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Abstract

We describe a semantic role labeling system
that makes primary use of CCG-based fea-
tures. Most previously developed systems
are CFG-based and make extensive use of a
treepath feature, which suffers from data spar-
sity due to its use of explicit tree configura-
tions. CCG affords ways to augment treepath-
based features to overcome these data sparsity
issues. By adding features over CCG word-
word dependencies and lexicalized verbal sub-
categorization frames (“supertags”), we can
obtain an F-score that is substantially better
than a previous CCG-based SRL system and
competitive with the current state of the art. A
manual error analysis reveals that parser errors
account for many of the errors of our system.
This analysis also suggests that simultaneous
incremental parsing and semantic role labeling
may lead to performance gains in both tasks.

1 Introduction

Semantic Role Labeling (SRL) is the process of assign-
ing semantic roles to strings of words in a sentence ac-
cording to their relationship to the semantic predicates
expressed in the sentence. The task is difficult because
the relationship between syntactic relations like “sub-
ject” and “object” do not always correspond to seman-
tic relations like “agent” and “patient”. An effective
semantic role labeling system must recognize the dif-
ferences between different configurations:

(a) [The man]Arg0 opened [the door]Arg1 [for
him]Arg3 [today]ArgM−TMP .

(b) [The door]Arg1 opened.

(c) [The door]Arg1 was opened by [a man]Arg0.

We use Propbank (Palmer et al., 2005), a corpus of
newswire text annotated with verb predicate semantic
role information that is widely used in the SRL litera-
ture (Màrquez et al., 2008). Rather than describe se-
mantic roles in terms of “agent” or “patient”, Propbank
defines semantic roles on a verb-by-verb basis. For ex-
ample, the verbopenencodes the OPENERas Arg0, the
OPENEEas Arg1, and the beneficiary of the OPENING

action as Arg3. Propbank also defines a set of adjunct

roles, denoted by the letter M instead of a number. For
example, ArgM-TMP denotes a temporal role, like “to-
day”. By using verb-specific roles, Propbank avoids
specific claims about parallels between the roles of dif-
ferent verbs.

We follow the approach in (Punyakanok et al., 2008)
in framing the SRL problem as a two-stage pipeline:
identification followed by labeling. During identifica-
tion, every word in the sentence is labeled either as
bearing some (as yet undetermined) semantic role or
not . This is done for each verb. Next, during label-
ing, the precise verb-specific roles for each word are
determined. In contrast to the approach in (Punyakanok
et al., 2008), which tags constituents directly, we tag
headwords and then associate them with a constituent,
as in a previous CCG-based approach (Gildea and
Hockenmaier, 2003). Another difference is our choice
of parsers. Brutus uses the CCG parser of (Clark and
Curran, 2007, henceforth the C&C parser), Charniak’s
parser (Charniak, 2001) for additional CFG-based fea-
tures, and MALT parser (Nivre et al., 2007) for de-
pendency features, while (Punyakanok et al., 2008)
use results from an ensemble of parses from Char-
niak’s Parser and a Collins parser (Collins, 2003; Bikel,
2004). Finally, the system described in (Punyakanok et
al., 2008) uses a joint inference model to resolve dis-
crepancies between multiple automatic parses. We do
not employ a similar strategy due to the differing no-
tions of constituency represented in our parsers (CCG
having a much more fluid notion of constituency and
the MALT parser using a different approach entirely).

For the identification and labeling steps, we train
a maximum entropy classifier (Berger et al., 1996)
over sections 02-21 of a version of the CCGbank cor-
pus (Hockenmaier and Steedman, 2007) that has been
augmented by projecting the Propbank semantic anno-
tations (Boxwell and White, 2008). We evaluate our
SRL system’s argument predictions at the word string
level, making our results directly comparable for each
argument labeling.1

In the following, we briefly introduce the CCG
grammatical formalism and motivate its use in SRL
(Sections 2–3). Our main contribution is to demon-
strate that CCG — arguably a more expressive and lin-

1This is guaranteed by our string-to-string mapping from
the original Propbank to the CCGbank.
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guistically appealing syntactic framework than vanilla
CFGs — is a viable basis for the SRL task. This is sup-
ported by our experimental results, the setup and details
of which we give in Sections 4–10. In particular, using
CCG enables us to map semantic roles directly onto
verbal categories, an innovation of our approach that
leads to performance gains (Section 7). We conclude
with an error analysis (Section 11), which motivates
our discussion of future research for computational se-
mantics with CCG (Section 12).

2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (Steedman, 2000)
is a grammatical framework that describes syntactic
structure in terms of the combinatory potential of the
lexical (word-level) items. Rather than using standard
part-of-speech tags and grammatical rules, CCG en-
codes much of the combinatory potential of each word
by assigning a syntactically informative category. For
example, the verbloves has the category (s\np)/np,
which could be read “the kind of word that would be
a sentence if it could combine with a noun phrase on
the right and a noun phrase on the left”. Further, CCG
has the advantage of a transparent interface between the
way the words combine and their dependencies with
other words. Word-word dependencies in the CCG-
bank are encoded using predicate-argument (PARG)
relations. PARG relations are defined by the functor
word, the argument word, the category of the functor
word and which argument slot of the functor category
is being filled. For example, in the sentenceJohn loves
Mary (figure 1), there are two slots on the verbal cat-
egory to be filled by NP arguments. The first argu-
ment (the subject) fills slot 1. This can be encoded
as <loves,john,(s\np)/np,1>, indicating the head of
the functor, the head of the argument, the functor cat-
egory and the argument slot. The second argument
(the direct object) fills slot 2. This can be encoded as
<loves,mary,(s\np)/np,2>. One of the potential ad-
vantages to using CCGbank-style PARG relations is
that they uniformly encode both local and long-range
dependencies — e.g., the noun phrasethe Mary that
John lovesexpresses the same set of two dependencies.
We will show this to be a valuable tool for semantic
role prediction.

3 Potential Advantages to using CCG

There are many potential advantages to using the CCG
formalism in SRL. One is the uniformity with which
CCG can express equivalence classes of local and long-
range (including unbounded) dependencies. CFG-
based approaches often rely on examining potentially
long sequences of categories (ortreepaths) between the
verb and the target word. Because there are a number of
different treepaths that correspond to a single relation
(figure 2), this approach can suffer from data sparsity.
CCG, however, can encode all treepath-distinct expres-
sions of a single grammatical relation into a single

predicate-argument relationship (figure 3). This fea-
ture has been shown (Gildea and Hockenmaier, 2003)
to be an effective substitute for treepath-based features.
But while predicate-argument-based features are very
effective, they are still vulnerable both to parser er-
rors and to cases where the semantics of a sentence
do not correspond directly to syntactic dependencies.
To counteract this, we use both kinds of features with
the expectation that the treepath feature will provide
low-level detail to compensate for missed, incorrect or
syntactically impossible dependencies.

Another advantage of a CCG-based approach (and
lexicalist approaches in general) is the ability to en-
code verb-specific argument mappings. An argument
mapping is a link between the CCG category and the
semantic roles that are likely to go with each of its ar-
guments. The projection of argument mappings onto
CCG verbal categories is explored in (Boxwell and
White, 2008). We describe this feature in more detail
in section 7.

4 Identification and Labeling Models

As in previous approaches to SRL, Brutus uses a two-
stage pipeline of maximum entropy classifiers. In ad-
dition, we train an argument mapping classifier (de-
scribed in more detail below) whose predictions are
used as features for the labeling model. The same
features are extracted for both treebank and automatic
parses. Automatic parses were generated using the
C&C CCG parser (Clark and Curran, 2007) with its
derivation output format converted to resemble that of
the CCGbank. This involved following the derivational
bracketings of the C&C parser’s output and recon-
structing the backpointers to the lexical heads using an
in-house implementation of the basic CCG combina-
tory operations. All classifiers were trained to 500 iter-
ations of L-BFGS training — a quasi-Newton method
from the numerical optimization literature (Liu and No-
cedal, 1989) — using Zhang Le’s maxent toolkit.2 To
prevent overfitting we used Gaussian priors with global
variances of 1 and 5 for the identifier and labeler, re-
spectively.3 The Gaussian priors were determined em-
pirically by testing on the development set.

Both the identifier and the labeler use the following
features:

(1) Words. Words drawn from a 3 word window
around the target word,4 with each word asso-
ciated with a binary indicator feature.

(2) Part of Speech. Part of Speech tags drawn
from a 3 word window around the target word,

2Available for download athttp://homepages.
inf.ed.ac.uk/s0450736/maxent_toolkit.
html.

3Gaussian priors achieve a smoothing effect (to prevent
overfitting) by penalizing very large feature weights.

4The size of the window was determined experimentally
on the development set – we use the same window sizes
throughout.
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John loves Mary

np (s[dcl]\np)/np np
>

s[dcl]\np
<

s[dcl]

Figure 1: This sentence has two depen-
dencies: <loves,mary,(s\np)/np,2> and
<loves,john,(s\np)/np,1>
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Figure 2: The semantic relation (Arg1) between ‘car’
and ‘fixed’ in both phrases is the same, but the
treepaths — traced with arrows above — are differ-
ent: (V>VP<NP<N and V>VP>S>RC>N<N, re-
spectively).

Robin fixed the car
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Figure 3: CCG word-word dependencies are passed
up through subordinate clauses, encoding the rela-
tion betweencar and fixed the same in both cases:
(s\np)/np.2.→ (Gildea and Hockenmaier, 2003)

with each associated with a binary indicator
feature.

(3) CCG Categories. CCG categories drawn from
a 3 word window around the target word, with
each associated with a binary indicator feature.

(4) Predicate. The lemma of the predicate we are
tagging. E.g.fix is the lemma offixed.

(5) Result Category Detail. The grammatical fea-
ture on the category of the predicate (indicat-
ing declarative, passive, progressive, etc). This
can be read off the verb category: declarative
for eats: (s[dcl]\np)/npor progressive forrun-
ning: s[ng]\np.

(6) Before/After. A binary indicator variable indi-
cating whether the target word is before or after
the verb.

(7) Treepath. The sequence of CCG categories
representing the path through the derivation
from the predicate to the target word. For
the relationship betweenfixed and car in the
first sentence of figure 3, the treepath is
(s[dcl]\np)/np>s[dcl]\np<np<n, with > and
< indicating movement up and down the tree,
respectively.

(8) Short Treepath. Similar to the above treepath
feature, except the path stops at the highest
node under the least common subsumer that
is headed by the target word (this is thecon-
stituentthat the role would be marked on if we
identified this terminal as a role-bearing word).
Again, for the relationship betweenfixed and
car in the first sentence of figure 3, the short
treepath is (s[dcl]\np)/np>s[dcl]\np<np.

(9) NP Modified. A binary indicator feature indi-
cating whether the target word is modified by
an NP modifier.5

5This is easily read off of the CCG PARG relationships.
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(10) Subcategorization. A sequence of the cate-
gories that the verb combines with in the CCG
derivation tree. For the first sentence in fig-
ure 3, the correct subcategorization would be
np,np. Notice that this is not necessarily a re-
statement of the verbal category – in the second
sentence of figure 3, the correct subcategoriza-
tion iss/(s\np),(np\np)/(s[dcl]/np),np.

(11) PARG feature. We follow a previous CCG-
based approach (Gildea and Hockenmaier,
2003) in using a feature to describe the PARG
relationship between the two words, if one ex-
ists. If there is a dependency in the PARG
structure between the two words, then this fea-
ture is defined as the conjunction of (1) the cat-
egory of the functor, (2) the argument slot that
is being filled in the functor category, and (3)
an indication as to whether the functor (→) or
the argument (←) is the lexical head. For ex-
ample, to indicate the relationship betweencar
andfixedin both sentences of figure 3, the fea-
ture is (s\np)/np.2.→.

The labeler uses all of the previous features, plus the
following:

(12) Headship. A binary indicator feature as to
whether the functor or the argument is the lex-
ical head of the dependency between the two
words, if one exists.

(13) Predicate and Before/After. The conjunction
of two earlier features: the predicate lemma
and the Before/After feature.

(14) Rel Clause. Whether the path from predicate
to target word passes through a relative clause
(e.g., marked by the word‘that’ or any other
word with a relativizer category).

(15) PP features. When the target word is a prepo-
sition, we define binary indicator features for
the word, POS, and CCG category of the head
of the topmost NP in the prepositional phrase
headed by a preposition (a.k.a. the ‘lexical
head’ of the PP). So, ifonheads the phrase‘on
the third Friday’, then we extract features re-
lating toFriday for the prepositionon. This is
null when the target word is not a preposition.

(16) Argument Mappings. If there is a PARG rela-
tion between the predicate and the target word,
the argument mapping is the most likely pre-
dicted role to go with that argument. These
mappings are predicted using a separate classi-
fier that is trained primarily on lexical informa-
tion of the verb, its immediate string-level con-
text, and its observed arguments in the train-
ing data. This feature is null when there is
no PARG relation between the predicate and
the target word. The Argument Mapping fea-
ture can be viewed as a simple prediction about

some of the non-modifier semantic roles that a
verb is likely to express. We use this informa-
tion as a feature and not a hard constraint to
allow other features to overrule the recommen-
dation made by the argument mapping classi-
fier. The features used in the argument map-
ping classifier are described in detail in section
7.

5 CFG based Features

In addition to CCG-based features, features can be
drawn from a traditional CFG-style approach when
they are available. Our motivation for this is twofold.
First, others (Punyakanok et al., 2008, e.g.), have found
that different parsers have different error patterns, and
so using multiple parsers can yield complementary
sources of correct information. Second, we noticed
that, although the CCG-based system performed well
on head word labeling, performance dropped when
projecting these labels to the constituent level (see sec-
tions 8 and 9 for more). This may have to do with the
fact that CCG is not centered around a constituency-
based analysis, as well as with inconsistencies between
CCG and Penn Treebank-style bracketings (the latter
being what was annotated in the original Propbank).

Penn Treebank-derived features are used in the iden-
tifier, labeler, and argument mapping classifiers. For
automatic parses, we use Charniak’s parser (Charniak,
2001). For gold-standard parses, we remove func-
tional tag and trace information from the Penn Tree-
bank parses before we extract features over them, so as
to simulate the conditions of an automatic parse. The
Penn Treebank features are as follows:

(17) CFG Treepath. A sequence of traditional
CFG-style categories representing the path
from the verb to the target word.

(18) CFG Short Treepath. Analogous to the CCG-
based short treepath feature.

(19) CFG Subcategorization. Analogous to the
CCG-based subcategorization feature.

(20) CFG Least Common Subsumer. The cate-
gory of the root of the smallest tree that domi-
nates both the verb and the target word.

6 Dependency Parser Features

Finally, several features can be extracted from a de-
pendency representation of the same sentence. Au-
tomatic dependency relations were produced by the
MALT parser. We incorporate MALT into our col-
lection of parses because it provides detailed informa-
tion on the exact syntactic relations between word pairs
(subject, object, adverb, etc) that is not found in other
automatic parsers. The features used from the depen-
dency parses are listed below:
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(21) DEP-Exists A binary indicator feature show-
ing whether or not there is a dependency be-
tween the target word and the predicate.

(22) DEP-Type If there is a dependency between
the target word and the predicate, what type of
dependency it is (SUBJ, OBJ, etc).

7 Argument Mapping Model

An innovation in our approach is to use a separate clas-
sifier to predict an argument mapping feature. An ar-
gument mapping is a mapping from the syntactic argu-
ments of a verbal category to the semantic arguments
that should correspond to them (Boxwell and White,
2008). In order to generate examples of the argument
mapping for training purposes, it is necessary to em-
ploy the PARG relations for a given sentence to identify
the headwords of each of the verbal arguments. That is,
we use the PARG relations to identify the headwords of
each of the constituents that are arguments of the verb.
Next, the appropriate semantic role that corresponds to
that headword (given by Propbank) is identified. This
is done by climbing the CCG derivation tree towards
the root until we find a semantic role corresponding to
the verb in question — i.e., by finding the point where
the constituent headed by the verbal category combines
with the constituent headed by the argument in ques-
tion. These semantic roles are then marked on the cor-
responding syntactic argument of the verb.

As an example, consider the sentenceThe boy loves
a girl. (figure 4). By examining the arguments that the
verbal category combines with in the treebank, we can
identify the corresponding semantic role for each argu-
ment that is marked on the verbal category. We then use
these tags to train the Argument Mapping model, which
will predict likely argument mappings for verbal cate-
gories based on their local surroundings and the head-
words of their arguments, similar to the supertagging
approaches used to label the informative syntactic cat-
egories of the verbs (Bangalore and Joshi, 1999; Clark,
2002), except tagging “one level above” the syntax.

The Argument Mapping Predictor uses the following
features:

(23) Predicate. The lemma of the predicate, as be-
fore.

(24) Words. Words drawn from a 5 word window
around the target word, with each word associ-
ated with a binary indicator feature, as before.

(25) Parts of Speech. Part of Speech tags drawn
from a 5 word window around the target word,
with each tag associated with a binary indicator
feature, as before.

(26) CCG Categories. CCG categories drawn from
a 5 word window around the target word, with
each category associated with a binary indica-
tor feature, as before.

the boy loves a girl

np/n n (s[dcl]\npArg0)/npArg1 np/n n
> >

np− Arg0 np− Arg1
>

s[dcl]\np
<

s[dcl]

Figure 4: By looking at the constituents that the verb
combines with, we can identify the semantic roles cor-
responding to the arguments marked on the verbal cat-
egory.

(27) Argument Data. The word, POS, and CCG
category, and treepath of the headwords of each
of the verbal arguments (i.e., PARG depen-
dents), each encoded as a separate binary in-
dicator feature.

(28) Number of arguments. The number of argu-
ments marked on the verb.

(29) Words of Arguments. The head words of each
of the verb’s arguments.

(30) Subcategorization. The CCG categories that
combine with this verb. This includes syntactic
adjuncts as well as arguments.

(31) CFG-Sisters. The POS categories of the sis-
ters of this predicate in the CFG representation.

(32) DEP-dependencies. The individual depen-
dency types of each of the dependencies re-
lating to the verb (SBJ, OBJ, ADV, etc) taken
from the dependency parse. We also incorpo-
rate a single feature representing the entire set
of dependency types associated with this verb
into a single feature, representing the set of de-
pendencies as a whole.

Given these features with gold standard parses, our
argument mapping model can predict entire argument
mappings with an accuracy rate of 87.96% on the test
set, and 87.70% on the development set. We found the
features generated by this model to be very useful for
semantic role prediction, as they enable us to make de-
cisions about entire sets of semantic roles associated
with individual lemmas, rather than choosing them in-
dependently of each other.

8 Enabling Cross-System Comparison

The Brutus system is designed to label headwords of
semantic roles, rather than entire constituents. How-
ever, because most SRL systems are designed to label
constituents rather than headwords, it is necessary to
project the roles up the derivation to the correct con-
stituent in order to make a meaningful comparison of
the system’s performance. This introduces the poten-
tial for further error, so we report results on the ac-
curacy of headwords as well as the correct string of
words. We deterministically move the role to the high-
est constituent in the derivation that is headed by the
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a man with glasses spoke

np/n n (np\np)/np np s\np
> >

np np\np
<

np− speak.Arg0
<

s

Figure 5: The role is moved towards the root until the
original node is no longer the head of the marked con-
stituent.

P R F

G&H (treebank) 67.5% 60.0% 63.5%
Brutus (treebank) 88.18% 85.00% 86.56%

G&H (automatic) 55.7% 49.5% 52.4%
Brutus (automatic) 76.06% 70.15% 72.99%

Table 1: Accuracy of semantic role prediction using
only CCG based features.

originally tagged terminal. In most cases, this corre-
sponds to the node immediately dominated by the low-
est common subsuming node of the the target word and
the verb (figure 5). In some cases, the highest con-
stituent that is headed by the target word is not imme-
diately dominated by the lowest common subsuming
node (figure 6).

9 Results

Using a version of Brutus incorporating only the CCG-
based features described above, we achieve better re-
sults than a previous CCG based system (Gildea and
Hockenmaier, 2003, henceforth G&H). This could be
due to a number of factors, including the fact that our
system employs a different CCG parser, uses a more
complete mapping of the Propbank onto the CCGbank,
uses a different machine learning approach,6 and has a
richer feature set. The results for constituent tagging
accuracy are shown in table 1.

As expected, by incorporating Penn Treebank-based
features and dependency features, we obtain better re-
sults than with the CCG-only system. The results for
gold standard parses are comparable to the winning
system of the CoNLL 2005 shared task on semantic
role labeling (Punyakanok et al., 2008). Other systems
(Toutanova et al., 2008; Surdeanu et al., 2007; Johans-
son and Nugues, 2008) have also achieved comparable
results – we compare our system to (Punyakanok et
al., 2008) due to the similarities in our approaches. The
performance of the full system is shown in table 2.

Table 3 shows the ability of the system to predict
the correct headwords of semantic roles. This is a nec-
essary condition for correctness of the full constituent,
but not a sufficient one. In parser evaluation, Carroll,
Minnen, and Briscoe (Carroll et al., 2003) have argued

6G&H use a generative model with a back-off lattice,
whereas we use a maximum entropy classifier.

P R F

P. et al (treebank) 86.22% 87.40% 86.81%
Brutus (treebank) 88.29% 86.39% 87.33%

P. et al (automatic) 77.09% 75.51% 76.29%
Brutus (automatic) 76.73% 70.45% 73.45%

Table 2: Accuracy of semantic role prediction using
CCG, CFG, and MALT based features.

P R F

Headword (treebank) 88.94% 86.98% 87.95%
Boundary (treebank) 88.29% 86.39% 87.33%

Headword (automatic) 82.36% 75.97% 79.04%
Boundary (automatic) 76.33% 70.59% 73.35%

Table 3: Accuracy of the system for labeling semantic
roles on both constituent boundaries and headwords.
Headwords are easier to predict than boundaries, re-
flecting CCG’s focus on word-word relations rather
than constituency.

for dependencies as a more appropriate means of eval-
uation, reflecting the focus on headwords from con-
stituent boundaries. We argue that, especially in the
heavily lexicalized CCG framework, headword evalu-
ation is more appropriate, reflecting the emphasis on
headword combinatorics in the CCG formalism.

10 The Contribution of the New Features

Two features which are less frequently used in SRL
research play a major role in the Brutus system: The
PARG feature (Gildea and Hockenmaier, 2003) and
the argument mapping feature. Removing them has
a strong effect on accuracy when labeling treebank
parses, as shown in our feature ablation results in ta-
ble 4. We do not report results including the Argu-
ment Mapping feature but not the PARG feature, be-
cause some predicate-argument relation information is
assumed in generating the Argument Mapping feature.

P R F

+PARG +AM 88.77% 86.15% 87.44%
+PARG -AM 88.42% 85.78% 87.08%
-PARG -AM 87.92% 84.65% 86.26%

Table 4: The effects of removing key features from the
system on gold standard parses.

The same is true for automatic parses, as shown in ta-
ble 5.

11 Error Analysis

Many of the errors made by the Brutus system can be
traced directly to erroneous parses, either in the auto-
matic or treebank parse. In some cases, PP attachment
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with even brief exposures causing symptoms

(((vp\vp)/vp[ng])/np n/n n/n n (s[ng]\np)/np np
> >

n s[ng]\np
>

n

np− cause.Arg0
>

(vp\vp)/vp[ng]
>

vp\vp

Figure 6: In this case,with is the head ofwith even brief exposures, so the role is correctly marked oneven brief
exposures(based on wsj0003.2).

P R F

+PARG +AM 74.14% 62.09% 67.58%
+PARG -AM 70.02% 64.68% 67.25%
-PARG -AM 73.90% 61.15% 66.93%

Table 5: The effects of removing key features from the
system on automatic parses.

ambiguities cause a role to be marked too high in the
derivation. In the sentencethe company stopped using
asbestos in 1956(figure 7), the correct Arg1 ofstopped
is using asbestos. However, becausein 1956 is erro-
neously modifying the verbusingrather than the verb
stoppedin the treebank parse, the system trusts the syn-
tactic analysis and places Arg1 ofstoppedonusing as-
bestos in 1956. This particular problem is caused by an
annotation error in the original Penn Treebank that was
carried through in the conversion to CCGbank.

Another common error deals with genitive construc-
tions. Consider the phrasea form of asbestos used
to make filters. By CCG combinatorics, the relative
clause could either attach toasbestosor to a form of
asbestos. The gold standard CCG parse attaches the
relative clause toa form of asbestos(figure 8). Prop-
bank agrees with this analysis, assigning Arg1 ofuse
to the constituenta form of asbestos. The automatic
parser, however, attaches the relative clause low – to
asbestos(figure 9). When the system is given the au-
tomatically generated parse, it incorrectly assigns the
semantic role toasbestos. In cases where the parser at-
taches the relative clause correctly, the system is much
more likely to assign the role correctly.

Problems with relative clause attachment to genitives
are not limited to automatic parses – errors in gold-
standard treebank parses cause similar problems when
Treebank parses disagree with Propbank annotator in-
tuitions. In the phrasea group of workers exposed to
asbestos(figure 10), the gold standard CCG parse at-
taches the relative clause toworkers. Propbank, how-
ever, annotatesa group of workersas Arg1 ofexposed,
rather than following the parse and assigning the role
only to workers. The system again follows the parse
and incorrectly assigns the role toworkersinstead ofa
group of workers. Interestingly, the C&C parser opts
for high attachment in this instance, resulting in the

a form of asbestos used to make filters

np (np\np)/np np np\np
>

np\np
<

np− Arg1
<

np

Figure 8: CCGbank gold-standard parse of a relative
clause attachment. The system correctly identifiesa
form of asbestosas Arg1 ofused. (wsj 0003.1)

a form of asbestos used to make filters

np (np\np)/np np− Arg1 np\np
<

np
>

np\np
<

np

Figure 9: Automatic parse of the noun phrase in fig-
ure 8. Incorrect relative clause attachment causes the
misidentification ofasbestosas a semantic role bearing
unit. (wsj 0003.1)

correct prediction ofa group of workersas Arg1 ofex-
posedin the automatic parse.

12 Future Work

As described in the error analysis section, a large num-
ber of errors in the system are attributable to errors in
the CCG derivation, either in the gold standard or in
automatically generated parses. Potential future work
may focus on developing an improved CCG parser us-
ing the revised (syntactic) adjunct-argument distinc-
tions (guided by the Propbank annotation) described in
(Boxwell and White, 2008). This resource, together
with the reasonable accuracy (≈ 90%) with which ar-
gument mappings can be predicted, suggests the possi-
bility of an integrated, simultaneous syntactic-semantic
parsing process, similar to that of (Musillo and Merlo,
2006; Merlo and Musillo, 2008). We expect this would
improve the reliability and accuracy of both the syntac-
tic and semantic analysis components.
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the company stopped using asbestos in 1956

np ((s[dcl]\np)/(s[ng]\np)) (s[ng]\np)/np np (s\np)\(s\np)
>

s[ng]\np
<

s[ng]\np− stop.Arg1
>

s[dcl]\np
<

s[dcl]

Figure 7: An example of how incorrect PP attachment can causean incorrect labeling. Stop.Arg1 should coverus-
ing asbestosrather thanusing asbestos in 1956. This sentence is based on wsj0003.3, with the structure simplified
for clarity.

a group of workers exposed to asbestos

np (np\np)/np np− exposed.Arg1 np\np
<

np
>

np\np
<

np

Figure 10: Propbank annotatesa group of workersas Arg1 ofexposed, while CCGbank attaches the relative clause
low. The system incorrectly labelsworkersas a role bearing unit. (Gold standard – wsj0003.1)

use of her PARG generation tool.
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