
Proceedings of ACL-08: HLT, Short Papers (Companion Volume), pages 65–68,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Assessing the Costs of Sampling Methods in Active Learning for Annotation

Robbie Haertel, Eric Ringger, Kevin Seppi, James Carroll, Peter McClanahan

Department of Computer Science

Brigham Young University

Provo, UT 84602, USA

robbie haertel@byu.edu, ringger@cs.byu.edu, kseppi@cs.byu.edu,

jlcarroll@gmail.com, petermcclanahan@gmail.com

Abstract

Traditional Active Learning (AL) techniques

assume that the annotation of each datum costs

the same. This is not the case when anno-

tating sequences; some sequences will take

longer than others. We show that the AL tech-

nique which performs best depends on how

cost is measured. Applying an hourly cost

model based on the results of an annotation

user study, we approximate the amount of time

necessary to annotate a given sentence. This

model allows us to evaluate the effectiveness

of AL sampling methods in terms of time

spent in annotation. We acheive a 77% re-

duction in hours from a random baseline to

achieve 96.5% tag accuracy on the Penn Tree-

bank. More significantly, we make the case

for measuring cost in assessing AL methods.

1 Introduction

Obtaining human annotations for linguistic data is

labor intensive and typically the costliest part of the

acquisition of an annotated corpus. Hence, there is

strong motivation to reduce annotation costs, but not

at the expense of quality. Active learning (AL) can

be employed to reduce the costs of corpus annotation

(Engelson and Dagan, 1996; Ringger et al., 2007;

Tomanek et al., 2007). With the assistance of AL,

the role of the human oracle is either to label a da-

tum or simply to correct the label from an automatic

labeler. For the present work, we assume that cor-

rection is less costly than annotation from scratch;

testing this assumption is the subject of future work.

In AL, the learner leverages newly provided anno-

tations to select more informative sentences which

in turn can be used by the automatic labeler to pro-

vide more accurate annotations in future iterations.

Ideally, this process yields accurate labels with less

human effort.

Annotation cost is project dependent. For in-

stance, annotators may be paid for the number of an-

notations they produce or by the hour. In the context

of parse tree annotation, Hwa (2004) estimates cost

using the number of constituents needing labeling

and Osborne & Baldridge (2004) use a measure re-

lated to the number of possible parses. With few ex-

ceptions, previous work on AL has largely ignored

the question of actual labeling time. One excep-

tion is (Ngai and Yarowsky, 2000) (discussed later)

which compares the cost of manual rule writing with

AL-based annotation for noun phrase chunking. In

contrast, we focus on the performance of AL algo-

rithms using different estimates of cost (including

time) for part of speech (POS) tagging, although the

results are applicable to AL for sequential labeling

in general. We make the case for measuring cost in

assessing AL methods by showing that the choice of

a cost function significantly affects the choice of AL

algorithm.

2 Benefit and Cost in Active Learning

Every annotation task begins with a set of un-

annotated items U . The ordered set A ⊆ U con-

sists of all annotated data after annotation is com-

plete or after available financial resources (or time)

have been exhausted. We expand the goal of AL

to produce the annotated set Â such that the benefit

gained is maximized and cost is minimized.

In the case of POS tagging, tag accuracy is usu-
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ally used as the measure of benefit. Several heuristic

AL methods have been investigated for determining

which data will provide the most information and

hopefully the best accuracy. Perhaps the best known

are Query by Committee (QBC) (Seung et al., 1992)

and uncertainty sampling (or Query by Uncertainty,

QBU) (Thrun and Moeller, 1992). Unfortunately,

AL algorithms such as these ignore the cost term of

the maximization problem and thus assume a uni-

form cost of annotating each item. In this case, the

ordering of annotated dataAwill depend entirely on

the algorithm’s estimate of the expected benefit.

However, for AL in POS tagging, the cost term

may not be uniform. If annotators are required to

change only those automatically generated tags that

are incorrect, and depending on how annotators are

paid, the cost of tagging one sentence can depend

greatly on what is known from sentences already an-

notated. Thus, in POS tagging both the benefit (in-

crease in accuracy) and cost of annotating a sentence

depend not only on properties of the sentence but

also on the order in which the items are annotated.

Therefore, when evaluating the performance of an

AL technique, cost should be taken into account. To

illustrate this, consider some basic AL algorithms

evaluated using several simple cost metrics. The re-

sults are presented against a random baseline which

selects sentences at random; the learning curves rep-

resent the average of five runs starting from a ran-

dom initial sentence. If annotators are paid by the

sentence, Figure 1(a) presents a learning curve in-

dicating that the AL policy that selects the longest

sentence (LS) performs rather well. Figure 1(a) also

shows that given this cost model, QBU and QBC are

essentially tied, with QBU enjoying a slight advan-

tage. This indicates that if annotators are paid by

the sentence, QBU is the best solution, and LS is a

reasonable alternative. Next, Figure 1(b) illustrates

that the results differ substantially if annotators are

paid by the word. In this case, using LS as an AL

policy is worse than random selection. Furthermore,

QBC outperforms QBU. Finally, Figure 1(c) shows

what happens if annotators are paid by the number

of word labels corrected. Notice that in this case, the

random selector marginally outperforms the other

techniques. This is because QBU, QBC, and LS tend

to select data that require many corrections. Con-

sidered together, Figures 1(a)-Figure 1(c) show the

significant impact of choosing a cost model on the

relative performance of AL algorithms. This leads

us to conclude that AL techniques should be eval-

uated and compared with respect to a specific cost

function.

While not all of these cost functions are neces-

sarily used in real-life annotation, each can be re-

garded as an important component of a cost model

of payment by the hour. Since each of these func-

tions depends on factors having a significant effect

on the perceived performance of the various AL al-

gorithms, it is important to combine them in a way

that will accurately reflect the true performance of

the selection algorithms.

In prior work, we describe such a cost model for

POS annotation on the basis of the time required for

annotation (Ringger et al., 2008). We refer to this

model as the “hourly cost model”. This model is

computed from data obtained from a user study in-

volving a POS annotation task. In the study, tim-

ing information was gathered from many subjects

who annotated both sentences and individual words.

This study included tests in which words were pre-

labeled with a candidate labeling obtained from an

automatic tagger (with a known error rate) as would

occur in the context of AL. Linear regression on the

study data yielded a model of POS annotation cost:

h = (3.795 · l + 5.387 · c + 12.57)/3600 (1)

where h is the time in hours spent on the sentence, l
is the number of tokens in the sentence, and c is the

number of words in the sentence needing correction.

For this model, the Relative Standard Error (RSE) is

89.5, and the adjusted correlation (R2) is 0.181. This

model reflects the abilities of the annotators in the

study and may not be representative of annotators in

other projects. However, the purpose of this paper is

to create a framework for accounting for cost in AL

algorithms. In contrast to the model presented by

Ngai and Yarowsky (2000), which predicts mone-

tary cost given time spent, this model estimates time

spent from characteristics of a sentence.

3 Evaluation Methodology and Results

Our test data consists of English prose from the

POS-tagged Wall Street Journal text in the Penn

Treebank (PTB) version 3. We use sections 2-21 as
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Figure 1: QBU, LS, QBC, and the random baseline plotted in terms of accuracy versus various cost functions: (a)

number of sentences annotated; (b) number of words annotated; and (c) number of tags corrected.

initially unannotated data. We employ section 24 as

the development test set on which tag accuracy is

computed at the end of every iteration of AL.

For tagging, we employ an order two Maximum

Entropy Markov Model (MEMM). For decoding, we

found that a beam of size five sped up the decoder

with almost no degradation in accuracy from Viterbi.

The features used in this work are typical for modern

MEMM POS tagging and are mostly based on work

by Toutanova and Manning (2000).

In our implementation, QBU employs a single

MEMM tagger. We approximate the entropy of the

per-sentence tag sequences by summing over per-

word entropy and have found that this approxima-

tion provides equivalent performance to the exact se-

quence entropy. We also consider another selection

algorithm introduced in (Ringger et al., 2007) that

eliminates the overhead of entropy computations al-

together by estimating per-sentence uncertainty with

1− P (t̂), where t̂ is the Viterbi (best) tag sequence.

We label this scheme QBUOMM (OMM = “One

Minus Max”).

Our implementation of QBC employs a commit-

tee of three MEMM taggers to balance computa-

tional cost and diversity, following Tomanek et al.

(2007). Each committee member’s training set is a

random bootstrap sample of the available annotated

data, but is otherwise as described above for QBU.

We follow Engelson & Dagan (1996) in the imple-

mentation of vote entropy for sentence selection us-

ing these models.

When comparing the relative performance of AL

algorithms, learning curves can be challenging to in-

terpret. As curves proceed to the right, they can ap-

proach one another so closely that it may be difficult

to see the advantage of one curve over another. For

this reason, we introduce the “cost reduction curve”.

In such a curve, the accuracy is the independent vari-

able. We then compute the percent reduction in cost

(e.g., number of words or hours) over the cost of the

random baseline for the same accuracy a:

redux(a) = (costrnd(a)− cost(a))/costrnd(a)

Consequently, the random baseline represents the

trajectory redux(a) = 0.0. Algorithms less costly

than the baseline appear above the baseline. For a

specific accuracy value on a learning curve, the cor-

responding value of the cost on the random baseline

is estimated by interpolation between neighboring

points on the baseline. Using hourly cost, Figure 2

shows the cost reduction curves of several AL al-

gorithms, including those already considered in the

learning curves of Figure 1 (except LS). Restricting

the discussion to the random baseline, QBC, and

QBU: for low accuracies, random selection is the

cheapest according to hourly cost; QBU begins to

be cost-effective at around 91%; and QBC begins to

outperform the baseline and QBU around 80%.

4 Normalized Methods

One approach to convert existing AL algorithms into

cost-conscious algorithms is to normalize the results

of the original algorithm by the estimated cost. It

should be somewhat obvious that many selection al-

gorithms are inherently length-biased for sequence

labeling tasks. For instance, since QBU is the sum
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Figure 2: Cost reduction curves for QBU, QBC,

QBUOMM, their normalized variants, and the random

baseline on the basis of hourly cost

of entropy over all words, longer sentences will tend

to have higher uncertainty. The easiest solution is

to normalize by sentence length, as has been done

previously (Engelson and Dagan, 1996; Tomanek et

al., 2007). This of course assumes that annotators

are paid by the word, which may or may not be true.

Nevertheless, this approach can be justified by the

hourly cost model. Replacing the number of words

needing correction, c, with the product of l (the sen-

tence length) and the accuracy p of the model, equa-

tion 1 can be re-written as the estimate:

ĥ = ((3.795 + 5.387p) · l + 12.57)/3600

Within a single iteration of AL, p is constant, so the

cost is approximately proportional to the length of

the sentence. Figure 2 shows that normalized AL al-

gorithms (suffixed with “/N”) generally outperform

the standard algorithms based on hourly cost (in

contrast to the cost models used in Figures 1(a) -

(c)). All algorithms shown have significant cost

savings over the random baseline for accuracy lev-

els above 92%. Furthermore, all algorithms except

QBU depict trends of further increasing the advan-

tage after 95%. According to the hourly cost model,

QBUOMM/N has an advantage over all other algo-

rithms for accuracies over 91%, achieving a signifi-

cant 77% reduction in cost at 96.5% accuracy.

5 Conclusions

We have shown that annotation cost affects the as-

sessment of AL algorithms used in POS annotation

and advocate the use of a cost estimate that best es-

timates the true cost. For this reason, we employed

an hourly cost model to evaluate AL algorithms for

POS annotation. We have also introduced the cost

reduction plot in order to assess the cost savings pro-

vided by AL. Furthermore, inspired by the notion

of cost, we evaluated normalized variants of well-

known AL algorithms and showed that these vari-

ants out-perform the standard versions with respect

to the proposed hourly cost measure. In future work

we will build better cost-conscious AL algorithms.
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