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Abstract 

A solution to the problem of homograph 

(words with multiple distinct meanings) iden-

tification is proposed and evaluated in this pa-

per. It is demonstrated that a mixture model 

based framework is better suited for this task 

than the standard classification algorithms – 

relative improvement of 7% in F1 measure 

and 14% in Cohen’s kappa score is observed.  

1 Introduction 

Lexical ambiguity resolution is an important re-

search problem for the fields of information re-

trieval and machine translation (Sanderson, 2000; 

Chan et al., 2007). However, making fine-grained 

sense distinctions for words with multiple closely-

related meanings is a subjective task (Jorgenson, 

1990; Palmer et al., 2005), which makes it difficult 

and error-prone.  Fine-grained sense distinctions 

aren’t necessary for many tasks, thus a possibly-

simpler alternative is lexical disambiguation at the 

level of homographs (Ide and Wilks, 2006).  

Homographs are a special case of semantically 

ambiguous words:  Words that can convey multi-

ple distinct meanings. For example, the word bark 

can imply two very different concepts – ‘outer 

layer of a tree trunk’, or, ‘the sound made by a 

dog’ and thus is a homograph. Ironically, the defi-

nition of the word ‘homograph’ is itself ambiguous 

and much debated; however, in this paper we con-

sistently use the above definition.  

If the goal is to do word-sense disambiguation 

of homographs in a very large corpus, a manually-

generated homograph inventory may be impracti-

cal. In this case, the first step is to determine which 

words in a lexicon are homographs.  This problem 

is the subject of this paper. 

2 Finding the Homographs in a Lexicon 

Our goal is to identify the homographs in a large 

lexicon.  We assume that manual labor is a scarce 

resource, but that online dictionaries are plentiful 

(as is the case on the web).  Given a word from the 

lexicon, definitions are obtained from eight dic-

tionaries: Cambridge Advanced Learners Diction-

ary (CALD), Compact Oxford English Dictionary, 

MSN Encarta, Longman Dictionary of Contempo-

rary English (LDOCE), The Online Plain Text 

English Dictionary, Wiktionary, WordNet and 

Wordsmyth. Using multiple dictionaries provides 

more evidence for the inferences to be made and 

also minimizes the risk of missing meanings be-

cause a particular dictionary did not include one or 

more meanings of a word (a surprisingly common 

situation). We can now rephrase the problem defi-

nition as that of determining which words in the 

lexicon are homographs given a set of dictionary 

definitions for each of the words.  

2.1 Features 

We use nine meta-features in our algorithm. In-

stead of directly using common lexical features 

such as n-grams we use meta-features which are 

functions defined on the lexical features. This ab-
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straction is essential in this setup for the generality 

of the approach. For each word w to be classified 

each of the following meta-features are computed. 

 

1. Cohesiveness Score: Mean of the cosine simi-

larities between each pair of definitions of w. 

2. Average Number of Definitions: The average 

number of definitions per dictionary. 

3. Average Definition Length: The average 

length (in words) of definitions of w. 

4. Average Number of Null Similarities: The 

number of definition pairs that have zero co-

sine similarity score (no word overlap). 

5. Number of Tokens: The sum of the lengths 

(in words) of the definitions of w. 

6. Number of Types: The size of the vocabulary 

used by the set of definitions of w. 

7. Number of Definition Pairs with n Word 
Overlaps: The number of definition pairs that 

have more than n=2 words in common. 

8. Number of Definition Pairs with m Word 

Overlaps: The number of definition pairs that 

have more than m=4 words in common. 

9. Post Pruning Maximum Similarity: (below) 

 

The last feature sorts the pair-wise cosine similar-

ity scores in ascending order, prunes the top n% of 

the scores, and uses the maximum remaining score 

as the feature value.  This feature is less ad-hoc 

than it may seem.  The set of definitions is formed 

from eight dictionaries, so almost identical defini-

tions are a frequent phenomenon, which makes the 

maximum cosine similarity a useless feature. A 

pruned maximum turns out to be useful informa-

tion. In this work n=15 was found to be most in-

formative using a tuning dataset.  

Each of the above features provides some 

amount of discriminative power to the algorithm. 

For example, we hypothesized that on average the 

cohesiveness score will be lower for homographs 

than for non-homographs. Figure 1 provides an 

illustration. If empirical support was observed for 

such a hypothesis about a candidate feature then 

the feature was selected. This empirical evidence 

was derived from only the training portion of the 

data (Section 3.1).  

The above features are computed on definitions 

stemmed with the Porter Stemmer. Closed class 

words, such as articles and prepositions, and dic-

tionary-specific stopwords, such as ‘transitive’, 

‘intransitive’, and ‘countable’, were also removed. 

Figure 1. Histogram of Cohesiveness scores for Homo-

graphs and Non-homographs. 

2.2 Models 

We formulate the homograph detection process as 

a generative hierarchical model. Figure 2 provides 

the plate notation of the graphical model. The la-

tent (unobserved) variable Z models the class in-

formation: homograph or non-homograph. Node X 

is the conditioned random vector (Z is the condi-

tioning variable) that models the feature vector. 

 
Figure 2.  Plate notation for the proposed model. 

 

This setup results in a mixture model with two 

components, one for each class. The Z is assumed 

to be Bernoulli distributed and thus parameterized 

by a single parameter p. We experiment with two 

continuous multivariate distributions, Dirichlet and 

Multivariate Normal (MVN), for the conditional 

distribution of X|Z. 

Z ~ Bernoulli (p) 

X|Z ~ Dirichlet (az)   

OR 

X|Z ~ MVN (muz, covz) 

We will refer to the parameters of the condi-

tional distribution as Θz. For the Dirichlet distribu-

tion, Θz is a ten-dimensional vector az = (az1, .., 

az10). For the MVN, Θz represents a nine-

dimensional mean vector muz = (muz1, .., muz9) 

N 

p Z 

X Θ 
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and a nine-by-nine-dimensional covariance matrix 

covz. We use maximum likelihood estimators 

(MLE) for estimating the parameters (p, Θz). The 

MLEs for Bernoulli and MVN parameters have 

analytical solutions. Dirichlet parameters were es-

timated using an estimation method proposed and 

implemented by Tom Minka
1
. 

We experiment with three model setups: Super-

vised, semi-supervised, and unsupervised. In the 

supervised setup we use the training data described 

in Section 3.1 for parameter estimation and then 

use thus fitted models to classify the tuning and 

test dataset. We refer to this as the Model I. In 

Model II, the semi-supervised setup, the training 

data is used to initialize the Expectation-

Maximization (EM) algorithm (Dempster et al., 

1977) and the unlabeled data, described in Section 

3.1, updates the initial estimates. The Viterbi 

(hard) EM algorithm was used in these experi-

ments. The E-step was modified to include only 

those unlabeled data-points for which the posterior 

probability was above certain threshold. As a re-

sult, the M-step operates only on these high poste-

rior data-points. The optimal threshold value was 

selected using a tuning set (Section 3.1). The unsu-

pervised setup, Model III, is similar to the semi-

supervised setup except that the EM algorithm is 

initialized using an informed guess by the authors. 

3 Data 

In this study, we concentrate on recognizing 

homographic nouns, because homographic ambi-

guity is much more common in nouns than in 

verbs, adverbs or adjectives. 

3.1 Gold Standard Data 

A set of potentially-homographic nouns was identi-

fied by selecting all words with at least two noun 

definitions in both CALD and LDOCE.  This set 

contained 3,348 words. 

225 words were selected for manual annotation 

as homograph or non-homograph by random sam-

pling of words that were on the above list and used 

in prior psycholinguistic studies of homographs 

(Twilley et al., 1994; Azuma, 1996) or on the Aca-

demic Word List (Coxhead, 2000). 

Four annotators at, the Qualitative Data Analysis 

Program at the University of Pittsburgh, were 

                                                           
1 http://research.microsoft.com/~minka/software/fastfit/ 

trained to identify homographs using sets of dic-

tionary definitions.  After training, each of the 225 

words was annotated by each annotator. On aver-

age, annotators categorized each word in just 19 

seconds.  The inter-annotator agreement was 0.68, 

measured by Fleiss’ Kappa. 

23 words on which annotators disagreed (2/2 

vote) were discarded, leaving a set of 202 words 

(the “gold standard”) on which at least 3 of the 4 

annotators agreed. The best agreement between the 

gold standard and a human annotator was 0.87 

kappa, and the worst was 0.78. The class distribu-

tion (homographs and non-homographs) was 0.63, 

0.37. The set of 3,123 words that were not anno-

tated was the unlabeled data for the EM algorithm. 

4 Experiments and Results 

A stratified division of the gold standard data in 

the proportion of 0.75 and 0.25 was done in the 

first step. The smaller portion of this division was 

held out as the testing dataset. The bigger portion 

was further divided into two portions of 0.75 and 

0.25 for the training set and the tuning set, respec-

tively. The best and the worst kappa between a 

human annotator and the test set are 0.92 and 0.78. 

Each of the three models described in Section 

2.2 were experimented with both Dirichlet and 

MVN as the conditional. An additional experiment 

using two standard classification algorithms – Ker-

nel Based Naïve Bayes (NB) and Support Vector 

Machines (SVM) was performed. We refer to this 

as the baseline experiment. The Naïve Bayes clas-

sifier outperformed SVM on the tuning as well as 

the test set and thus we report NB results only. A 

four-fold cross-validation was employed for the all 

the experiments on the tuning set. The results are 

summarized in Table 1. The reported precision, 

recall and F1 values are for the homograph class.  

The naïve assumption of class conditional fea-

ture independence is common to simple Naïve 

Bayes classifier, a kernel based NB classifier; 

however, unlike simple NB it is capable of model-

ing non-Gaussian distributions. Note that in spite 

of this advantage the kernel based NB is outper-

formed by the MVN based hierarchical model. Our 

nine features are by definition correlated and thus 

it was our hypothesis that a multivariate distribu-

tion such as MVN which can capture the covari-

ance amongst the features will be a better fit. The 

above finding confirms this hypothesis. 
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 Table 1. Results for the six models and the baseline on the tuning and test set.

One of the known situations when mixture mod-

els out-perform standard classification algorithms 

is when the data comes from highly overlapping 

distributions. In such cases the classification algo-

rithms that try to place the decision boundary in a 

sparse area are prone to higher error-rates than 

mixture model based approach. We believe that 

this is explanations of the observed results. On the 

test set a relative improvement of 7% in F1 and 

14% in kappa statistic is obtained using the MVN 

mixture model. 

The results for the semi-supervised models are 

non-conclusive. Our post-experimental analysis 

reveals that the parameter updation process using 

the unlabeled data has an effect of overly separat-

ing the two overlapping distributions. This is trig-

gered by our threshold based EM methodology 

which includes only those data-points for which 

the model is highly confident; however such data-

points are invariable from the non-overlapping re-

gions of the distribution, which gives a false view 

to the learner that the distributions are less over-

lapping. We believe that the unsupervised models 

also suffer from the above problem in addition to 

the possibility of poor initializations. 

5 Conclusions 

We have demonstrated in this paper that the prob-

lem of homograph identification can be ap-

proached using dictionary definitions as the source 

of information about the word. Further more, using 

multiple dictionaries provides more evidence for 

the inferences to be made and also minimizes the 

risk of missing few meanings of the word.  

We can conclude that by modeling the underly-

ing data generation process as a mixture model, the 

problem of homograph identification can be per-

formed with reasonable accuracy.  

The capability of identifying homographs from 

non-homographs enables us to take on the next 

steps of sense-inventory generation and lexical 

ambiguity resolution. 
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 Tuning Set Test Set 

 

Preci-

sion Recall F1 Kappa 

Preci-

sion Recall F1 Kappa 

Model I – Dirichlet 0.84 0.74 0.78 0.47 0.81 0.62 0.70 0.34 

Model II – Dirichlet 0.85 0.71 0.77 0.45 0.81 0.60 0.68 0.33 

Model III – Dirichlet 0.78 0.74 0.76 0.37 0.82 0.56 0.67 0.32 

Model I – MVN 0.70 0.75 0.78 0.32 0.80 0.73 0.76 0.41 

Model II – MVN 0.74 0.82 0.78 0.34 0.71 0.79 0.74 0.25 

Model III – MVN 0.69 0.89 0.77 0.22 0.64 0.84 0.72 0.22 

Baseline – NB 0.82 0.73 0.77 0.43 0.82 0.63 0.71 0.36 
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