) 80.55 (-6.51) 86.17 (-3.86) 80.92 (-5.95) 86.58 (-3.33)
PCHEMTB 53.37 (-33.8) 62.11 (-28.24) 54.69 (-32.37) 64.09 (-25.94) 56.45 (-30.42) 65.77 (-24.14)
CHILDES* – 72.17 (-18.18) – 74.91 (-15.12) – 75.64 (-14.27)
WSJ-P 87.86 90.88 87.78 90.85 87.12 90.25
BROWN-P 81.58 (-6.28) 87.41 (-3.47) 81.92 (-5.86) 87.51 (-3.34) 82.14 (-4.98) 87.80 (-2.45)
PCHEMTB-P 56.32 (-31.54) 65.26 (-25.63) 59.36 (-28.42) 69.20 (-21.65) 60.69 (-26.43) 70.45 (-19.80)
CHILDES*-P – 72.88 (-18.00) – 76.02 (-14.83) – 76.76 (-13.49)

Table 4: Performance of the MSTParser with different feature models. Numbers in parentheses are
performance drops in out-domain tests, comparing to in-domain results. The upper part represents the
results on the complete data sets, and the lower part is on the fully parsed subsets, indicated by “-P”.

Original PARTIAL FULL
LAS% UAS% LAS% UAS% LAS% UAS%

WSJ 86.47 88.97 85.39 88.10 85.66 88.40
BROWN 79.41 (-7.06) 84.75 (-4.22) 79.10 (-6.29) 84.58 (-3.52) 79.56 (-6.10) 85.24 (-3.16)
PCHEMTB 61.05 (-25.42) 71.32 (-17.65) 61.01 (-24.38) 70.99 (-17.11) 60.93 (-24.73) 70.89 (-17.51)
CHILDES* – 74.97 (-14.00) – 75.64 (-12.46) – 76.18 (-12.22)
WSJ-P 86.99 89.58 86.09 88.83 85.82 88.76
BROWN-P 80.43 (-6.56) 85.78 (-3.80) 80.46 (-5.63) 85.94 (-2.89) 80.62 (-5.20) 86.38 (-2.38)
PCHEMTB-P 63.33 (-23.66) 73.54 (-16.04) 63.27 (-22.82) 73.31 (-15.52) 63.16 (-22.66) 73.06 (-15.70)
CHILDES*-P – 75.95 (-13.63) – 77.05 (-11.78) – 77.30 (-11.46)

Table 5: Performance of the MaltParser with different feature models.

locative expression cannot be easily predicted at
the pure syntactic level. This also suggests a joint
learning of syntactic and semantic dependencies,
as proposed in the CoNLL 2008 Shared Task.

Instances of wrong HPSG analyses have also
been observed as one source of errors. For most of
the cases, a correct reading exists, but not picked
by our parse selection model. This happens more
often with the WSJ test set, partially contributing
to the low performance.

5 Conclusion & Future Work

Similar to our work, Sagae et al. (2007) also con-
sidered the combination of dependency parsing
with an HPSG parser, although their work was to
use statistical dependency parser outputs as soft
constraints to improve the HPSG parsing. Nev-
ertheless, a similar backbone extraction algorithm
was used to map between different representa-
tions. Similar work also exists in the constituent-
based approaches, where CFG backbones were
used to improve the efficiency and robustness of
HPSG parsers (Matsuzaki et al., 2007; Zhang and
Kordoni, 2008).

In this paper, we restricted our investigation on
the syntactic evaluation using labeled/unlabeled
attachment scores. Recent discussions in the
parsing community about meaningful cross-

framework evaluation metrics have suggested to
use measures that are semantically informed. In
this spirit, Zhang et al. (2008) showed that the se-
mantic outputs of the same HPSG parser helps in
the semantic role labeling task. Consistent with
the results reported in this paper, more improve-
ment was achieved on the out-domain tests in their
work as well.

Although the experiments presented in this pa-
per were carried out on a HPSG grammar for En-
glish, the method can be easily adapted to work
with other grammar frameworks (e.g. LFG, CCG,
TAG, etc.), as well as on langugages other than
English. We chose to use a hand-crafted grammar,
so that the effect of training corpus on the deep
parser is minimized (with the exception of the lex-
ical coverage and disambiguation model).

As mentioned in Section 4.4, the performance
of our HPSG parse selection model varies across
different domains. This indicates that, although
the deep grammar embraces domain independent
linguistic knowledge, the lexical coverage and the
disambiguation process among permissible read-
ings is still domain dependent. With the map-
ping between HPSG analyses and their depen-
dency backbones, one can potentially use existing
dependency treebanks to help overcome the insuf-
ficient data problem for deep parse selection mod-
els.
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