The Complexity of Phrase Alignment Problems

John DeNero and Dan Klein
Computer Science Division, EECS Department
University of California at Berkeley
{denero, klein}@cs.berkeley.edu

Abstract

Many phrase alignment models operate over
the combinatorial space of bijective phrase
alignments. We prove that finding an optimal
alignment in this space is NP-hard, while com-
puting alignment expectations is #P-hard. On
the other hand, we show that the problem of
finding an optimal alignment can be cast as
an integer linear program, which provides a
simple, declarative approach to Viterbi infer-
ence for phrase alignment models that is em-
pirically quite efficient.

1 Introduction

Learning in phrase alignment models generally re-
quires computing either Viterbi phrase alignments
or expectations of alignment links. For some re-
stricted combinatorial spaces of alignments—those
that arise in ITG-based phrase models (Cherry and
Lin, 2007) or local distortion models (Zens et al.,
2004)—inference can be accomplished using poly-
nomial time dynamic programs. However, for more
permissive models such as Marcu and Wong (2002)
and DeNero et al. (2006), which operate over the full
space of bijective phrase alignments (see below), no
polynomial time algorithms for exact inference have
been exhibited. Indeed, Marcu and Wong (2002)
conjectures that none exist. In this paper, we show
that Viterbi inference in this full space is NP-hard,
while computing expectations is #P-hard.

On the other hand, we give a compact formula-
tion of Viterbi inference as an integer linear program
(ILP). Using this formulation, exact solutions to the
Viterbi search problem can be found by highly op-
timized, general purpose ILP solvers. While ILP
is of course also NP-hard, we show that, empir-
ically, exact solutions are found very quickly for

25

most problem instances. In an experiment intended
to illustrate the practicality of the ILP approach, we
show speed and search accuracy results for aligning
phrases under a standard phrase translation model.

2 Phrase Alignment Problems

Rather than focus on a particular model, we describe
four problems that arise in training phrase alignment
models.

2.1 Weighted Sentence Pairs

A sentence pair consists of two word sequences, e
and f. A set of phrases {e;;} contains all spans e;;
from between-word positions 7 to j of e. A [ink is an
aligned pair of phrases, denoted (e;;, fx1).!

Let a weighted sentence pair additionally include
areal-valued function ¢ : {e;;} x { fi;} — R, which
scores links. ¢(e;;, fx;) can be sentence-specific, for
example encoding the product of a translation model
and a distortion model for (e;;, f;). We impose no
additional restrictions on ¢ for our analysis.

2.2 Bijective Phrase Alignments

An alignment is a set of links. Given a weighted
sentence pair, we will consider the space of bijective
phrase alignments A: those a C {e;;} x {fu} that
use each word token in exactly one link. We first
define the notion of a partition: L;S; = T" means S;
are pairwise disjoint and cover T'. Then, we can for-
mally define the set of bijective phrase alignments:

A=<a: |_|

(eij,fri)€a

|| fu=t

(eij,fr1)€a

€ij = €

'As in parsing, the position between each word is assigned
an index, where 0 is to the left of the first word. In this paper,
we assume all phrases have length at least one: j > iand ! > k.

Proceedings of ACL-08: HLT, Short Papers (Companion Volume), pages 25-28,
Columbus, Ohio, USA, June 2008. (©)2008 Association for Computational Linguistics

Both the conditional model of DeNero et al.
(2006) and the joint model of Marcu and Wong
(2002) operate in A, as does the phrase-based de-
coding framework of Koehn et al. (2003).

2.3 Problem Definitions

For a weighted sentence pair (e, f, ¢), let the score
of an alignment be the product of its link scores:

¢a)= [ol fu)-

(eij,fri)€a

Four related problems involving scored alignments
arise when training phrase alignment models.

OPTIMIZATION, O: Given (e, f, ¢), find the high-
est scoring alignment a.

DECISION, D: Given (e, f, ¢), decide if there is an
alignment a with ¢(a) > 1.

O arises in the popular Viterbi approximation to
EM (Hard EM) that assumes probability mass is
concentrated at the mode of the posterior distribu-
tion over alignments. D is the corresponding deci-
sion problem for O, useful in analysis.

EXPECTATION, &£: Given a weighted sentence pair
(e,f, ¢) and indices 7, j, k, [, compute), ¢(a)
over all a € A such that (e;;, fi) € a.

SuM, S: Given (e,f, ¢), compute). 1 ¢(a).

£ arises in computing sufficient statistics for
re-estimating phrase translation probabilities (E-
step) when training models. The existence of a
polynomial time algorithm for £ implies a poly-

nomial time algorithm for S, because A =
e fl—1, /f
L’Ll ‘k‘:o }:lkJrl {a: (eoj; frn) €a,a € A},

3 Complexity of Inference in A

For the space A of bijective alignments, problems £
and O have long been suspected of being NP-hard,
first asserted but not proven in Marcu and Wong
(2002). We give a novel proof that O is NP-hard,
showing that D is NP-complete by reduction from
SAT, the boolean satisfiability problem. This re-
sult holds despite the fact that the related problem of
finding an optimal matching in a weighted bipartite
graph (the ASSIGNMENT problem) is polynomial-
time solvable using the Hungarian algorithm.

26

3.1 Reducing Satisfiability to D

A reduction proof of NP-completeness gives a con-
struction by which a known NP-complete problem
can be solved via a newly proposed problem. From a
SAT instance, we construct a weighted sentence pair
for which alignments with positive score correspond
exactly to the SAT solutions. Since SAT is NP-
complete and our construction requires only poly-
nomial time, we conclude that D is NP-complete.?

SAT: Given vectors of boolean variables v = (v)
and propositional clauses®* C = (C), decide
whether there exists an assignment to v that si-
multaneously satisfies each clause in C.

For a SAT instance (v, C), we construct f to con-
tain one word for each clause, and e to contain sev-
eral copies of the literals that appear in those clauses.
¢ scores only alignments from clauses to literals that
satisfy the clauses. The crux of the construction lies
in ensuring that no variable is assigned both true and
false. The details of constructing such a weighted
sentence pair wsp(v,C) = (e,f, ¢), described be-
low, are also depicted in figure 1.

1. f contains a word for each C, followed by an
assignment word for each variable, assign(v).

2. e contains ¢(¢) consecutive words for each lit-
eral ¢, where c(¢) is the number of times that ¢
appears in the clauses.

Then, we set ¢(+,-) = 0 everywhere except:

3. For all clauses C' and each satisfying literal /,
and each one-word phrase e in e containing /,
¢(e, fo) = 1. fo is the one-word phrase con-
taining C' in f.

4. The assign(v) words in f align to longer phrases
of literals and serve to consistently assign each
variable by using up inconsistent literals. They
also align to unused literals to yield a bijection.
Let eke be the phrase in e containing all literals
¢ and k negations of £. fyssien(v) 18 the one-word
phrase for assign(v). Then, qﬁ(e@], fassign(v)) =
1 for ¢ € {v, v} and all applicable k.

Note that D is trivially in NP: given an alignment a, it is
easy to determine whether or not ¢(a) > 1.

3A clause is a disjunction of literals. A literal is a bare vari-
able v, or its negation ¥,,. For instance, v2 V 97 V 79 is a clause.

VU1 U] U1 U] Vg U2 Vg Uz V3 V3 Vs Uz

U1 Uy V1 U1 U2 U2 V2 V2 U3 V3 Uz U3

v V2 U3

U1 V2 U3

Ty Uy T3 N — —_

)

vs3 —_——|—

- §

V1 true

vo false

() ()

Figure 1: (a) The clauses of an example SAT instance with v = (v1, va, v3). (b) The weighted sentence pair wsp(v, C)
constructed from the SAT instance. All links that have ¢ = 1 are marked with a blue horizontal stripe. Stripes in the
last three rows demarcate the alignment options for each assign(v,,), which consume all words for some literal. (c) A
bijective alignment with score 1. (d) The corresponding satisfying assignment for the original SAT instance.

Claim 1. If wsp(v,C) has an alignment a with
¢(a) > 1, then (v, C) is satisfiable.

Proof. The score implies that f aligns using all one-
word phrases and Va; € a, ¢(a;) = 1. By condition
4, each fyion(v) aligns to all v or all v in e. Then,
assign each v to frue if fygign(v) aligns to all v, and
false otherwise. By condition 3, each C' must align
to a satisfying literal, while condition 4 assures that
all available literals are consistent with this assign-
ment to v, which therefore satisfies C. OJ

Claim 2. If (v, C) is satisfiable, then wsp(v, C) has
an alignment a with ¢(a) = 1.

Proof. We construct such an alignment a from the
satisfying assignment v. For each C, we choose a
satisfying literal ¢ consistent with the assignment.
Align fc to the first available ¢ token in e if the cor-
responding v is frue, or the last if v is false. Align
each fision(v) to all remaining literals for v. [

Claims 1 and 2 together show that D is NP-
complete, and therefore that O is NP-hard.

3.2 Reducing Perfect Matching to S

With another construction, we can show that S is #P-
hard, meaning that it is at least as hard as any #P-
complete problem. #P is a class of counting prob-
lems related to NP, and #P-hard problems are NP-
hard as well.

COUNTING PERFECT MATCHINGS, CPM
Given a bipartite graph G with 2n vertices,
count the number of matchings of size n.

27

For a bipartite graph G with edge set E' = {(vj,v;)},
we construct e and f with n words each, and set
#(ej—1 4, fi—11) = 1 and O otherwise. The num-
ber of perfect matchings in G is the sum S for
this weighted sentence pair. CPM is #P-complete
(Valiant, 1979), so S (and hence &) is #P-hard.

4 Solving the Optimization Problem

Although O is NP-hard, we present an approach to
solving it using integer linear programming (ILP).

4.1 Previous Inference Approaches

Marcu and Wong (2002) describes an approximation
to O. Given a weighted sentence pair, high scoring
phrases are linked together greedily to reach an ini-
tial alignment. Then, local operators are applied to
hill-climb A in search of the maximum a. This pro-
cedure also approximates £ by collecting weighted
counts as the space is traversed.

DeNero et al. (2006) instead proposes an
exponential-time dynamic program to systemati-
cally explore A, which can in principle solve either
O or £. In practice, however, the space of align-
ments has to be pruned severely using word align-
ments to control the running time of EM.

Notably, neither of these inference approaches of-
fers any test to know if the optimal alignment is ever
found. Furthermore, they both require small data
sets due to computational expense.

4.2 Alignment via an Integer Program

We cast O as an ILP problem, for which many opti-
mization techniques are well known. First, we in-

troduce binary indicator variables a; jx; denoting
whether (e;;, fri) € a. Furthermore, we introduce
binary indicators e; ; and fj; that denote whether
some (e;;, -) or (-, fr) appears in a, respectively. Fi-
nally, we represent the weight function ¢ as a weight
vector in the program: w j ;1 = log ¢(ei;, fri)-

Now, we can express an integer program that,
when optimized, will yield the optimal alignment of
our weighted sentence pair.

maX : : wi7j7k:7l : ai7j7k7l

i7j7k7l
st Y ey=1 Va:l<z<le (1)
ijri<e<j
Y =1 Wyil<y<|[fl @
kl:k<y<l
€ij =) Gijks Vi)
k,l
fea = aijrs k1)
i?j
with the following constraints on index variables:
0<i<le], 0<j<lel, i<y
0<k<Ifl, O<I<If|, k<l

The objective function is log ¢(a) for a implied
by {a; ;r; = 1}. Constraint equation 1 ensures that
the English phrases form a partition of e — each word
in e appears in exactly one phrase — as does equa-
tion 2 for f. Constraint equation 3 ensures that each
phrase in the chosen partition of e appears in exactly
one link, and that phrases not in the partition are not
aligned (and likewise constraint 4 for f).

S Applications

The need to find an optimal phrase alignment for a
weighted sentence pair arises in at least two appli-
cations. First, a generative phrase alignment model
can be trained with Viterbi EM by finding optimal
phrase alignments of a training corpus (approximate
E-step), then re-estimating phrase translation param-
eters from those alignments (M-step).

Second, this is an algorithm for forced decoding:
finding the optimal phrase-based derivation of a par-
ticular target sentence. Forced decoding arises in
online discriminative training, where model updates
are made toward the most likely derivation of a gold
translation (Liang et al., 2006).

28

Sentences per hour on a four-core server | 20,000
Frequency of optimal solutions found 93.4%
Frequency of e-optimal solutions found | 99.2%

Table 1: The solver, tuned for speed, regularly reports
solutions that are within 10~° of optimal.

Using an off-the-shelf ILP solver,* we were able
to quickly and reliably find the globally optimal
phrase alignment under ¢(e;;, fi;) derived from the
Moses pipeline (Koehn et al., 2007).> Table 1 shows
that finding the optimal phrase alignment is accurate
and efficient.® Hence, this simple search technique
effectively addresses the intractability challenges in-
herent in evaluating new phrase alignment ideas.

References

Colin Cherry and Dekang Lin. 2007. Inversion transduc-
tion grammar for joint phrasal translation modeling.
In NAACL-HLT Workshop on Syntax and Structure in
Statistical Translation.

John DeNero, Dan Gillick, James Zhang, and Dan Klein.
2006. Why generative phrase models underperform
surface heuristics. In NAACL Workshop on Statistical
Machine Translation.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In HLT-
NAACL.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In ACL.

Percy Liang, Alexandre Bouchard-Coté, Dan Klein, and
Ben Taskar. 2006. An end-to-end discriminative ap-
proach to machine translation. In ACL.

Daniel Marcu and William Wong. 2002. A phrase-based,
joint probability model for statistical machine transla-
tion. In EMNLP.

Leslie G. Valiant. 1979. The complexity of computing
the permanent. In Theoretical Computer Science 8.
Richard Zens, Hermann Ney, Taro Watanabeand, and
E. Sumita. 2004. Reordering constraints for phrase

based statistical machine translation. In Coling.

*We used Mosek: www .mosek . com.

3 o(esj, fri) was estimated using the relative frequency of
phrases extracted by the default Moses training script. We eval-
uated on English-Spanish Europarl, sentences up to length 25.

SILP solvers include many parameters that trade off speed
for accuracy. Substantial speed gains also follow from explicitly
pruning the values of ILP variables based on prior information.

