
Proceedings of ACL-08: HLT, Short Papers (Companion Volume), pages 37–40,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Beyond Log-Linear Models:
Boosted Minimum Error Rate Training for N-best Re-ranking

Kevin Duh∗

Dept. of Electrical Engineering
University of Washington

Seattle, WA 98195
kevinduh@u.washington.edu

Katrin Kirchhoff
Dept. of Electrical Engineering

University of Washington
Seattle, WA 98195

katrin@ee.washington.edu

Abstract

Current re-ranking algorithms for machine
translation rely on log-linear models, which
have the potential problem of underfitting the
training data. We presentBoostedMERT, a
novel boosting algorithm that uses Minimum
Error Rate Training (MERT) as a weak learner
and builds a re-ranker far more expressive than
log-linear models. BoostedMERT is easy to
implement, inherits the efficient optimization
properties of MERT, and can quickly boost the
BLEU score on N-best re-ranking tasks. In
this paper, we describe the general algorithm
and present preliminary results on the IWSLT
2007 Arabic-English task.

1 Introduction

N-best list re-ranking is an important component in
many complex natural language processing applica-
tions (e.g. machine translation, speech recognition,
parsing). Re-ranking the N-best lists generated from
a 1st-pass decoder can be an effective approach be-
cause (a) additional knowledge (features) can be in-
corporated, and (b) the search space is smaller (i.e.
choose 1 out of N hypotheses).

Despite these theoretical advantages, we have of-
ten observed little gains in re-ranking machine trans-
lation (MT) N-best lists in practice. It has often
been observed that N-best list rescoring only yields
a moderate improvement over the first-pass output
although the potential improvement as measured by
the oracle-best hypothesis for each sentence is much

∗Work supported by an NSF Graduate Research Fellowship.

higher. This shows that hypothesis features are ei-
ther not discriminative enough, or that the reranking
model is too weak

This performance gap can be mainly attributed to
two problems: optimization error and modeling er-
ror (see Figure 1).1 Much work has focused on de-
veloping better algorithms to tackle the optimization
problem (e.g. MERT (Och, 2003)), since MT eval-
uation metrics such as BLEU and PER are riddled
with local minima and are difficult to differentiate
with respect to re-ranker parameters. These opti-
mization algorithms are based on the popular log-
linear model, which chooses the English translation
e of a foreign sentencef by the rule:

arg maxe p(e|f) ≡ arg maxe
∑K

k=1 λkφk(e, f)
where φk(e, f) and λk are the K features and
weights, respectively, and the argmax is over all hy-
potheses in the N-best list.

We believe that standard algorithms such as
MERT already achieve low optimization error (this
is based on experience where many random re-starts
of MERT give little gains); instead the score gap is
mainly due to modeling errors. Standard MT sys-
tems use a small set of features (i.e.K ≈ 10) based
on language/translation models.2 Log-linear mod-
els on such few features are simply not expressive
enough to achieve the oracle score, regardless of
how well the weights{λk} are optimized.

1Note that we are focusing on closing the gap to the oracle
score on the training set (or the development set); if we were
focusing on the test set, there would be an additional term, the
generalization error.

2In this work, we do not consider systems which utilize a
large smorgasbord of features, e.g. (Och and others, 2004).

37

BLEU=.40, achieved by
re-ranking with MERT

BLEU=.56, achieved by
selecting oracle hypotheses

Modeling problem:
Log-linear model insufficient?

Optimization problem:
Stuck in local optimum?

Figure 1: Both modeling and optimization problems in-
crease the (training set) BLEU score gap between MERT
re-ranking and oracle hypotheses. We believe that the
modeling problem is more serious for log-linear models
of around 10 features and focus on it in this work.

To truly achieve the benefits of re-ranking in MT,
one must go beyond the log-linear model. The re-
ranker should not be a mere dot product operation,
but a more dynamic and complex decision maker
that exploits the structure of the N-best re-ranking
problem.

We presentBoostedMERT, a general framework
for learning such complex re-rankers using standard
MERT as a building block. BoostedMERT is easy to
implement, inherits MERT’s efficient optimization
procedure, and more effectively boosts the training
score. We describe the algorithm in Section 2, report
experiment results in Section 3, and end with related
work and future directions (Sections 4, 5).

2 BoostedMERT

The idea for BoostedMERT follows the boosting
philosophy of combining several weak classifiers
to create a strong overall classifier (Schapire and
Singer, 1999). In the classification case, boosting
maintains a distribution over each training sample:
the distribution is increased for samples that are in-
correctly classified and decreased otherwise. In each
boosting iteration, a weak learner is trained to opti-
mize on the weighted sample distribution, attempt-
ing to correct the mistakes made in the previous iter-
ation. The final classifier is a weighted combination
of weak learners. This simple procedure is very ef-
fective in reducing training and generalization error.

In BoostedMERT, we maintain a sample distribu-
tion di, i = 1 . . .M over theM N-best lists.3 In

3As such, it differs from RankBoost, a boosting-based rank-
ing algorithm in information retrieval (Freund et al., 2003). If

each boosting iterationt, MERT is called as as sub-
procedure to find the best feature weightsλt ondi.4

The sample weight for an N-best list is increased if
the currently selected hypothesis is far from the ora-
cle score, and decreased otherwise. Here, the oracle
hypothesis for each N-best list is defined as the hy-
pothesis with the best sentence-level BLEU. The fi-
nal ranker is a combination of (weak) MERT ranker
outputs.

Algorithm 1 presents more detailed pseudocode.
We use the following notation: Let{xi} represent
the set ofM training N-best lists,i = 1 . . .M . Each
N-best listxi containsN feature vectors (forN hy-
potheses). Each feature vector is of dimensionK,
which is the same dimension as the number of fea-
ture weightsλ obtained by MERT. Let{bi} be the
set of BLEU statistics for each hypothesis in{xi},
which is used to train MERT or to compute BLEU
scores for each hypothesis or oracle.

Algorithm 1 BoostedMERT
Input: N-best lists{xi}, BLEU scores{bi}
Input: Initialize sample distributiondi uniformly
Input: Initialize y0 = [0], a constant zero vector
Output: Overall Ranker: fT

1: for t = 1 to T do
2: Weak ranker:λt = MERT({xi},{bi},di)
3:

4: if (t ≥ 2): {yt−1} = PRED(f t−1, {xi})
5: {yt} = PRED(λt, {xi})
6: αt = MERT([yt−1; yt],{bi})
7: Overall ranker:f t = yt−1 + αtyt

8:

9: for i = 1 to M do
10: ai = [BLEU of hypothesis selected byf t]

divided by [BLEU of oracle hypothesis]
11: di = exp(−ai)/normalizer
12: end for

13: end for

applied on MT, RankBoost would maintain a weight for each
pair of hypotheses and would optimize a pairwise ranking met-
ric, which is quite dissimilar to BLEU.

4This is done by scaling each BLEU statistic, e.g. n-gram
precision, reference length, by the appropriate sample weights
before computing corpus-level BLEU. Alternatively, one could
sample (with replacement) the N-best lists using the distribu-
tion and use the resulting stochastic sample as input to an un-
modified MERT procedure.

38

The pseudocode can be divided into 3 sections:

1. Line 2 finds the best log-linear feature weights
on distributiondi. MERT is invoked as a weak
learner, so this step is computationally efficient
for optimizing MT-specific metrics.

2. Lines 4-7 create an overall ranker by combin-
ing the outputs of the previous overall ranker
f t−1 and current weak rankerλt. PRED is a
general function that takes a ranker and aM
N-best lists and generates a set ofM N -dim
output vectory representing the predicted re-
ciprocal rank. Specifically, suppose a 3-best list
and a ranker predicts ranks (1,3,2) for the 1st,
2nd, and 3rd hypotheses, respectively. Then
y = (1/1,1/3,1/2) = (1,0.3,0.5).5

Finally, using a 1-dimensional MERT, the
scalar parameterαt is optimized by maximiz-
ing the BLEU of the hypothesis chosen by
yt−1+αtyt. This is analogous to the line search
step in boosting for classification (Mason et al.,
2000).

3. Lines 9-11 update the sample distributiondi

such that N-best lists with low accuraciesai

are given higher emphasis in the next iteration.
The per-list accuracyai is defined as the ratio of
selected vs. oracle BLEU, but other measures
are possible: e.g. ratio of ranks, difference of
BLEU.

The final classifierfT can be seen as a voting pro-
cedure among multiple log-linear models generated
by MERT. The weighted vote for hypotheses in an
N-best listxi is represented by the N-dimensional
vector: ŷ =

∑T
t=1 αtyt =

∑T
t=1 αt PRED(λt,xi).

We choose the hypothesis with the maximum value
in ŷ

Finally, we stress that the above algorithm
is an novel extension of boosting to re-ranking
problems. There are many open questions and
one can not always find a direct analog between
boosting for classification and boosting for rank-
ing. For instance, the distribution update scheme

5There are other ways to define a ranking output that are
worth exploring. For example, a hard argmax definition would
be (1,0,0); a probabilistic definition derived from the dot prod-
uct values can also be used. It is the definition of PRED that
introduces non-linearities in BoostedMERT.

of Lines 9-11 is recursive in the classification
case (i.e. di = di ∗ exp(LossOfWeakLearner)),
but due to the non-decompositional properties of
arg max in re-ranking, we have a non-recursive
equation based on the overall learner (di =
exp(LossOfOverallLearner)). This has deep impli-
cations on the dynamics of boosting, e.g. the distri-
bution may stay constant in the non-recursive equa-
tion, if the new weak ranker gets a smallα.

3 Experiments

The experiments are done on the IWSLT 2007
Arabic-to-English task (clean text condition). We
used a standard phrase-based statistical MT system
(Kirchhoff and Yang, 2007) to generated N-best lists
(N=2000) onDevelopment4 , Development5 ,
and Evaluation sub-sets. Development4 is
used as the Train set; N-best lists that have the same
sentence-level BLEU statistics for all hypotheses are
filtered since they are not important in impacting
training. Development5 is used as Dev set (in
particular, for selecting the number of iterations in
boosting), andEvaluation (Eval) is the blind
dataset for final ranker comparison. Nine features
are used in re-ranking.

We compare MERT vs. BoostedMERT. MERT is
randomly re-started 30 times, and BoostedMERT is
run for 30 iterations, which makes for a relatively
fair comparison. MERT usually does not improve
its Train BLEU score, even with many random re-
starts (again, this suggests that optimization error
is low). Table 1 shows the results, with Boosted-
MERT outperforming MERT 42.0 vs. 41.2 BLEU
on Eval. BoostedMERT has the potential to achieve
43.7 BLEU, if a better method for selecting optimal
iterations can be devised.

It should be noted that the Train scores achieved
by both MERT and BoostedMERT is still far from
the oracle (around 56). We found empirically that
BoostedMERT is somewhat sensitive to the size (M)
of the Train set. For small Train sets, BoostedMERT
can improve the training score quite drastically; for
the current Train set as well as other larger ones, the
improvement per iteration is much slower. We plan
to investigate this in future work.

39

MERT BOOST ∆
Train, Best BLEU 40.3 41.0 0.7
Dev, Best BLEU 24.0 25.0 1.0
Eval, Best BLEU 41.2 43.7 2.5
Eval, Selected BLEU 41.2 42.0 0.8

Table 1: The first three rows show the BLEU score for
Train, Dev, and Eval from 30 iterations of BoostedMERT
or 30 random re-restarts of MERT. The last row shows
the actual BLEU on Eval when selecting the number
of boosting iterations based on Dev. Last column in-
dicates absolute improvements. BoostedMERT outper-
forms MERT by 0.8 points on Eval.

4 Related Work

Various methods are used to optimize log-linear
models in re-ranking (Shen et al., 2004; Venugopal
et al., 2005; Smith and Eisner, 2006). Although
this line of work is worthwhile, we believe more
gain is possible if we go beyond log-linear models.
For example, Shen’s method (2004) produces large-
margins but observed little gains in performance.

Our BoostedMERT should not be confused with
other boosting algorithms such as (Collins and Koo,
2005; Kudo et al., 2005). These algorithms are
called boosting because they iteratively choose fea-
tures (weak learners) and optimize the weights for
the boost/exponential loss. They do not, however,
maintain a distribution over N-best lists.

The idea of maintaining a distribution over N-
best lists is novel. To the best of our knowledge,
the most similar algorithm is AdaRank (Xu and Li,
2007), developed for document ranking in informa-
tion retrieval. Our main difference lies in Lines 4-7
in Algorithm 1: AdaRank proposes a simple closed
form solution forα and combines only weak fea-
tures, not full learners (as in MERT). We have also
implemented AdaRank but it gave inferior results.

It should be noted that the theoretical training
bounds derived in the AdaRank paper is relevant
to BoostedMERT. Similar to standard boosting, this
bound shows that the training score can be improved
exponentially in the number of iterations. However,
we found that the conditions for which this bound is
applicable is rarely satisfied in our experiments.6

6The explanation for this is beyond the scope of this paper;
the basic reason is that our weak rankers (MERT) are not weak
in practice, so that successive iterations get diminishing returns.

5 Conclusions

We argue that log-linear models often underfit the
training data in MT re-ranking, and that this is the
reason we observe a large gap between re-ranker and
oracle scores. Our solution, BoostedMERT, creates
a highly-expressive ranker by voting among multiple
MERT rankers.

Although BoostedMERT improves over MERT,
more work at both the theoretical and algorithmic
levels is needed to demonstrate even larger gains.
For example, while standard boosting for classifica-
tion can exponentially reduce training error in the
number of iterations under mild assumptions, these
assumptions are frequently not satisfied in the algo-
rithm we described. We intend to further explore
the idea of boosting on N-best lists, drawing inspi-
rations from the large body of work on boosting for
classification whenever possible.

References

M. Collins and T. Koo. 2005. Discriminative reranking
for natural langauge parsing.Computational Linguis-
tics, 31(1).

Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer. 2003.
An efficient boosting algorithm for combining prefer-
ences.Journal of Machine Learning Research, 4.

K. Kirchhoff and M. Yang. 2007. The UW machine
translation system for IWSLT 2007. InIWSLT.

T. Kudo, J. Suzuki, and H. Isozaki. 2005. Boosting-
based parse reranking with subtree features. InACL.

L. Mason, J. Baxter, P. Bartless, and M. Frean. 2000.
Boosting as gradient descent. InNIPS.

F.J. Och et al. 2004. A smorgasbord of features for sta-
tistical machine translation. InHLT/NAACL.

F.J. Och. 2003. Minimum error rate training in statistical
machine translation. InACL.

R. E. Schapire and Y. Singer. 1999. Improved boosting
algorithms using confidence-rated predictions.Ma-
chine Learning, 37(3).

L. Shen, A. Sarkar, and F.J. Och. 2004. Discriminative
reranking for machine translation. InHLT-NAACL.

D. Smith and J. Eisner. 2006. Minimum risk anneal-
ing for training log-linear models. InProc. of COL-
ING/ACL Companion Volume.

A. Venugopal, A. Zollmann, and A. Waibel. 2005. Train-
ing and evaluating error minimization rules for SMT.
In ACL Workshop on Building/Using Parallel Texts.

J. Xu and H. Li. 2007. AdaRank: A boosting algorithm
for information retrieval. InSIGIR.

40

