
Proceedings of ACL-08: HLT, Short Papers (Companion Volume), pages 237–240,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

splitSVM: Fast, Space-Efficient, non-Heuristic, Polynomial Kernel
Computation for NLP Applications

Yoav Goldberg and Michael Elhadad
Ben Gurion University of the Negev

Department of Computer Science
POB 653 Be’er Sheva, 84105, Israel

{yoavg,elhadad}@cs.bgu.ac.il

Abstract

We present a fast, space efficient and non-
heuristic method for calculating the decision
function of polynomial kernel classifiers for
NLP applications. We apply the method to
the MaltParser system, resulting in a Java
parser that parses over 50 sentences per sec-
ond on modest hardware without loss of accu-
racy (a 30 time speedup over existing meth-
ods). The method implementation is available
as the open-source splitSVM Java library.

1 Introduction

Over the last decade, many natural language pro-
cessing tasks are being cast as classification prob-
lems. These are then solved by of-the-shelf
machine-learning algorithms, resulting in state-of-
the-art results. Support Vector Machines (SVMs)
have gained popularity as they constantly outper-
form other learning algorithms for many NLP tasks.

Unfortunately, once a model is trained, the de-
cision function for kernel-based classifiers such as
SVM is expensive to compute, and can grow lin-
early with the size of the training data. In contrast,
the computational complexity for the decisions func-
tions of most non-kernel based classifiers does not
depend on the size of the training data, making them
orders of magnitude faster to compute. For this rea-
son, research effort was directed at speeding up the
classification process of polynomial-kernel SVMs
(Isozaki and Kazawa, 2002; Kudo and Matsumoto,
2003; Wu et al., 2007). Existing accelerated SVM
solutions, however, either require large amounts of

memory, or resort to heuristics – computing only an
approximation to the real decision function.

This work aims at speeding up the decision func-
tion computation for low-degree polynomial ker-
nel classifiers while using only a modest amount of
memory and still computing the exact function. This
is achieved by taking into account the Zipfian nature
of natural language data, and structuring the compu-
tation accordingly. On a sample application (replac-
ing the libsvm classifier used by MaltParser (Nivre
et al., 2006) with our own), we observe a speedup
factor of 30 in parsing time.

2 Background and Previous Work

In classification based NLP algorithms, a word and
its context is considered a learning sample, and en-
coded as Feature Vectors. Usually, context data in-
cludes the word being classified (w0), its part-of-
speech (PoS) tag (p0), word forms and PoS tags of
neighbouring words (w−2, . . . , w+2, p−2, . . . , p+2,
etc.). Computed features such as the length of a
word or its suffix may also be added. A feature vec-
tor (F) is encoded as an indexed list of all the fea-
tures present in the training corpus. A feature fi of
the form w+1 = dog means that the word follow-
ing the one being classified is ‘dog’. Every learning
sample is represented by an n = |F | dimensional
binary vector x. xi = 1 iff the feature fi is active
in the given sample, 0 otherwise. n is the number
of different features being considered. This encod-
ing leads to vectors with extremely high dimensions,
mainly because of lexical features wi.

SVM is a supervised binary classifier. The re-
sult of the learning process is the set SV of Sup-

237

port Vectors, associated weights αi, and a constant
b. The Support Vectors are a subset of the training
feature vectors, and together with the weights and b
they define a hyperplane that optimally separates the
training samples. The basic SVM formulation is of a
linear classifier, but by introducing a kernel function
K that non-linearly transforms the data fromRn into
a space of higher dimension, SVM can be used to
perform non-linear classification. SVM’s decision
function is:

y(x) = sgn
(∑

j∈SV yjαjK(xj , x) + b
)

where x is an n dimensional feature vector to
be classified. The kernel function we consider
in this paper is a polynomial kernel of degree d:
K(xi, xj) = (γxi · xj + c)d. When using binary
valued features (with γ = 1 and c = 1), this kernel
function essentially implies that the classifier con-
siders not only the explicitly specified features, but
also all available sets of size d of features. For
d = 2, this means considering all feature pairs,
while for d = 3 all feature triplets. In practice, a
polynomial kernel with d = 2 usually yields the
best results in NLP tasks, while higher degree ker-
nels tend to overfit the data.

2.1 Decision Function Computation

Note that the decision function involves a summa-
tion over all support vectors xj in SV . In natu-
ral language applications, the size |SV | tends to be
very large (Isozaki and Kazawa, 2002), often above
10,000. In particular, the size of the support vectors
set can grow linearly with the number of training ex-
amples, of which there are usually at least tens of
thousands. As a consequence, the computation of
the decision function is computationally expensive.
Several approaches have been designed to speed up
the decision function computation.

Classifier Splitting is a common, application
specific heuristic, which is used to speed up the
training as well as the testing stages (Nivre et al.,
2006). The training data is split into several datasets
according to an application specific heuristic. A sep-
arate classifier is then trained for each dataset. For
example, it might be known in advance that nouns
usually behave differently than verbs. In such a
case, one can train one classifier on noun instances,
and a different classifier on verb instances. When

testing, only one of the classifiers will be applied,
depending on the PoS of the word. This technique
reduces the number of support vectors in each clas-
sifier (because each classifier was trained on only a
portion of the data). However, it relies on human in-
tuition on the way the data should be split, and usu-
ally results in a degradation in performance relative
to a single classifier trained on all the data points.

PKI – Inverted Indexing (Kudo and Matsumoto,
2003), stores for each feature the support vectors in
which it appears. When classifying a new sample,
only the set of vectors relevant to features actually
appearing in the sample are considered. This ap-
proach is non-heuristic and intuitively appealing, but
in practice brings only modest improvements.

Kernel Expansion (Isozaki and Kazawa, 2002)
is used to transform the d-degree polynomial kernel
based classifier into a linear one, with a modified
decision function y(x) = sgn(w · xd + b). w is a
very high dimensional weight vector, which is cal-
culated beforehand from the set of support vectors
and their corresponding αi values. (the calculation
details appear in (Isozaki and Kazawa, 2002; Kudo
and Matsumoto, 2003)). This speeds up the decision
computation time considerably, as only |x|d weights
need to be considered, |x| being the number of ac-
tive features in the sample to be classified, which
is usually a very small number. However, even the
sparse-representation version of w tends to be very
large: (Isozaki and Kazawa, 2002) report that some
of their second degree expanded NER models were
more than 80 times slower to load than the original
models (and 224 times faster to classify).1 This ap-
proach obviously does not scale well, both to tasks
with more features and to larger degree kernels.

PKE – Heuristic Kernel Expansion, was intro-
duced by (Kudo and Matsumoto, 2003). This heuris-
tic method addresses the deficiency of the Kernel
Expansion method by using a basket-mining algo-
rithm in order to greatly reduce the number of non-
zero elements in the calculated w. A parameter is
used to control the number of non-zero elements in
w. The smaller the number, the smaller the memory
requirement, but setting this number too low hurts
classification performance, as only an approxima-

1Using a combination of 33 classifiers, the overall loading
time is about 31 times slower, and classification time is about
21 times faster, than the non-expanded classifiers.

238

tion of the real decision function is calculated.
“Semi Polynomial Kernel” was introduced by

(Wu et al., 2007). The intuition behind this opti-
mization is to “extend the linear kernel SVM toward
polynomial”. It does not train a polynomial kernel
classifier, but a regular linear SVM. A basket-mining
based feature selection algorithm is used to select
“useful” pairs and triplets of features prior to the
training stage, and a linear classifier is then trained
using these features. Training (and testing) are faster
then in the polynomial kernel case, but the result suf-
fer quite a big loss in accuracy as well.2.

3 Fast, Non-Heuristic Computation

We now turn to present our fast, space efficient and
non-heuristic approach for computing the Polyno-
mial Kernel decision function.3 Our approach is a
combination of the PKI and the Kernel Expansion
methods. While previous works considered kernels
of the form K(x, y) = (x · y + 1)d, we consider
the more general form of the polynomial kernel:
K(x, y) = (γx · y + c)d.

Our key observation is that in NLP classifica-
tion tasks, few of the features (e.g., PoS is X,
or prev word is the) are very frequent, while
most others are extremely rare (e.g., next word
is polynomial). The common features are ac-
tive in many of the support-vectors, while the rare
features are active only in few support vectors. This
is true for most language related tasks: the Zipfian
nature of language phenomena is reflected in the dis-
tribution of features in the support vectors.

It is because of common features that the PKI re-
verse indexing method does not yield great improve-
ments: if at least one of the features of the current
instance is active in a support vector, this vector is
taken into account in the sum calculation, and the
common features are active in many support vectors.

On the other hand, the long tail of rare features
is the reason the Kernel Expansion methods requires

2This loss of accuracy in comparison to the PKE approach
is to be expected, as (Goldberg and Elhadad, 2007) showed that
the effect of removing features prior to the learning stage is
much more severe than removing them after the learning stage.

3Our presentation is for the case where d = 2, as this is by
far the most useful kernel. However, the method can be easily
adapted to higher degree kernels as well. For completeness, our
toolkit provides code for d = 3 as well as 2.

so much space: every rare feature adds many possi-
ble feature pairs.

We propose a combined method. We first split
common from rare features. We then use Kernel
Expansion on the few common features, and PKI
for the remaining rare features. This ensures small
memory footprint for the expanded kernel vector,
while at the same time keeping a low number of vec-
tors from the reverse index.

3.1 Formal Details
The polynomial kernel of degree 2 is: K(x, y) =
(γx · y + c)2, where x and y are binary feature vec-
tors. x ·y is the dot product between the vectors, and
in the case of binary feature vectors it corresponds
to the count of shared features among the vectors. F
is the set of all possible features.

We define FR and FC to be the sets of rare and
common features. FR∩FC = ∅, FR∪FC = F . The
mapping function φR(x) zeros out all the elements
of x not belonging to FR, while φC(x) zeroes out
all the elements of x not in FC . Thus, for every x:
φR(x)+φC(x) = x, φR(x)·φC(x) = 0. For brevity,
denote φC(x) = xC , φR(x) = xR.

We now rewrite the kernel function:

K(x, y) = K(xR + xC , yR + yC) =
= (γ(xR + xC) · (yR + yC) + c)2

= (γxR · yR + γxC · yC + c)2

= (γxR · yR)2

+ 2γ2(xR · yR)(xC · yC)
+ 2cγ(xR · yR)
+ (γ(xC · yC) + c)2

The first 3 terms are non-zero only when at
least one rare feature exists. We denote their sum
KR(x, y). The last term involves only common fea-
tures. We denote it KC(x, y). Note that KC(x, y) is
the polynomial kernel of degree 2 over feature vec-
tors of only common features.

We can now write the SVM decision function as:∑
j∈SV

yjαjKR(xj , xR) +
∑

j∈SV

yjαjKC(xj , xC) + b

We calculate the first sum via PKI, taking into ac-
count only support-vectors which share at least one
feature with xR. The second sum is calculated via
kernel expansion while taking into account only the

239

common features. Thus, only pairs of common fea-
tures appear in the resulting weight vector using the
same expansion as in (Kudo and Matsumoto, 2003;
Isozaki and Kazawa, 2002). In our case, however,
the expansion is memory efficient, because we con-
sider only features in FC , which is small.

Our approach is similar to the PKE approach
(Kudo and Matsumoto, 2003), which used a basket
mining approach to prune many features from the
expansion. In contrast, we use a simpler approach to
choose which features to include in the expansion,
and we also compensate for the feature we did not
include by the PKI method. Thus, our method gen-
erates smaller expansions while computing the exact
decision function and not an approximation of it.

We take every feature occurring in less than s sup-
port vectors to be rare, and the other features to be
common. By changing s we get a trade-of between
space and time complexity: smaller s indicate more
common features (bigger memory requirement) but
also less rare features (less support vectors to in-
clude in the summation), and vice-versa. In con-
trast to other methods, changing s is guaranteed not
to change the classification accuracy, as it does not
change the computed decision function.

4 Toolkit and Evaluation
Using this method, one can accelerate SVM-based
NLP application by just changing the classification
function, keeping the rest of the logic intact. We
implemented an open-source software toolkit, freely
available at http://www.cs.bgu.ac.il/∼nlpproj/. Our
toolkit reads models created by popular SVM pack-
ages (libsvm, SVMLight, TinySVM and Yamcha)
and transforms them into our format. The trans-
formed models can then be used by our efficient Java
implementation of the method described in this pa-
per. We supply wrappers for the interfaces of lib-
svm and the Java bindings of SVMLight. Changing
existing Java code to accommodate our fast SVM
classifier is done by loading a different model, and
changing a single function call.

4.1 Evaluation: Speeding up MaltParser

We evaluate our method by using it as the classi-
fication engine for the Java version of MaltParser,
an SVM-based state of the art dependency parser
(Nivre et al., 2006). MaltParser uses the libsvm

classification engine. We used the pre-trained En-
glish models (based on sections 0-22 of the Penn
WSJ) supplied with MaltParser. MaltParser already
uses an effective Classifiers Splitting heuristic when
training these models, setting a high baseline for our
method. The pre-trained parser consists of hundreds
of different classifiers, some very small. We report
here on actual memory requirement and parsing time
for sections 23-24, considering the classifier combi-
nation. We took rare features to be those appear-
ing in less than 0.5% of the support vectors, which
leaves us with less than 300 common features in
each of the “big” classifiers. The results are summa-
rized in Table 1. As can be seen, our method parses

Method Mem. Parsing Time Sents/Sec
Libsvm 240MB 2166 (sec) 1.73
ThisPaper 750MB 70 (sec) 53

Table 1: Parsing Time for WSJ Sections 23-24 (3762
sentences), on Pentium M, 1.73GHz

about 30 times faster, while using only 3 times as
much memory. MaltParser coupled with our fast
classifier parses above 3200 sentences per minute.

5 Conclusions
We presented a method for fast, accurate and mem-
ory efficient calculation for polynomial kernels de-
cisions functions in NLP application. While the
method is applied to SVMs, it generalizes to other
polynomial kernel based classifiers. We demon-
strated the method on the MaltParser dependency
parser with a 30-time speedup factor on overall pars-
ing time, with low memory overhead.

References
Y. Goldberg and M. Elhadad. 2007. SVM model tamper-

ing and anchored learning: A case study in hebrew. np
chunking. In Proc. of ACL2007.

H. Isozaki and H. Kazawa. 2002. Efficient support vector
classifiers for named entity recognition. In Proc. of
COLING2002.

T. Kudo and Y. Matsumoto. 2003. Fast methods for
kernel-based text analysis. In ACL-2003.

J. Nivre, J. Hall, and J. Nillson. 2006. Maltparser: A
data-driven parser-generator for dependency parsing.
In Proc. of LREC2006.

Y. Wu, J. Yang, and Y. Lee. 2007. An approximate ap-
proach for training polynomial kernel svms in linear
time. In Proc. of ACL2007 (short-paper).

240

