
Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 306–314,
Suntec, Singapore, 2-7 August 2009. c©2009 ACL and AFNLP

The Contribution of Linguistic Features to Automatic Machine
Translation Evaluation
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Abstract

A number of approaches to Automatic
MT Evaluation based on deep linguistic
knowledge have been suggested. How-
ever, n-gram based metrics are still to-
day the dominant approach. The main
reason is that the advantages of employ-
ing deeper linguistic information have not
been clarified yet. In this work, we pro-
pose a novel approach for meta-evaluation
of MT evaluation metrics, since correla-
tion cofficient against human judges do
not reveal details about the advantages and
disadvantages of particular metrics. We
then use this approach to investigate the
benefits of introducing linguistic features
into evaluation metrics. Overall, our ex-
periments show that (i) both lexical and
linguistic metrics present complementary
advantages and (ii) combining both kinds
of metrics yields the most robust meta-
evaluation performance.

1 Introduction

Automatic evaluation methods based on similarity
to human references have substantially accelerated
the development cycle of many NLP tasks, such
as Machine Translation, Automatic Summariza-
tion, Sentence Compression and Language Gen-
eration. These automatic evaluation metrics allow
developers to optimize their systems without the
need for expensive human assessments for each
of their possible system configurations. However,
estimating the system output quality according to
its similarity to human references is not a trivial
task. The main problem is that many NLP tasks
are open/subjective; therefore, different humans
may generate different outputs, all of them equally
valid. Thus, language variability is an issue.

In order to tackle language variability in the

context of Machine Translation, a considerable ef-
fort has also been made to include deeper linguis-
tic information in automatic evaluation metrics,
both syntactic and semantic (see Section 2 for de-
tails). However, the most commonly used metrics
are still based on n-gram matching. The reason is
that the advantages of employing higher linguistic
processing levels have not been clarified yet.

The main goal of our work is to analyze to what
extent deep linguistic features can contribute to the
automatic evaluation of translation quality. For
that purpose, we compare – using four different
test beds – the performance of 16 n-gram based
metrics, 48 linguistic metrics and one combined
metric from the state of the art.

Analyzing the reliability of evaluation met-
rics requires meta-evaluation criteria. In this re-
spect, we identify important drawbacks of the
standard meta-evaluation methods based on cor-
relation with human judgements. In order to
overcome these drawbacks, we then introduce six
novel meta-evaluation criteria which represent dif-
ferent metric reliability dimensions. Our analysis
indicates that: (i) both lexical and linguistic met-
rics have complementary advantages and different
drawbacks; (ii) combining both kinds of metrics
is a more effective and robust evaluation method
across all meta-evaluation criteria.

In addition, we also perform a qualitative analy-
sis of one hundred sentences that were incorrectly
evaluated by state-of-the-art metrics. The analysis
confirms that deep linguistic techniques are neces-
sary to avoid the most common types of error.

Section 2 examines the state of the art Section 3
describes the test beds and metrics considered in
our experiments. In Section 4 the correlation be-
tween human assessors and metrics is computed,
with a discussion of its drawbacks. In Section 5
different quality aspects of metrics are analysed.
Conclusions are drawn in the last section.
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2 Previous Work on Machine
Translation Meta-Evaluation

Insofar as automatic evaluation metrics for ma-
chine translation have been proposed, different
meta-evaluation frameworks have been gradually
introduced. For instance, Papineni et al. (2001)
introduced the BLEU metric and evaluated its re-
liability in terms of Pearson correlation with hu-
man assessments for adequacy and fluency judge-
ments. With the aim of overcoming some of the
deficiencies of BLEU, Doddington (2002) intro-
duced the NIST metric. Metric reliability was
also estimated in terms of correlation with human
assessments, but over different document sources
and for a varying number of references and seg-
ment sizes. Melamed et al. (2003) argued, at the
time of introducing the GTM metric, that Pearson
correlation coefficients can be affected by scale
properties, and suggested, in order to avoid this
effect, to use the non-parametric Spearman corre-
lation coefficients instead.

Lin and Och (2004) experimented, unlike pre-
vious works, with a wide set of metrics, including
NIST, WER (Nießen et al., 2000), PER (Tillmann
et al., 1997), and variants of ROUGE, BLEU and
GTM. They computed both Pearson and Spearman
correlation, obtaining similar results in both cases.
In a different work, Banerjee and Lavie (2005) ar-
gued that the measured reliability of metrics can
be due to averaging effects but might not be robust
across translations. In order to address this issue,
they computed the translation-by-translation cor-
relation with human judgements (i.e., correlation
at the segment level).

All that metrics were based on n-gram over-
lap. But there is also extensive research fo-
cused on including linguistic knowledge in met-
rics (Owczarzak et al., 2006; Reeder et al., 2001;
Liu and Gildea, 2005; Amigó et al., 2006; Mehay
and Brew, 2007; Giménez and Màrquez, 2007;
Owczarzak et al., 2007; Popovic and Ney, 2007;
Giménez and Màrquez, 2008b) among others. In
all these cases, metrics were also evaluated by
means of correlation with human judgements.

In a different research line, several authors
have suggested approaching automatic evalua-
tion through the combination of individual metric
scores. Among the most relevant let us cite re-
search by Kulesza and Shieber (2004), Albrecht
and Hwa (2007). But finding optimal metric
combinations requires a meta-evaluation criterion.

Most approaches again rely on correlation with
human judgements. However, some of them mea-
sured the reliability of metric combinations in
terms of their ability to discriminate between hu-
man translations and automatic ones (human like-
ness) (Amigó et al., 2005). .

In this work, we present a novel approach to
meta-evaluation which is distinguished by the use
of additional easily interpretable meta-evaluation
criteria oriented to measure different aspects of
metric reliability. We then apply this approach to
find out about the advantages and challenges of in-
cluding linguistic features in meta-evaluation cri-
teria.

3 Metrics and Test Beds

3.1 Metric Set

For our study, we have compiled a rich set of met-
ric variants at three linguistic levels: lexical, syn-
tactic, and semantic. In all cases, translation qual-
ity is measured by comparing automatic transla-
tions against a set of human references.

At the lexical level, we have included several
standard metrics, based on different similarity as-
sumptions: edit distance (WER, PER and TER),
lexical precision (BLEU and NIST), lexical recall
(ROUGE), and F-measure (GTM and METEOR). At
the syntactic level, we have used several families
of metrics based on dependency parsing (DP) and
constituency trees (CP). At the semantic level, we
have included three different families which op-
erate using named entities (NE), semantic roles
(SR), and discourse representations (DR). A de-
tailed description of these metrics can be found in
(Giménez and Màrquez, 2007).

Finally, we have also considered ULC, which
is a very simple approach to metric combina-
tion based on the unnormalized arithmetic mean
of metric scores, as described by Giménez and
Màrquez (2008a). ULC considers a subset of met-
rics which operate at several linguistic levels. This
approach has proven very effective in recent eval-
uation campaigns. Metric computation has been
carried out using the IQMT Framework for Auto-
matic MT Evaluation (Giménez, 2007)1. The sim-
plicity of this approach (with no training of the
metric weighting scheme) ensures that the poten-
tial advantages detected in our experiments are not
due to overfitting effects.

1http://www.lsi.upc.edu/˜nlp/IQMT
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2004 2005
AE CE AE CE

#references 5 5 5 4
#systemsassessed 5 10 5+1 5
#casesassessed 347 447 266 272

Table 1: NIST 2004/2005 MT Evaluation Cam-
paigns. Test bed description

3.2 Test Beds

We use the test beds from the 2004 and 2005
NIST MT Evaluation Campaigns (Le and Przy-
bocki, 2005)2. Both campaigns include two dif-
ferent translations exercises: Arabic-to-English
(‘AE’) and Chinese-to-English (‘CE’). Human as-
sessments of adequacy and fluency, on a 1-5 scale,
are available for a subset of sentences, each eval-
uated by two different human judges. A brief nu-
merical description of these test beds is available
in Table 1. The corpus AE05 includes, apart from
five automatic systems, one human-aided system
that is only used in our last experiment.

4 Correlation with Human Judgements

4.1 Correlation at the Segment vs. System
Levels

Let us first analyze the correlation with human
judgements for linguistic vs. n-gram based met-
rics. Figure 1 shows the correlation obtained by
each automatic evaluation metric at system level
(horizontal axis) versus segment level (vertical
axis) in our test beds. Linguistic metrics are rep-
resented by grey plots, and black plots represent
metrics based on n-gram overlap.

The most remarkable aspect is that there exists
a certain trade-off between correlation at segment
versus system level. In fact, this graph produces
a negative Pearson correlation coefficient between
system and segment levels of 0.44. In other words,
depending on how the correlation is computed,
the relative predictive power of metrics can swap.
Therefore, we need additional meta-evaluation cri-
teria in order to clarify the behavior of linguistic
metrics as compared to n-gram based metrics.

However, there are some exceptions. Some
metrics achieve high correlation at both levels.
The first one is ULC (the circle in the plot), which
combines both kind of metrics in a heuristic way
(see Section 3.1). The metric nearest to ULC is

2http://www.nist.gov/speech/tests/mt

Figure 1: Averaged Pearson correlation at system
vs. segment level over all test beds.

DP-Or-?, which computes lexical overlapping but
on dependency relationships. These results are a
first evidence of the advantages of combining met-
rics at several linguistic processing levels.

4.2 Drawbacks of Correlation-based
Meta-evaluation

Although correlation with human judgements is
considered the standard meta-evaluation criterion,
it presents serious drawbacks. With respect to
correlation at system level, the main problem is
that the relative performance of different metrics
changes almost randomly between testbeds. One
of the reasons is that the number of assessed sys-
tems per testbed is usually low, and then correla-
tion has a small number of samples to be estimated
with. Usually, the correlation at system level is
computed over no more than a few systems.

For instance, Table 2 shows the best 10 met-
rics in CE05 according to their correlation with
human judges at the system level, and then the
ranking they obtain in the AE05 testbed. There
are substantial swaps between both rankings. In-
deed, the Pearson correlation of both ranks is only
0.26. This result supports the intuition in (Baner-
jee and Lavie, 2005) that correlation at segment
level is necessary to ensure the reliability of met-
rics in different situations.

However, the correlation values of metrics at
segment level have also drawbacks related to their
interpretability. Most metrics achieve a Pearson
coefficient lower than 0.5. Figure 2 shows two
possible relationships between human and metric
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Table 2: Metrics rankings according to correlation
with human judgements using CE05 vs. AE05

Figure 2: Human judgements and scores of two
hypothetical metrics with Pearson correlation 0.5

produced scores. Both hypothetical metrics A and
B would achieve a 0.5 correlation. In the case
of Metric A, a high score implies a high human
assessed quality, but not the reverse. This is the
tendency hypothesized by Culy and Riehemann
(2003). In the case of Metric B, the high scored
translations can achieve both low or high quality
according to human judges but low scores ensure
low quality. Therefore, the same Pearson coeffi-
cient may hide very different behaviours. In this
work, we tackle these drawbacks by defining more
specific meta-evaluation criteria.

5 Alternatives to Correlation-based
Meta-evaluation

We have seen that correlation with human judge-
ments has serious limitations for metric evalua-
tion. Therefore, we have focused on other aspects
of metric reliability that have revealed differences
between n-gram and linguistic based metrics:

1. Is the metric able to accurately reveal im-
provements between two systems?

2. Can we trust the metric when it says that a
translation is very good or very bad?

Figure 3: SIP versus SIR

3. Are metrics able to identify good translations
which are dissimilar from the models?

We now discuss each of these aspects sepa-
rately.

5.1 Ability of metrics to Reveal System
Improvements

We now investigate to what extent a significant
system improvement according to the metric im-
plies a significant improvement according to hu-
man assessors, and viceversa. In other words: are
the metrics able to detect any quality improve-
ment? Is a metric score improvement a strong ev-
idence of quality increase? Knowing that a metric
has a 0.8 Pearson correlation at the system level or
0.5 at the segment level does not provide a direct
answer to this question.

In order to tackle this issue, we compare met-
rics versus human assessments in terms of pre-
cision and recall over statistically significant im-
provements within all system pairs in the test
beds. First, Table 3 shows the amount of signif-
icant improvements over human judgements ac-
cording to the Wilcoxon statistical significant test
(α ≤ 0.025). For instance, the testbed CE2004
consists of 10 systems, i.e. 45 system pairs; from
these, in 40 cases (rightmost column) one of the
systems significantly improves the other.

Now we would like to know, for every metric, if
the pairs which are significantly different accord-
ing to human judges are also the pairs which are
significantly different according to the metric.

Based on these data, we define two meta-
metrics: Significant Improvement Precision (SIP)
and Significant Improvement Recall (SIR). SIP
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Systems System pairs Sig. imp.
CE2004 10 45 40
AE2004 5 10 8
CE2005 5 10 4
AE2005 5 10 6
Total 25 75 58

Table 3: System pairs with a significant difference
according to human judgements (Wilcoxon test)

(precision) represents the reliability of improve-
ments detected by metrics. SIR (recall) represents
to what extent the metric is able to cover the sig-
nificant improvements detected by humans. Let
Ih be the set of significant improvements detected
by human assessors and Im the set detected by the
metric m. Then:

SIP =
|Ih ∩ Im|
|Im|

SIR =
|Ih ∩ Im|
|Ih|

Figure 3 shows the SIR and SIP values obtained
for each metric. Linguistic metrics achieve higher
precision values but at the cost of an important re-
call decrease. Given that linguistic metrics require
matching translation with references at additional
linguistic levels, the significant improvements de-
tected are more reliable (higher precision or SIP),
but at the cost of recall over real significant im-
provements (lower SIR).

This result supports the behaviour predicted in
(Giménez and Màrquez, 2009). Although linguis-
tic metrics were motivated by the idea of model-
ing linguistic variability, the practical effect is that
current linguistic metrics introduce additional re-
strictions (such as dependency tree overlap, for in-
stance) for accepting automatic translations. Then
they reward precision at the cost of recall in the
evaluation process, and this explains the high cor-
relation with human judgements at system level
with respect to segment level.

All n-gram based metrics achieve SIP and SIR
values between 0.8 and 0.9. This result suggests
that n-gram based metrics are reasonably reliable
for this purpose. Note that the combined met-
ric, ULC (the circle in the figure), achieves re-
sults comparable to n-gram based metrics with
this test3. That is, combining linguistic and n-
gram based metrics preserves the good behavior
of n-gram based metrics in this test.

3Notice that we just have 75 significant improvement
samples, so small differences in SIP or SIR have no relevance

5.2 Reliability of High and Low Metric
Scores

The issue tackled in this section is to what extent
a very low or high score according to the metric
is reliable for detecting extreme cases (very good
or very bad translations). In particular, note that
detecting wrong translations is crucial in order to
analyze the system drawbacks.

In order to define an accuracy measure for the
reliability of very low/high metric scores, it is nec-
essary to define quality thresholds for both the
human assessments and metric scales. Defining
thresholds for manual scores is immediate (e.g.,
lower than 4/10). However, each automatic evalu-
ation metric has its own scale properties. In order
to solve scaling problems we will focus on equiva-
lent rank positions: we associate the ith translation
according to the metric ranking with the quality
value manually assigned to the ith translation in
the manual ranking.

Being Qh(t) and Qm(t) the human and met-
ric assessed quality for the translation t, and being
rankh(t) and rankm(t) the rank of the translation
t according to humans and the metric, the normal-
ized metric assessed quality is:

QNm(t) = Qh(t′)| (rankh(t′) = rankm(t))

In order to analyze the reliability of metrics
when identifying wrong or high quality transla-
tions, we look for contradictory results between
the metric and the assessments. In other words,
we look for metric errors in which the quality es-
timated by the metric is low (QNm(t) ≤ 3) but the
quality assigned by assessors is high (Qh(t) ≥ 5)
or viceversa (QNm(t) ≥ 7 and Qh(t) ≤ 4).

The vertical axis in Figure 4 represents the ra-
tio of errors in the set of low scored translations
according to a given metric. The horizontal axis
represents the ratio of errors over the set of high
scored translations. The first observation is that
all metrics are less reliable when they assign low
scores (which corresponds with the situation A de-
scribed in Section 4.2). For instance, the best met-
ric erroneously assigns a low score in more than
20% of the cases. In general, the linguistic met-
rics do not improve the ability to capture wrong
translations (horizontal axis in the figure). How-
ever, again, the combining metric ULC achieves
the same reliability as the best n-gram based met-
ric.
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In order to check the robustness of these results,
we computed the correlation of individual metric
failures between test beds, obtaining 0.67 Pearson
for the lowest correlated test bed pair (AE2004 and
CE2005) and 0.88 for the highest correlated pair
(AE2004 and CE2004).

Figure 4: Counter sample ratio for high vs low
metric scored translations

5.2.1 Analysis of Evaluation Samples
In order to shed some light on the reasons for the
automatic evaluation failures when assigning low
scores, we have manually analyzed cases in which
a metric score is low but the quality according to
humans is high (QNm ≤ 3 and Qh ≥ 7). We
have studied 100 sentence evaluation cases from
representatives of each metric family including: 1-
PER, BLEU, DP-Or-?, GTM (e = 2), METEOR
and ROUGEL. The evaluation cases have been ex-
tracted from the four test beds. We have identified
four main (non exclusive) failure causes:
Format issues, e.g. “US ” vs “United States”).
Elements such as abbreviations, acronyms or num-
bers which do not match the manual translation.
Pseudo-synonym terms, e.g. “US Scheduled the
Release” vs. “US set to Release”). ) In most of
these cases, synonymy can only be identified from
the discourse context. Therefore, terminological
resources (e.g., WordNet) are not enough to tackle
this problem.
Non relevant information omissions, e.g.
“Thank you” vs. “Thank you very much” or
“dollar” vs. “US dollar”)). The translation
system obviates some information which, in
context, is not considered crucial by the human
assessors. This effect is specially important in

short sentences.
Incorrect structures that change the meaning
while maintaining the same idea (e.g., “Bush
Praises NASA ’s Mars Mission” vs “ Bush praises
nasa of Mars mission” ).

Note that all of these kinds of failure - except
formatting issues - require deep linguistic process-
ing while n-gram overlap or even synonyms ex-
tracted from a standard ontology are not enough to
deal with them. This conclusion motivates the in-
corporation of linguistic processing into automatic
evaluation metrics.

5.3 Ability to Deal with Translations that are
Dissimilar to References.

The results presented in Section 5.2 indicate that a
high score in metrics tends to be highly related to
truly good translations. This is due to the fact that
a high word overlapping with human references is
a reliable evidence of quality. However, in some
cases the translations to be evaluated are not so
similar to human references.

An example of this appears in the test bed
NIST05AE which includes a human-aided sys-
tem, LinearB (Callison-Burch, 2005). This system
produces correct translations whose words do not
necessarily overlap with references. On the other
hand, a statistics based system tends to produce
incorrect translations with a high level of lexical
overlapping with the set of human references. This
case was reported by Callison-Burch et al. (2006)
and later studied by Giménez and Màrquez (2007).
They found out that lexical metrics fail to pro-
duce reliable evaluation scores. They favor sys-
tems which share the expected reference sublan-
guage (e.g., statistical) and penalize those which
do not (e.g., LinearB).

We can find in our test bed many instances in
which the statistical systems obtain a metric score
similar to the assisted system while achieving a
lower mark according to human assessors. For in-
stance, for the following translations, ROUGEL

assigns a slightly higher score to the output of a
statistical system which contains a lot of grammat-
ical and syntactical failures.

Human assisted system: The Chinese President made un-
precedented criticism of the leaders of Hong Kong after
political failings in the former British colony on Mon-
day . Human assessment=8.5.

Statistical system: Chinese President Hu Jintao today un-
precedented criticism to the leaders of Hong Kong
wake political and financial failure in the former
British colony. Human assessment=3.
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Figure 5: Maximum translation quality decreasing
over similarly scored translation pairs.

In order to check the metric resistance to be
cheated by translations with high lexical over-
lapping, we estimate the quality decrease that
we could cause if we optimized the human-aided
translations according to the automatic metric. For
this, we consider in each translation case c, the
worse automatic translation t that equals or im-
proves the human-aided translation th according
to the automatic metric m. Formally the averaged
quality decrease is:

Quality decrease(m) =

Avgc(maxt(Qh(th)−Qh(t)|Qm(th) ≤ Qm(t)))

Figure 5 illustrates the results obtained. All
metrics are suitable to be cheated, assigning sim-
ilar or higher scores to worse translations. How-
ever, linguistic metrics are more resistant. In addi-
tion, the combined metric ULC obtains the best re-
sults, better than both linguistic and n-gram based
metrics. Our conclusion is that including higher
linguistic levels in metrics is relevant to prevent
ungrammatical n-gram matching to achieve simi-
lar scores than grammatical constructions.

5.4 The Oracle System Test

In order to obtain additional evidence about the
usefulness of combining evaluation metrics at dif-
ferent processing levels, let us consider the follow-
ing situation: given a set of reference translations
we want to train a combined system that takes
the most appropriate translation approach for each
text segment. We consider the set of translations
system presented in each competition as the trans-
lation approaches pool. Then, the upper bound on
the quality of the combined system is given by the

Metric OST
maxOST 6.72

ULC 5.79
ROUGEW 5.71
DP-Or-? 5.70
CP-Oc-? 5.70

NIST 5.70
randOST 5.20
minOST 3.67

Table 4: Metrics ranked according to the Oracle
System Test

predictive power of the employed automatic eval-
uation metric. This upper bound is obtained by se-
lecting the highest scored translation t according
to a specific metric m for each translation case c.
The Oracle System Test (OST) consists of com-
puting the averaged human assessed quality Qh

of the selected translations according to human as-
sessors across all cases. Formally:

OST(m) = Avgc(Qh(Argmaxt(Qm(t))|t ∈ c))

We use the sum of adequacy and fluency, both
in a 1-5 scale, as a global quality measure. Thus,
OST scores are in a 2-10 range. In summary,
the OST represents the best combined system that
could be trained according to a specific automatic
evaluation metric.

Table 4 shows OST values obtained for the best
metrics. In the table we have also included a ran-
dom, a maximum (always pick the best transla-
tion according to humans) and a minimum (al-
ways pick the worse translation according to hu-
man) OST for all 4. The most remarkable result
in Table 4 is that metrics are closer to the random
baseline than to the upperbound (maximum OST).
This result confirms the idea that an improvement
on metric reliability could contribute considerably
to the systems optimization process. However, the
key point is that the combined metric, ULC, im-
proves all the others (5.79 vs. 5.71), indicating
the importance of combining n-gram and linguis-
tic features.

6 Conclusions

Our experiments show that, on one hand, tradi-
tional n-gram based metrics are more or equally

4In all our experiments, the meta-metric values are com-
puted over each test bed independently before averaging in
order to assign equal relevance to the four possible contexts
(test beds)
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reliable for estimating the translation quality at the
segment level, for predicting significant improve-
ment between systems and for detecting poor and
excellent translations.

On the other hand, linguistically motivated met-
rics improve n-gram metrics in two ways: (i) they
achieve higher correlation with human judgements
at system level and (ii) they are more resistant to
reward poor translations with high word overlap-
ping with references.

The underlying phenomenon is that, rather
than managing the linguistics variability, linguis-
tic based metrics introduce additional restrictions
for assigning high scores. This effect decreases
the recall over significant system improvements
achieved by n-gram based metrics and does not
solve the problem of detecting wrong translations.
Linguistic metrics, however, are more difficult to
cheat.

In general, the greatest pitfall of metrics is the
low reliability of low metric values. Our qualita-
tive analysis of evaluated sentences has shown that
deeper linguistic techniques are necessary to over-
come the important surface differences between
acceptable automatic translations and human ref-
erences.

But our key finding is that combining both kinds
of metrics gives top performance according to ev-
ery meta-evaluation criteria. In addition, our Com-
bined System Test shows that, when training a
combined translation system, using metrics at sev-
eral linguistic processing levels improves substan-
tially the use of individual metrics.

In summary, our results motivate: (i) work-
ing on new linguistic metrics for overcoming the
barrier of linguistic variability and (ii) perform-
ing new metric combining schemes based on lin-
ear regression over human judgements (Kulesza
and Shieber, 2004), training models over hu-
man/machine discrimination (Albrecht and Hwa,
2007) or non parametric methods based on refer-
ence to reference distances (Amigó et al., 2005).
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