Heter ogeneous Transfer Learning for Image Clustering via the Social Web
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Abstract

In this paper, we present a new learning
scenario, heterogeneous transfer learn-
ing, which improves learning performance
when the data can be in different feature
spaces and where no correspondence be-
tween data instances in these spaces is pro-
vided. In the past, we have classified Chi-
nese text documents using English train-
ing data under the heterogeneous trans-
fer learning framework. In this paper,
we present image clustering as an exam-
ple to illustrate how unsupervised learning
can be improved by transferring knowl-
edge from auxiliary heterogeneous data
obtained from the social Web. Image
clustering is useful for image sense dis-
ambiguation in query-based image search,
but its quality is often low due to image-
data sparsity problem. We extend PLSA
to help transfer the knowledge from social
Web data, which have mixed feature repre-
sentations. Experiments on image-object
clustering and scene clustering tasks show
that our approach in heterogeneous trans-
fer learning based on the auxiliary data is
indeed effective and promising.

I ntroduction

and Rappoport, 2007; Andreevskaia and Bergler,
2008), multi-task learning (Caruana, 1997; Re-
ichart et al., 2008; Arnold et al., 2008), self-taught
learning (Raina et al., 2007), etc. A commonality
among these methods is that they all require the
training data and test data to be in the same fea-
ture space. In addition, most of them are designed
for supervised learning. However, in practice, we
often face the problem where the labeled data are
scarce in their own feature space, whereas there
may be a large amount of labeled heterogeneous
data in another feature space. In such situations, it
would be desirable to transfer the knowledge from
heterogeneous data to domains where we have rel-
atively little training data available.

To learn from heterogeneous data, researchers
have previously proposed multi-view learning
(Blum and Mitchell, 1998; Nigam and Ghani,
2000) in which each instance has multiple views in
different feature spaces. Different from previous
works, we focus on the problem b&terogeneous
transfer learning which is designed for situation
when the training data are in one feature space
(such as text), and the test data are in another (such
as images), and there may be no correspondence
between instances in these spaces. The type of
heterogeneous data can be very different, as in the
case of text and image. To consider how hetero-
geneous transfer learning relates to other types of
learning, Figure 1 presents an intuitive illustration

Traditional machine learning relies on the avail-of four learning strategies, including traditional
ability of a large amount of data to train a model,machine learning, transfer learning across differ-
which is then applied to test data in the sameent distributions, multi-view learning and hetero-
feature space. However, labeled data are oftegeneous transfer learning. As we can see, an
scarce and expensive to obtain. Various machinanportant distinguishing feature of heterogeneous
learning strategies have been proposed to addresansfer learning, as compared to other types of
this problem, including semi-supervised learninglearning, is that more constraints on the problem
(Zhu, 2007), domain adaptation (Wu and Diet-are relaxed, such that data instances do not need to
terich, 2004; Blitzer et al., 2006; Blitzer et al., correspond anymore. This allows, for example, a
2007; Arnold et al., 2007; Chan and Ng, 2007;collection of Chinese text documents to be classi-
Daume, 2007; Jiang and Zhai, 2007; Reicharfied using another collection of English text as the
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training data (c.f. (Ling et al., 2008) and Sectionto solve the data sparsity problem, we show that
2.1). they can still be used to estimate a gdaignt fea-

In this paper, we will give an illustrative exam- _ture represent_atlorwhlch can be used to improve
image clustering.

ple of heterogeneous transfer learning to demon-
strate how the task of image clustering can ben2 Related Works

efit from learning from the heterogeneous social

Web data. A major motivation of our work is 21 Heterogeneous Transfer Learning
Web-based image search, where users submit tex- ~ Bétween Languages

tual queries and browse through the returned resujh this section, we summarize our previous work
pages. One problem is that the user queries are ofn cross-language classification as an example of
ten ambiguous. An ambiguous keyword such aeterogeneous transfer learning. This example
“Apple” might retrieve images of Apple comput- s related to our image clustering problem be-
ers and mobile phones, or images of fruits. Im-cayse they both rely on data from different feature
age clustering is an effective method for improv-spacesl

ing the accessibility of image search result. Loeff - ag the world Wide Web in China grows rapidly.
etal. (2006) addressed the image clustering profy has pecome an increasingly important prob-
lem with a focus on image sense discriminationjem to be able to accurately classify Chinese Web
In their approach, images associated with textughages. However, because the labeled Chinese Web
features are used for clustering, so that the texb,qes are still not sufficient, we often find it diffi-
and images are clustered at the same time. Specifyt to achieve high accuracy by applying tradi-
ically, spectral clustering is applied to the distanc&iona| machine learning algorithms to the Chinese
matrix built from a multimodal feature set associ-\yep pages directly. Would it be possible to make
ated with the images to get a better feature reprane pest use of the relatively abundant labeled En-
sentation. This new representation contains botlyjish web pages for classifying the Chinese Web
image and text information, with which the per- pages?

formance of image clustering is shown to be im- To answer this question, in (Ling et al., 2008),

proved. A problem with this approach is that whenWe developed a novel approach for classifying the

images contained in the Web search results afgeh pages in Chinese using the training docu-
very scarce and when the textual data associaterqen,[S in English. In this subsection, we give a

with the images are very few, clustering on the im-, ;¢ summary of this work. The problem to be
ages and their associated text may not be very ef, e is: we are given a collection of labeled

fective. English documents and a large number of unla-
Different from these previous works, in this pa- beled Chinese documents. The English and Chi-
per, we address the image clustering problem agese texts are not aligned. Our objective is to clas-
a heterogeneous transfer learnimgoblem. We sify the Chinese documents into the same label
aim to leverage heterogeneous auxiliary data, sspace as the English data.
cial annotations, etc. to enhance image cluster- Our key observation is that even though the data
ing performance. We observe that the World Wideuse different text features, they may still share
Web has many annotated images in Web sites suaghany of the same semantic information. What we
as Flickr gt t p: / / www. f 1 i ckr. com), which need to do is to uncover this latent semantic in-
can be used as auxiliary information source forformation by finding out what is common among
our clustering task. In this work, our objective them. We did this in (Ling et al., 2008) by us-
is to cluster a small collection of images that weing the information bottleneck theory (Tishby et
are interested in, where these images are not suéd., 1999). In our work, we first translated the
ficient for traditional clustering algorithms to per- Chinese document into English automatically us-
form well due to data sparsity and the low level ofing some available translation software, such as
image features. We investigate how to utilize theGoogle translate. Then, we encoded the training
readily available socially annotated image data orniext as well as the translated target text together,
the Web to improve image clustering. Althoughin terms of the information theory. We allowed all
these auxiliary data may be irrelevant to the im-the information to be put through a ‘bottleneck’
ages to be clustered and cannot be directly useaind be represented by a limited numbercofie-
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Figure 1: An intuitive illustration of different kinds learning strategies ugilagsification/clustering of
imageappl e andbanana as the example.

words (i.e. labels in the classification problem). a novel learning paradigm, known as translated
Finally, information bottleneck was used to main-learning, to deal with the problem of learning het-
tain most of the common information between theerogeneous data that belong to quite different fea-
two data sources, and discard the remaining irrelture spaces by using a risk minimization frame-
evant information. In this way, we can approxi- work.

mate the ideal situation where similar training and

translated test pages shared in the common part a?e3 Relation to PLSA

encoded into the same codewords, and are thus 38ur work makes use oPLSA. Probabilistic la-
signed the correct labels. In (Ling et al., 2008), Weia ¢ semantic analysi€PLSA) is a widely used
experimentally showed that heterogeneous trangs,qpapilistic model (Hofmann, 1999), and could
fer learning can indeed improve the performancgyg ¢onsidered as a probabilistic implementation of
of cross-language text classification as comparefl;ant semantic analysid SA) (Deerwester et al.,
to directly training learning models (e.g., Naive 1990). An extension t@°LSA was proposed in
Bayes or SVM) and testing on the translated teth(Cohn and Hofmann, 2000), which incorporated
the hyperlink connectivity in th€LSA model by
using a joint probabilistic model for connectivity

In the past, several other works made use of tranNd content.  MoreoveiPLSA has shown a lot
fer learning for cross-feature-space learning. WiPf @pplications ranging from text clustering (Hof-
and Oard (2008) proposed to handle the crosdnann, 2001) to image analysis (Sivic et al., 2005).

language learning problem by translating the dat
into a same language and applyihiN on the
latent topic space for classification. Most learningCompared to many previous works on image clus-
algorithms for dealing with cross-language heterotering, we note that traditional image cluster-
geneous data requireteanslator to convert the ing is generally based on techniques suchikas
data to the same feature space. For those data thaeans (MacQueen, 1967) and hierarchical clus-
are in different feature spaces where no translatering (Kaufman and Rousseeuw, 1990). How-
tor is available, Davis and Domingos (2008) pro-ever, when the data are sparse, traditional clus-
posed a Markov-logic-based transfer learning altering algorithms may have difficulties in obtain-
gorithm, which is calledleep transferfor trans- ing high-quality image clusters. Recently, several
ferring knowledge between biological domainsresearchers have investigated how to leverage the
and Web domains. Dai et al. (2008a) proposeduxiliary information to improve target clustering

2.2 Other Worksin Transfer Learning

%.4 Relation to Clustering



performance, such as supervised clustering (Fin- P(z|v) P(f]2)
ley and Joachims, 2005), semi-supervised cluster- @ @ @

ing (Basu et al., 2004), self-taught clustering (DaiFigure 2: Graphical model representatiorPbiSA

et al., 2008b), etc. model.
3 Image Clustering with Annotated Let Z = {2;}/Z] be the latent variable set in our
Auxiliary Data aPLSA model. In clustering, each latent variable

z; € Z corresponds to a certain cluster.

Our objective is to estimate a clustering func-
tion g : V — Z with the help of the two co-
occurrence matriced and B as defined above.

In this section, we present oannotation-based
probabilistic latent semantic analysialgorithm
(aPLSA), which extends the traditiondPLSA

model by incorporating annotated auxiliary im- )
4 P d y To formally introduce theaPLSA model, we

age data. Intuitively, our algorithraPLSA per- tart f h babilistic latent i |
forms PLSA analysis on the target images, whicfP a1t rom theprobabliistic fatent semantic anal-
sis (PLSA) (Hofmann, 1999) model.PLSA is

are converted to an image instance-to-feature co’ babilistic imol tation datent
occurrence matrix. At the same time, PLSA jg& Probabiiistic iImplementation ent seman-

also applied to the annotated image data from sot-IC a_naIyS|s(|LStA) .(Dete rwlsLstS?; gt al,, 1990). thln
cial Web, which is converted into a text—to—image—Our Image clustering task, ecomposes he

. .. instance-featur - rrence matfixinder th
feature co-occurrence matrix. In order to unify stance-feafure co-occurrence matdixinder the

those two separate PLSA models, these two Stepagssumptlon of conditional independence of image

are done simultaneously with common latent vari-mStanceSV and image features, given the latent

ables used as a bridge linking them. Throughvariablesz'
these common latent variables, which are now P(flv) = ZP(flz)P(Z\v). )
constrained by both target image data and auxil-

lary annotation data, a better clustering result is . _ _
expected for the target data. The graphical model representation BfSA is

shown in Figure 2.
3.1 Probabilistic Latent Semantic Analysis Based on théLSA model, the log-likelihood can
be defined as:

zEZ

Let F = {fi}z| be an image feature space, and
Y = {vi}ml be the image data set. Each image r— Aij lo ‘.
= = = log P(fj[v (2)
v; € V is represented by laag-of-featureq f|f € Zz: z]: > Aiyr (filo:)
vy Nf€E .7:}
Based on the image data Set we can esti- whereAlVI*I7I ¢ RIVIXIZ| is the image instance-
mate an image instance-to-feature co-occurrencieature co-occurrence matrix. The telﬁLZ
g1 Al

matrix Amxlﬂ € R‘V‘Xlﬂ_v where each element jn Equation (2) is a normalization term ensuring
Ay (L <i<|V|andl < j <|F])inthe matrix each image is giving the same weight in the log-
A is the frequency of the featur§ appearing in  |ikelihood.

the instance;. Using EM algorithm (Dempster et al., 1977),
LetW = { -}W be a text feature space. The yhnj imi ikeli

AWigi=1 pace. which locally maximizes the log-likelihood of

annotated image data allow us to obtain the cothe PLSA model (Equation (2)), the probabilities

occurrence information between imageand text  p( f|) and P(z|v) can be estimated. Then, the
featuresw € W. An example of annotated im- Clustering function is derived as

age data is the Flickint t p: / / www. f i ckr.
comn), which is a social Web site containing a large g(v) = argmax P(z|v). (3)
number of annotated images. €2

By extracting image features from the annotatedue to space limitation, we omit the details for the
imagesv, we can estimate a text-to-image fea-PLSA model, which can be found in (Hofmann,
ture co-occurrence matrig"VI*171 ¢ RWIXIFI 1999,
where each elemenB;; (1 < ¢ < |W] and _
1 < j < |F|) in the matrix B is the frequency 32 2@PLSA  Annotation-based PL SA
of the text featurev; and the image featurg oc-  In this section, we consider how to incorporate
curring together in the annotated image data set. a large number of socially annotated images in a
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Figure 3:
aPLSA model.

text-to-image occurrence matrix.
the aPLSA model degenerates to the traditional
PLSA model.
to thePLSA model.

Now, the objective is to maximize the log-
likelihood £ of theaPLSA model in Equation (5).
Graphical model representation OfThen we apply the EM algorithm (Dempster et
, 1977) to estimate the conditional probabilities

(f\ )s

In this case,

ThereforeaPLSA is an extension

P(z|w) and P(z|v) with respect to each

unified PLSA model for the purpose of utilizing dependence in Figure 3 as follows.

the correlation between text features and image
features. In the auxiliary data, each image has cer-
tain textual tags that are attached by users. The
correlation between text features and image fea-
tures can be formulated as follows.

P(flw) =Y _ P(f|2)

zZEZ

P(z|w). (4)

It is clear that Equations (1) and (4) share a same
term P(f|z). So we design a neRLSA model by
joining the probabilistic model in Equation (1) and
the probabilistic model in Equation (4) into a uni-
fied model, as shown in Figure 3. In Figure 3, the
latent variablesZ depend not only on the corre-
lation between image instanc¥sand image fea-
turesF, but also the correlation between text fea-
tures)V and image featureg. Therefore, the aux-
iliary socially-annotated image data can be used
to help the target image clustering performance by
estimating good set of latent variabl&s

Based on the graphical model representation in
Figure 3, we derive the log-likelihood objective
function, in a similar way as in (Cohn and Hof-
mann, 2000), as follows

c- zAzZ

IOg P(fj ;)

;z Lo Pl |
©)

e E-Step: calculate the posterior probability of

each latent variable given the observation
of image featuresf, image instances and
text featuresw based on the old estimate of

P(f|z), P(zw) andP(z]v):
P(fjlzi)P(zk|v)
(Zk’vmf]) Zk’ P(fjlzi)P(zpr|vi)
(6)
P(f;l2) Pk wy)
P(ziwy, f5) = Sow P(filzi ) P(zrr |wi)
(7)
M-Step: re-estimates conditional probabili-

ties P(zi|v;) and P(zy|w;):

Zlc‘vz Z Z]
P (zk|wr) Z Z

and conditional probability”( f;|z;), which
is a mixture portion of posterior probability
of latent variables

P(fjlzk) O(/\ZZ

1— ZE Blj

Zk|vlafj) (8)

P(z|wy, f;) (9)

P(zi|vi, )

Zk:|wla fj)

(10)

Finally, the clustering function for a certain im-

whereAlVIXI7I ¢ RIVIXIF] is the image instance- agev is

feature co-occurrence matrix, and"xI7l ¢
RWIXIZ] is the text-to-image feature-level co-

g(v) = argmax P(z|v). (11)

zZEZ

occurrence matrix.  Similar to Equation (2), From the above equations, we can derive
ijj;ij, and Zj/%,,-/ in Equation (5) are the nor- ouyr annotation-based probabilistic latent semantic
malization terms to prevent imbalanced cases. analysis 4PLSA) algorithm. As shown in Algo-
Furthermore acts as a trade-off parameter be-rithm 1, aPLSA iteratively performs the E-Step
tween the co-occurrence matricdsand B. In  and the M-Step in order to seek local optimal
the extreme case when= 1, the log-likelihood points based on the objective functignn Equa-

objective function ignores all the biases from thetion (5).




DATA sIZE

Algorithm 1 Annotation-based PLSA Algorithm [ DATA SeT | INVOLVED CLASSES

bil skateboard, airplanes 102, 800
(aPLSA) biz billiards, mars 278, 155
Input: TheV-F co-occurrence matrid and - bi3 cd, greyhound 102, 94
. bi4 electric-guitar, snake 122,112
J co-occurrence matrig. bi5 calculator, dolphin 100, 106
. i o i . bi6 mushroom, teddy-bear 202, 99
Outpu_t. A clusterlr_lg (par'gtlon) functiorg : V — i MTThighway, Wingroom 563785
Z, which maps an image instancec ) to a latent quadl | Caiculator, diamond-ing, dolphini ™y 1 115 106 116
. microscope ’ ’ ’
variablez € Z. -
quad2 bonsai, comet, frog, saddle 122,120, 115, 110
1: Initial Z so that|Z| equals the number clus- | quinti | frog, kayak, bear, jesus-christ, watch ;(1)? 102,101, 87,
i . MIThighway, MITmountain,
terg d.eS|red octl kitchen, MITcoast, PARoffice, MIT- g?g gég 22%3% ‘;?L%
2: Initialize P(Z‘U), P(z\w), P(f\z) randomly. tallbuilding, livingroom, bedroom U P
3: whilethe change of’ in Eq. (5) between two tunel | coin, horse 123, 270
. . . . tune2 socks, spider 111, 106
sequential iterations is greater than a prede=twnes | galaxy, snowmobile 80, 112
; tune4 dice, fern 98, 110
fmed thresholoﬂo tuneb backpack, lightning, mandolin, swan 151, 136, 93,114
4. E-Step: UpdateP(z|v, f) and P(z|w, f)
based on Eq. (6) and (7) respectively. Table 1. The descriptions of all the image clus-

5.  M-Step: Update P(z|v), P(z|w) and tering tasks used in our experiment. Among
P(f|z) based on Eq. (8), (9) and (10) re- these data setdy)i 7 and oct 1 were generated

spectively. from fifteen-scendata set, and the rest were from
6: end while Caltech-256data set.
7: for al vinV do
8:  g(v) « argmaxP(z|v). To empirically investigate the parameterand
9: end for - the convergence of our algorithaiPL SA, we gen-
10: Returng. erated five more date sets as the development sets.

The detailed description of these five development
sets, namely unel tot une5 is listed in Table 1
4 Experiments as well.

In this section, we empirically evaluate taBLSA The auxiliary data were crawled from the Flickr
(http://ww. flickr.conm) web site dur-

algorithm together with some state-of-art base ) : : )
line methods on two widely used image corpora,'ng August 2007. Flickr is an internet community

to demonstrate the effectiveness of our algorithn{'€"e People share photos online and express their

aPLSA opinions as social tags (annotations) attached to
' each image. From Flicker, we collectefl, 959
4.1 Data Sets images andd1,719 related annotations, among

In order to evaluate the effectiveness of our algowh'ch 2,600 vyords_ are d'_Stht' Base_d on the
rithm aPLSA, we conducted experiments on sey-method described in Section 3, we estimated the

eral data sets generated from two image Corpor(,j_(l:,o-occurrence matr.iB between text features and
Caltech-256 (Griffin et al., 2007) and the fiteen-'Mage features. This f:o-occurrgnce maBiwas
scene (Lazebnik et al., 2006). The Caltech-zséjsed by all the clustering tasks in our experiments.
data set has 256 image objective categories, rang- For data preprocessing, we adopted tag-of-

ing from animals to buildings, from plants to au- featuresrepresentation of images (Li and Perona,
tomobiles, etc. The fifteen-scene data set con2005) in our experiments. Interesting points were
tains 15 scenes such at ore andforest. found in the images and described via BE-T
From these two corpora, we randomly generatedescriptors(Lowe, 2004). Then, the interesting
eleven image clustering tasks, including seven 2points were clustered to generate a codebook to
way clustering tasks, two 4-way clustering task,form an image feature space. The size of code-
one 5-way clustering task and one 8-way clusterbook was set t@, 000 in our experiments. Based
ing task. The detailed descriptions for these clusOn the codebook, which serves as the image fea-
tering tasks are given in Table 1. In these tasksiure space, each image can be represented as a cor-
bi 7 andoct 1 were generated from fifteen-scenereésponding feature vector to be used in the next
data set, and the rest were from Caltech-256 dat8{ep.

set. To set our evaluation criterion, we used the



KMeans

PLSA

Data Set separate | combined separate | combined STC aPLSA
bil 0.645:0.064 | 0.548+0.031 ]| 0.544+0.074 | 0.53A0.033 || 0.586+0.139 || 0.482+0.062
bi2 0.68740.003 | 0.662+0.014 || 0.464+0.074 | 0.692£0.001 || 0.5770.016 || 0.455+0.096
bi3 1.294+0.060 | 1.30G£0.015 || 1.085£0.073 [ 1.126+0.036 || 1.103+0.108 |[ 1.029+0.074
bi4 1.22'4-0.080 | 1.164£0.053 || 0.976+0.051 | 1.038+0.068 || 1.024£0.089 || 0.919+0.065
bi5 1.450+0.058 | 1.417:0.045 || 1.426+0.025 | 1.405:0.040 || 1.411£0.043 || 1.377+0.040
hi6 1.969+0.078 | 1.852£0.051 [ 1.514£0.039 [ 1.709+0.028 |[ 1.589+0.121 |[ 1.503+0.030
bi7 0.686+0.006 | 0.683:0.004 || 0.643t0.058 | 0.632£0.037 || 0.6510.012 || 0.624+0.066
quadl ][ 0.591+0.094 | 0.675:0.017 || 0.488t0.071 | 0.662+0.013 [| 0.58G+0.115 || 0.432+0.085
quad2 || 0.648:0.036 | 0.646+0.045 || 0.614+0.062 | 0.626+0.026 || 0.591+0.087 || 0.515+0.098
quintl 0.557A:0.021 | 0.508+0.104 || 0.54A-0.060 | 0.539£0.051 || 0.538+0.100 || 0.5024-0.067

octl 0.659+0.031 | 0.680+0.012 || 0.340+0.147 | 0.691£0.002 || 0.411-0.089 || 0.3064-0.101

[average || 0.947:0.029 | 0.922£0.017 || 0.786E0.009 | 0.878E0.006 || 0.824E0.036 || 0.741:0.018

Table 2: Experimental result in term of entropy for all data sets and di@uaethods.

entropyto measure the quality of our clusteringto a state-of-the-art transfer clustering strategy,

results.

In information theory, entropy (Shan-known asself-taught clusteringSTC) (Dai et al.,

non, 1948) is a measure of the uncertainty as2008b). STC makes use of auxiliary data to esti-

sociated with a random variable.

In our prob-mate a better feature representation to benefit the

lem, entropy serves as a measure of randomnesarget clustering. In these experiments, the anno-

of clustering result. The entropy a@f on a sin-
gle latent variable: is defined to beH (g,z) £

— > cec Plc|z) logy P(c|z), whereC is the class
label set ofV and P(c|z) =
in which ¢(v) is thetrue class label of image.

[{vlg(v)=2/t(v)=c}|

Holg(v)=2}

tated image data were used as auxiliary data in
STC, which does not use the annotation text.

In our experiments, the performance is in the
form of the average entropy and variance of five
repeats by randomly selecting) images from

Lower entropyH (g, Z) indicates less randomness each of the categories. We selected only 50 im-
ages per category, since this paper is focused on

and thus better clustering result.

4.2 Empirical Analysis

clustering sparse data. Table 2 shows the perfor-
mance with respect to all comparison methods on

We now empirically analyze the effectiveness ofeach of the image clustering tasks measured by
our aPLSA algorithm. Because, to our best of the entropy criterion. From the tables, we can see
knowledge, few existing methods addressed théhat our algorithmaPLSA outperforms the base-
problem of image clustering with the help of so-line methods in all the data sets. We believe that is
cial annotation image data, we can only compardecaus@PL SA can effectively utilize the knowl-
our aPLSA with several state-of-the-art cluster- edge from the socially annotated image data. On
ing algorithms that are not directly designed foraverageaPL SA gives rise t@?21.8% of entropy re-
our problem. The first baseline is the well-knownduction and as compared kiveans, 5.7% of en-
KMeans algorithm (MacQueen, 1967). Since our tropy reduction as compared RLSA, and10.1%
algorithm is designed based &b.SA (Hofmann, of entropy reduction as compared$aC.
1999), we also includeBLSA for clustering as a
baseline method in our experiments_. 421 Varying Data Size

For each of the above two baselines, we have
two strategies: (lsepar at ed: the baseline We now show how the data size affeetBLSA,
method was applied on the target image data onlywith two baseline methodsMeans andPLSA as
(2) combi ned: the baseline method was appliedreference. The experiments were conducted on
to cluster the combined data consisting of bothdifferent amounts of target image data, varying
target image data and the annotated image datiom 10 to 80. The corresponding experimental
Clustering results on target image data were userksults in average entropy over all the 11 clustering
for evaluation. Note that, in the combined data, altasks are shown in Figure 4(a). From this figure,
the annotations were thrown away since baselinere observe thaa PLSA always yields a significant
methods evaluated in this paper do not leveragesduction in entropy as compared with two base-
annotation information. line methodKMeans andPLSA, regardless of the

In addition, we compared our algorithmPLSA  size of target image data that we used.
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Figure 4: (a) The entropy curve as a function of different amountst pger category. (b) The entropy
curve as a function of different number of iterations. (c) The entrapyecas a function of different
trade-off parametex.

4.2.2 Parameter Sensitivity ments on two image data sets, using the Flickr data
In aPLSA, there is a trade-off parametgthat af-  as the annotated auxiliary image data, and showed
fects how the algorithm relies on auxiliary data.that ouraPLSA algorithm can greatly outperform
When\ = 0, theaPLSA relies only on annotated several state-of-the-art clustering algorithms.
image dataB. When\ = 1, aPLSA relies only In natural language processing, there are many
on target image datd, in which caseaPLSA de-  future opportunities to apply heterogeneous trans-
generates tBLSA. Smaller) indicates heavier re- fer learning. In (Ling et al., 2008) we have shown
liance on the annotated image data. We have dorfeow to classify the Chinese text using English text
some experiments on the development sets to iras the training data. We may also consider cluster-
vestigate how differend affect the performance ing, topic modeling, question answering, etc., to
of aPLSA. We set the number of images per cate-be done using data in different feature spaces. We
gory to50, and tested the performanceaf’LSA.  can consider data in different modalities, such as
The result in average entropy over all developmenvideo, image and audio, as the training data. Fi-
sets is shown in Figure 4(b). In the experimentsnally, we will explore the theoretical foundations
described in this paper, we sktto 0.2, which is  and limitations of heterogeneous transfer learning
the best point in Figure 4(b). as well.
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4.2.3 Convergence

In our experiments, we tested the convergenc
property of our algorithmaPLSA as well. Fig-
ure 4(c) shows the average entropy curve given
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