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Abstract

In morphologically rich languages such as
Arabic, the abundance of word forms result-
ing from increased morpheme combinations is
significantly greater than for languages with
fewer inflected forms (Kirchhoff et al., 2006).
This exacerbates the out-of-vocabulary (OOV)
problem. Test set words are more likely to
be unknown, limiting the effectiveness of the
model. The goal of this study is to use the
regularities of Arabic inflectional morphology
to reduce the OOV problem in that language.
We hope that success in this task will result in
a decrease in word error rate in Arabic auto-
matic speech recognition.

1 Introduction
The task of language modeling is to predict the next
word in a sequence of words (Jelinek et al., 1991).
Predicting words that have not yet been seen is the
main obstacle (Gale and Sampson, 1995), and is
called the Out of Vocabulary (OOV) problem. In
morphologically rich languages, the OOV problem
is worsened by the increased number of morpheme
combinations.

Berton et al. (1996) and Geutner (1995) ap-
proached this problem in German, finding that lan-
guage models built on decomposed words reduce the
OOV rate of a test set. In Carki et al. (2000), Turk-
ish words are split into syllables for language model-
ing, also reducing the OOV rate (but not improving
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WER). Morphological decomposition is also used to
boost language modeling scores in Korean (Kwon,
2000) and Finnish (Hirsimäki et al., 2006).

We approach the processing of Arabic morphol-
ogy, both inflectional and derivational, with finite
state machines (FSMs). We use a technique that pro-
duces many morphological analyses for each word,
retaining information about possible stems, affixes,
root letters, and templates. We build our language
models on the morphemes generated by the anal-
yses. The FSMs generate spurious analyses. That
is, although a word out of context may have several
morphological analyses, in context only one such
analysis is correct. We retain all analyses. We ex-
pect that any incorrect morphemes that are generated
will not affect the predictions of the model, because
they will be rare, and the language model introduces
bias towards frequent morphemes. Although many
words in a test set may not have occurred in a train-
ing set, the morphemes that make up that word likely
will have occurred. Using many decompositions to
describe each word sets apart this study from other
similar studies, including those by Wang and Vergyri
(2006) and Xiang et al. (2006).

This study differs from previous research on Ara-
bic language modeling and Arabic automatic speech
recognition in two other ways. To promote cross-
dialectal use of the techniques, we use properties of
Arabic morphology that we assume to be common to
many dialects. Also, we treat morphological analy-
sis and vowel prediction with a single solution.

An overview of Arabic morphology is given in
Section 2. A description of the finite state machine
process used to decompose the Arabic words into
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morphemes follows in Section 3. The experimental
language model training procedure and the proce-
dures for training two baseline language models are
discussed in Section 4. We evaluate all three models
using average negative log probability and coverage
statistics, discussed in Section 5.

2 Arabic Morphology

This section describes the morphological processes
responsible for the proliferation of word forms in
Arabic. The discussion is based on information from
grammar textbooks such as that by Haywood and
Nahmad (1965), as well as descriptions in various
Arabic NLP articles, including that by Kirchhoff et
al. (2006).

Word formation in Arabic takes place on two
levels. Arabic is a root-and-pattern language in
which many vocalic and consonantal patterns com-
bine with semantic roots to create surface forms. A
root, usually composed of three letters, may encode
more than one meaning. Only by combining a root
with a pattern does one create a meaningful and spe-
cific term. The combination of a root with a pattern
is a stem. In some cases, a stem is a complete surface
form; in other cases, affixes are added.

The second level of word formation is inflec-
tional, and is usually a concatenative process. In-
flectional affixes are used to encode person, number,
gender, tense, and mood information on verbs, and
gender, number, and case information on nouns. Af-
fixes are a closed class of morphemes, and they en-
code predictable information. In addition to inflec-
tion, cliticization is common in Arabic text. Prepo-
sitions, conjunctions, and possessive pronouns are
expressed as clitics.

This combination of templatic derivational mor-
phology and concatenative inflectional morphology,
together with cliticization, results in a rich variation
in word forms. This richness is in contrast with the
slower growth in number of English word forms. As
shown in Table 1, the Arabic stem /drs/, meaning to
study, combines with the present tense verb pattern
“CCuCu”, where the ‘C’ represents a root letter, to
form the present tense stem drusu. This stem can be
combined with 11 different combinations of inflec-
tional affixes, creating as many unique word forms.

Table 1 can be expanded with stems from the

Transliteration Translation Affixes
adrusu I study a-
nadrusu we study na-
tadrusu you (ms) study ta-

tadrusina you (fs) study ta- ,-ina
tadrusAn you (dual) study ta-, -An
tadrusun you (mp) study ya-, -n
tadrusna you (fp) study ta-, -na
yadrusu he studies ya-
tadrusu she studies ta-

yadrusan they (dual) study ya-, -An
yadrusun they (mp) study ya-, -n
yadrusna they (fp) study ya-, -na

Table 1: An Example of Arabic Inflectional Morphology

same root representing different tenses. For in-
stance, the stem daras means studied. Or, we can
combine the root with a different pattern to obtain
different meanings, for instance, to teach or to learn.
Each of these stems can combine with the same or
different affixes to create additional word forms.

Adding a single clitic to the words in Table 1 will
double the number of forms. For instance, the word
adrusu, meaning I study, can take the enclitic ‘ha’,
to express I study it. Some clitics can be combined,
increasing again the number of possible word forms.

Stems differ in some ways that do not surface in
the Arabic orthography. For instance, the pattern
“CCiCu” differs from “CCuCu” only in one short
vowel, which is encoded orthographically as a fre-
quently omitted diacritic. Thus, adrisu and adrusu
are homographs, but not homophones. This prop-
erty helps decrease the number of word forms, but
it causes ambiguity in morphological analyses. Re-
covering the quality of short vowels is a significant
challenge in Arabic natural language processing.

This abundance of unique word forms in Modern
Standard Arabic is problematic for natural language
processing (NLP). NLP tasks usually require that
some analysis be provided for each word (or other
linguistic unit) in a given data set. For instance,
in spoken word recognition, the decoding process
makes use of a language model to predict the words
that best fit the acoustic signal. Only words that have
been seen in the language model’s training data will
be proposed. Because of the immense number of
possible word forms in Arabic, it is highly proba-
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Figure 1: Two templates, mCCC and CCAC as finite state
recognizers, with a small sample alphabet of letters A, d,
m, r, s, and t.
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Figure 2: The first template above, now a transducer, with
affixes accepted, and the stem separated by brackets in the
output.

ble that the words in an acoustic signal will not have
been present in the language model’s training text,
and incorrect words will be predicted. We use in-
formation about the morphology of Arabic to create
a more flexible language model. This model should
encounter fewer unseen forms, as the units we use to
model the language are the more frequent and pre-
dictable morphemes, as opposed to full word forms.
As a result, the word error rate is expected to de-
crease.

3 FSM Analyses

This section describes how we derive, for each word,
a lattice that describes all possible morphological
decompositions for that word. We start with a group
of templates that define the root consonant positions,
long vowels, and consonants for all Arabic regular
and augmented stems. For instance, where C repre-
sents a root consonant, three possible templates are

0
2m

1
[mdrA] 3

[drAs]

s

Figure 3: Two analyses of the word “mdrAs”, as pro-
duced by composing a word FSM with the template
FSMs above.

CCC, mCCC, and CACC. We build a finite state rec-
ognizer for each of the templates, and in each case,
the C arcs are expanded, so that every possible root
consonant in the vocabulary has an arc at that posi-
tion. The two examples in Figure 1 show the patterns
mCCC and CCAC and a short sample alphabet.

At the start and end node of each template recog-
nizer, we add arcs with self-loops. This allows any
sequence of consonants as an affix. To track stem
boundaries, we add an open bracket to the first stem
arc, and a close bracket to the final stem arc. The
templates are compiled into finite state transducers.
Figure 2 shows the result of these additions.

For each word in the vocabulary, we define a sim-
ple, one-arc-per-letter finite state recognizer. We
compose this with each of the templates. Some num-
ber of analyses result from each composition. That
is, a single template may not compose with the word,
may compose with it in a unique way, or may com-
pose with the word in several ways. Each of the suc-
cessful compositions produces a finite state recog-
nizer with brackets surrounding the stem. We use a
script to collapse the arcs within the stem to a single
arc. The result is shown in Figure 3, where the word
“mdrAs” has two analyses corresponding to the two
templates shown. We store a lattice as in Figure 3
for each word.

The patterns that we use to constrain the stem
forms are drawn from Haywood and Nahmad
(1965). These patterns also specify the short vowel
patterns that are used with words derived from each
pattern. An option is to simply add these short
vowels to the output symbols in the template FSTs.
However, because several short vowel options may
exist for each template, this would greatly increase
the size of the resulting lattices. We postpone this ef-
fort. In this work, we focus solely on the usefulness
of the unvoweled morphological decompositions.

We do not assess or need to assess the accuracy of
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the morphological decompositions. Our hypothesis
is that by having many possible decompositions per
word, the frequencies of various affixes and stems
across all words will lead the model to the strongest
predictions. Even if the final predictions are not pre-
scriptively correct, they may be the most useful de-
compositions for the purpose of speech decoding.

4 Procedure
We compare a language model built on multiple seg-
mentations as determined by the FSMs described
above to two baseline models. We call our exper-
imental model FSM-LM; the baseline models use
word-based n-grams (WORD), and pre-defined affix
segmentations (AFFIX). Our data set in this study
is the TDT4 Arabic broadcast news transcriptions
(Kong and Graff, 2005). Because of time and mem-
ory constraints, we built and evaluated all models on
only a subsection of the training data, 100 files of
TDT4, balanced across the years of collection, and
containing files from each of the 4 news sources. We
use 90 files for training, comprising about 6.3 mil-
lion unvoweled word tokens, and 10 files for testing,
comprising about 700K word tokens, and around 5K
sentences. The size of the vocabulary is 104757. We
use ten-fold cross-validation in our evaluations.

4.1 Experimental Model

We extract the vocabulary of the training data, and
compile the word lattices as described in Section 3.
The union of all decompositions (a lattice) for each
individual word is stored separately.

For each sentence of training data, we concate-
nate the lattices representing each word in that sen-
tence. We use SRILM (Stolcke, 2002) to calculate
the posterior expected n-gram count for morpheme
sequences up to 4-grams in the sentence-long lattice.
The estimated frequency of an n-gram N is calcu-
lated as the number of occurrences of that n-gram
in the lattice, divided by the number of paths in the
lattice. This is true so long as the paths are equally
weighted; at this point in our study, this is the case.

We merge the n-gram counts over all sentences
in all of the training files. Next, we estimate a lan-
guage model based on the n-gram counts, using only
the 64000 most frequent morphemes, since we ex-
pect this vocabulary size may be a limitation of our
ASR system. Also, by limiting the vocabulary size

of all of our models (including the baseline models
described below), we can make a fairer comparison
among the models. We use Good-Turing smoothing
to account for unseen morphemes, all of which are
replaced with a single “unknown” symbol.

In later work, we will apply our LM statistics to
the lattices, and recalculate the path weights and
estimated counts. In this study, the paths remain
equally weighted.

We evaluate this model, which we call FSM-LM,
with respect to two baseline models.

4.2 Baseline Models

For the WORD model, we do no manipulation to the
training or test sets beyond the normalization that
occurs as a preprocessing step (hamza normaliza-
tion, replacement of problematic characters). We
build a word-based 4-gram language model using
the 64000 most frequent words and Good-Turing
smoothing.

For the AFFIX model, we first define the charac-
ter strings that are considered affixes. We use the
same list of affixes as in Xiang et al. (2006), which
includes 12 prefixes and 34 suffixes. We add to the
lists all combinations of two prefixes and two suf-
fixes. We extract the vocabulary from the training
data, and for each word, propose a single segmenta-
tion, based on the following constraints:

1. If the word has an acceptable prefix-stem-suffix
decomposition, such that the stem is at least 3
characters long, choose it as the correct decom-
position.

2. If only one affix is found, make sure the re-
mainder is at least 3 characters long, and is not
also a possible affix.

3. If the word has prefix-stem and stem-suffix de-
compositions, use the longest affix.

4. If the longest prefix and longest suffix are equal
length, choose the prefix-stem decomposition.

We build a dictionary that relates each word to a
single segmentation (or no segmentation). We seg-
ment the training and test texts by replacing each
word with its segmentation. Morphemes are sepa-
rated by whitespace. The language model is built by
counting 4-grams over the training data, then using
only the most frequent 64000 morphemes in estimat-
ing a language model with Good-Turing smoothing.
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WORD AFFIX FSM-LM
Avg Neg
Log Prob

4.65 5.30 4.56

Coverage (%):
Unigram 96.03 99.30 98.89
Bigram 17.81 53.13 69.56
Trigram 1.52 11.89 27.25
Four-gram .37 3.42 9.62

Table 2: Average negative log probability and coverage
results for one experimental language model (FSM-LM)
and two baseline language models. Results are averages
over 10 folds.

5 Evaluation
For each model, the test set undergoes the same ma-
nipulation as the train set; words are left alone for
the WORD model, split into a single segmentation
each for the AFFIX model, or their FSM decompo-
sitions are concatenated.

Language models are often compared using the
perplexity statistic:

PP (x1 . . . xn) = 2−
1
n

∑n

xi=4
logP (xi|xi−3

i−1) (1)

Perplexity represents the average branching factor of
a model; that is, at each point in the test set, we cal-
culate the entropy of the model. Therefore, a lower
perplexity is desired.

In the AFFIX and FSM-LM models, each word is
split into several parts. Therefore, the value 1

n would
be approximately three times smaller for these mod-
els, giving them an advantage. To make a more even
comparison, we calculate the geometric mean of the
n-gram transition probabilities, dividing by the num-
ber of words in the test set, not morphemes, as in
Kirchhoff et al. (2006). The log of this equation is:

AvgNegLogProb(x1 . . . xn) =

− 1
N

n∑
i=4

logP (xi|xi−3
i−1) (2)

where n is the number of morphemes or words in the
test set, depending on the model, and N is the num-
ber of words in the test set, and log P (xi|xi−3

i−1) is the
log probability of the item xi given the 3-item his-
tory (calculated in base 10, as this is how the SRILM
Toolkit is implemented). Again, we are looking for
a low score.

In the FSM-LM, each test sentence is represented
by a lattice of paths. To determine the negative log
probability of the sentence, we score all paths of
the sentence according to the equations above, and
record the maximum probability. This reflects the
likely procedure we would use in implementing this
model within an ASR task.

We see in Table 2 that the average negative log
probability of the FSM-LM is lower than that of
either the WORD or AFFIX model. The average
across 10 folds reflects the pattern of scores for each
fold. We conclude from this that the FSM model
of predicting morphemes is more effective than -
or more conservatively, at least as effective as - a
static decomposition, as in the AFFIX model. Fur-
thermore, we have successfully reproduced the re-
sults of Xiang et al. (2006) and Kirchhoff et al.
(2006), among others, that modeling Arabic with
morphemes is more effective than modeling with
whole word forms.

We also calculate the coverage of each model: the
percentage of units in the test set that are given prob-
abilities in the language model. For the FSM model,
only the morphemes in the best path are counted.
The coverage results are reported in Table 2 as the
average coverage over the 10 folds. Both the AF-
FIX and FSM-LM models showed improved cover-
age as compared to the WORD model, as expected.
This means that we reduce the OOV problem by us-
ing morphemes instead of whole words. The AF-
FIX model has the best coverage of unigrams be-
cause only new stems, not new affixes, are proposed
in the test set. That is, the same fixed set of affixes
are used to decompose the test set as the train set,
however, unseem stems may appear. In the FSM-
LM, there are no restrictions on the affixes, there-
fore, unseen affixes may appear in the test set, as
well as new stems, lowering the unigram coverage of
the test set. For larger n-grams, however, the FSM-
LM model has the best coverage. This is due to
keeping all decompositions until test time, then al-
lowing the language model to define the most likely
sequences, rather than specifying a single decompo-
sition for each word.

A 4-gram of words will tend to cover more con-
text than a 4-gram of morphemes; therefore, the
word 4-grams will exhibit more sparsity than the
morpheme 4-grams. We compare, for a single train-
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WORD AFFIX FSM-LM
unigrams 4.97 5.84 5.60
bigrams 4.95 5.70 4.61
trigrams 4.95 5.69 4.56

four-grams 4.95 5.69 4.57

Table 3: Comparison of n-gram orders across language
model types.

test fold, how lower order n-grams compare among
the models. The results are shown in Table 3. We
find that for lower-order n-grams, the word model
performs best. As the n-grams get larger, the spar-
sity problem favors the FSM-LM, which has the best
overall score of all models shown. Apparently, the
frequencies of 3- and 4-grams are not big enough
to make a big difference in the evaluation. This is
likely due to the small size of our corpus, and we
expect the result would change if we were to use all
of the TDT4 corpus, rather than a 100 file portion of
the corpus.

6 Conclusion & Future Work
It has been shown that reduced perplexity scores do
not necessarily correlate with reduced word error
rates in an ASR task (Berton et al., 1996). This is be-
cause the perplexity (or in this case, average negative
log probability) statistic does not take into account
the acoustic confusability of the items being consid-
ered. However, the average negative log probability
score is a useful tool as a proof-of-concept, giving
us reason to believe that we may be successful in
implementing this model within an ASR task.

The real test of this model is its ability to predict
short vowels. The average negative log probability
scores may lead us to believe that the FSM-LM is
only marginally better than the WORD or AFFIX
model, and the differences may not be apparent in
an ASR application. However, only the FSM-LM
model allows for the opportunity to predict short
vowels, by arranging the FSMs as finite state trans-
ducers with short vowel information encoded as part
of the stem patterns.

We will continue to tune the language model by
applying the language model weights to the decom-
position paths and re-estimating the language model.
Also, we will expand the language model to include
more training data. We will implement the model
within an Arabic ASR system, with and without

short vowel hypotheses. Furthermore, we are inter-
ested to see how well the application of these tem-
plates and this framework will apply to other Arabic
dialects.
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