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Abstract

This paper studies textual inference by inves-
tigating comma structures, which are highly
frequent elements whose major role in the ex-
traction of semantic relations has not been
hitherto recognized. We introduce the prob-
lem of comma resolution, defined as under-
standing the role of commas and extracting the
relations they imply. We show the importance
of the problem using examples from Tex-
tual Entailment tasks, and presénSentence
Transformation Rule Learner (ASTRIa) ma-
chine learning algorithm that uses a syntac-
tic analysis of the sentence to learn sentence
transformation rules that can then be used to
extract relations. We have manually annotated
a corpus identifying comma structures and re-
lations they entail and experimented with both
gold standard parses and parses created by a
leading statistical parser, obtaining F-scores of
80.2% and 70.4% respectively.

Introduction

}@cs.huji.ac.il

3. Authorities have arrested John Smith, a retired

police officer announced this morning.

Sentence (1) states that John Smith is a retired
police officer. The comma and surrounding sen-
tence structure represent the relation ‘IsA. In (2),
the comma and surrounding structure signifies a list,
so the sentence states that three people were ar-
rested: (i) John Smith, (ii) his friend, and (iii) his
brother. In (3), a retired police officer announced
that John Smith has been arrested. Here, the comma
and surrounding sentence structure indicate clause
boundaries.

In all three sentences, the comma and the sur-
rounding sentence structure signify relations essen-
tial to comprehending the meaning of the sentence,
in a way that is not easily captured using lexical-
or even shallow parse-level information. As a hu-
man reader, we understand them easily, but auto-
mated systems for Information Retrieval, Question
Answering, and Textual Entailment are likely to en-
counter problems when comparing structures like
these, which are lexically similar, but whose mean-
ings are so different.

Recognizing relations expressed in text sentences is|n this paper we present an algorithm fmmma

a major topic in NLP, fundamental in applicationsresolution a task that we define to consist of (1) dis-
such as Textual Entailment (or Inference), Questioambiguating comma type and (2) determining the
Answering and Text Mining. In this paper we ad-relations entailed from the sentence given the com-
dress this issue from a novel perspective, that of uRnas’ interpretation. Specifically, in (1) we assign
derstanding the role of the commas in a sentencgach comma to one of five possible types, and in
which we argue is a key component in sentencg@) we generate a set of natural language sentences

Comprehension. Consider for example the fO”OWinSﬂhat express the relations, if any, signified by each
three sentences:

police officer.

and his brother.
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comma structure. The algorithm uses information

1. Authorities have arrested John Smith, a retireoextracted from parse trees. This work, in addition to

having immediate significance for natural language
processing systems that use semantic content, has

2. Authorities have arrested John Smith, his f”en%otential applications in improving a range of auto-
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mated analysis by decomposing complex sentences binds two former Soviet republics of central
into a set of simpler sentences that capture the same Asia, Russia and China to fight terrorism.
meaning. Although there are many other widely-
used structures that express relations in a similar
way, commas are one of the most commonly used
symbols. By addressing comma resolution, we of- To see that (1) entails (2), one must understand
fer a promising first step toward resolving relationshat the first comma structure in sentence (1) is an
in sentences. apposition structure, and does not indicate the begin-
To evaluate the algorithm, we have developed aming of a list. The second comma marks a boundary
notation guidelines, and manually annotated semetween entities in a list. To make the correct infer-
tences from the WSJ PennTreebank corpus. Wnce one must determine that the second comma is a
present a range of experiments showing the godidt separator, not an apposition marker. Misclassify-
performance of the system, using gold-standard aralg the second comma in (1) as an apposition leads
parser-generated parse trees. to the conclusion that (1) entails (3):
In Section 2 we . motivate comma re§olutlon 3. T: Russia and China are two former Soviet re-
through Textual Entailment examples. Section 3 de- . .
scribes related work. Sections 4 and 5 present our publics of central Asia .
corpus annotation and learning algorithm. Results Note that even to an educated native speaker of
are given in Section 6. English, sentencé may be initially confusing; dur-
o _ ing the first reading, one might interpret the first
2 Motivating Comma Resolution Through  ¢omma as indicating a list, and that ‘the Shanghai
Textual Entailment Co-operation Organization’ and ‘the fledgling asso-
Comma resolution involves not only comma disciation that binds...’ are two separate entities that are
ambiguation but also inference of the argumentgeeting, rather than two representations of the same
(and argument boundaries) of the relationship reprentity.
sented by the comma structure, and the relationShipSFrom these examp|es we draw the fo||owing con-
holding between these arguments and the sentengf@sions: 1. Comma resolution is essential in com-
as a whole. To our knowledge, this is the first paprehending natural language text. 2. Explicitly rep-
per that deals with this problem, so in this sectiofesenting relations derived from comma structures
we motivate it in depth by showing its importancecan assist a wide range of NLP tasks; this can be
to the semantic inference task of Textual Entailmerﬂone by direcﬂy augmenting the lexical-level rep-
(TE) (Dagan et al., 2006), which is increasingly recresentation, e.g., by bringing surface forms of two
ognized as a crucial direction for improving a ranggext fragments with the same meaning closer to-
of NLP tasks such as information extraction, quesgether. 3. Comma structures might be highly am-
tion answering and summarization. biguous, nested and overlapping, and consequently
TE is the task of deciding whether the meaningheir interpretation is a difficult task. The argument
of a textT" (usually a short snippet) can be inferrechoundaries of the corresponding extracted relations
from the meaning of another tegt. If this is the are also not easy to detect.
case, we say that entailsT. For examplé, we say  The output of our system could be used to aug-
that sentence (1) entails sentence (2): ment sentences with an explicit representation of en-
tailed relations that hold in them. In Textual Entail-
meeting of the Shanghai Co-operation Orga-menf[ syst_e_ms'this can in_crease the Iikelihooc_l of cor-
nization (SCO), the fledgling association thalreCt |dent|f|cat|.on of entailed sentencgs, and in other
- NLP systems it can help understanding the shallow
“For example, the WSJ corpus has 49K sentences, amofigical/syntactic content of a sentence. A similar ap-
\;":(;C?stzvﬁhv‘;g:‘egn; e or more. 17K with two or more, 5 oh has been taken in (Bar-Haim et al., 2007; de
2The examples of this section are variations of pairs take@lV0 Braz et al., 2005), which augment the source
from the Pascal RTE3 (Dagan et al., 2006) dataset. sentence with entailed relations.

2. T: SCO is the fledgling association that binds
several countries.

1. S Parviz Davudi was representing Iran at a
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3 Related Work text in our annotation and evaluation.

Since we focus on extracting the relations repre- There s a large body of NLP literature on punctu-

. ation. Most of it, however, is concerned with aiding
sented by commas, there are two main strands 0 . . . .
syntactic analysis of sentences and with developing

: , Yomma checkers, much based on (Nunberg, 1990).
analyze commas, whether labeling them with syn- , i
Pattern-based relation extraction methods (e.g.,

tactic information or correcting inappropriate use in

text; and 2) systems that extract relations from texsza\;'_dgv ind R?pgopg_rtl,a 2008; Dlavzldov_et I":I"
typically by trying to identify paraphrases. 007; Banko et al., 2007; Pasca et al., 2006; Sekine,

2006)) could in theory be used to extract relations

Th_e S|gnt|f|canci of w:terrgegng thg rcil.(:. cggom'r(ﬂaresented by commas. However, the types of
mas in sentences has already been identified by (v atterns used in web-scale lexical approaches cur-

Delden and Gomez, 2002; Bayraktar et al., 199 ntly constrain discovered patterns to relatively

and others. A review of the first line of research is . . .
. ) short spans of text, so will most likely fail on
given in (Say and Akman, 1997). P y

structures whose arguments cover large spans (for

In (Bayraktar et al., 1998) the WSJ PennTreebank,ample, appositional clauses containing relative
corpus (Marcus et al., 1993) is analyzed and a velfayses).  Relation extraction approaches such as
detailed list of syntactic patterns that correspond tﬂ?oth and Yih, 2004: Roth and Yih, 2007: Hirano
different roles of commas is created. However, they; al., 2007: Culotta and Sorenson, 2004: Zelenko et
do not study the extraction of entailed relations ag|., 2003) focus on relations between Named Enti-
a function of the comma’s interpretation. Furtheryjeg: gych approaches miss the more general apposi-
more, the syntactic patterns they identify are unlexijon and list relations we recognize in this work, as

calized and would not support the level of semantihe arguments in these relations are not confined to
relations that we show in this paper. Finally, theirqamed Entities.

is @ manual process completely dependent on Syn-p,anhrase Acquisition work such as that by (Lin
tactic pattern_s. Whlle_ourcom_ma res_olutlor_1 systen) 4 Pantel, 2001: Pantel and Pennacchiotti, 2006:
uses syntactic parse information as its main SOUrGe,eyior et al., 2004) is not constrained to named
of features, the approach we have developed focusgsiities, and by using dependency trees, avoids the
on theentailed relationsand does not limit imple- locality problems of lexical methods. However,
mentations to using only syntactic information.  yhese approaches have so far achieved limited accu-

The most directly comparable prior work is thatracy, and are therefore hard to use to augment exist-
of (van Delden and Gomez, 2002), who use fiing NLP systems.

nite state automata and a greedy algorithm to learn
comma syntactic roles. However, their approach di4  Corpus Annotation

fers from ours in a number of critical ways. First

their comma. annotation scheme d ot id nti’&or our corpus, we selected 1,000 sentences con-
€Ir comma annotation scheme does not ide aining at least one comma from the Penn Treebank

arguments of predicates, and therefore cannot Zﬂ arcus et al., 1993) WSJ section 00, and manu-

used to extract completg relations. Sepond, forea lly annotated them with comma informatforT his
comma type they identify, a new Finite State Au-

. annotated corpus served as both training and test
tomaton must be hand-encoded; the learning co P g

. . . . Batasets (using cross-validation).
ponent of their work simply constrains which FSAs By studying a number of sentences from WSJ (not

that accept a given, comma containing, text SIC)agmong the 1,000 selected), we identified four signif-

may co-occur. Third, their corpus is preprocessed h . .
) . - Icant types of relations expressed through commas:
hand to identify specialized phrase types needed l%y
UBSTITUTE, ATTRIBUTE, LOCATION, and LIST.

their FSAs; once our system has been trained, it Caélelch of these types can in principle be expressed us-
be applied directly to raw text. Fourth, they exclude yp P b P

. . . ing more than a single comma. We define the notion
from their analysis and evaluation any comma they
deem to have been incorrectly used in the source sthe guidelines and annotations are availableta://

text. We include all commas that are present in the2r.cs.uiuc.edu/  ~cogcomp/data.php
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of acomma structuras a set of one or more commas| Rel- Type | Avg. Agreement | #of Commas | # of Rel.s
that all relate to the same relation in the sentence. | SUBST'TUTE 0.808 243 29
A . ATTRIBUTE 0.687 193 386
SUBSTITUTE indicates ans-A relation. An ex- LOCATION 0.929 71 140
ample is ‘John Smith, a Renaissance artist, was fa-t'sT 0.803 230 230
, ) ) OTHER 0.949 909 0
mous’. By removing the relation expressed by the compined 0.869 1646 1485

commas, we can derive three sentences: ‘John Smith
is a Renaissance artist’, ‘John Smith was famousTable 1: Average inter-annotator agreement for identify-
and ‘a Renaissance artist was famous’. Note that iRd relations.
theory, the third relation will not be valid: one exam-
ple is ‘The brothers, all honest men, testified at thgytion scheme for such relations, this is beyond the
trial’, which does not entail ‘all honest men testifiedscope of the present work.
at the trial’. However, we encountered no exampIeS Four annotators annotated the same 10% of the
of this kind in the corpus, and leave this refinemenjysj sentences in order to evaluate inter-annotator
to future work. agreement. The remaining sentences were divided
ATTRIBUTE indicates a relation where one argu-among the four annotators. The resulting corpus was
ment describes an attribute of the other. For exhecked by two judges and the annotation corrected
ample, from ‘JOhn, who loved ChOCOlate, ate WithNhere appropriate; if the two judges disagreed1 a
gusto’, we can derive “John loved chocolate” anghird judge was consulted and consensus reached.
‘John ate with gusto’. Our annotators were asked to identify comma struc-
LOCATION indicates & OCATED-IN relation. For tyres, and for each structure to write its relation type,
example, from ‘Chicago, lllinois saw some heawyits arguments, and all possible simplified version(s)
snow today’ we can derive ‘Chicago is located irofthe original sentence in which the relation implied
lllinois” and ‘Chicago saw some heavy snow today’py the comma has been removed. Arguments must
LIST indicates that some predicate or propertye contiguous units of the sentence and will be re-
is applied to multiple entities. In our annotation ferred to aschunkshereafter. Agreement statistics
the list does not generate epriCit relations; inStea%nd the number of commas and relations of each
the boundaries of the units comprising the list ar@ype are shown in Table 4. The Accuracy closely ap-
marked so that they can be treated as a single unsoximates Kappa score in this case, since the base-

and are considered to be related by the single relgine probability of chance agreement is close to zero.
tion ‘'GROUP’. For example, the derivation of ‘John,

James and Kelly all left last week’ is written asS A Sentence Tranformation Rule Learner
‘[John, James, and Kelly] [all left last week]'. (ASTRL)

Any commas not fitting one of the descriptionsin this section, we describe a new machine learning
above are designated asHER. This does not in- system that learns Sentence Transformation Rules
dicate that the comma signifies no relations, onlySTRs) for comma resolution. We first define the
that it does not signify a relation of interest in thishypothesis space (i.e., STRs) and two operations —
work (future work will address relations currentlysubstitution and introduction. We then define the
subsumed by this category). Analysisl@f) OTHER feature space, motivating the use of Syntactic Parse
commas show that approximately half signify clausennotation to learn STRs. Finally, we describe the
boundaries, which may occur when sentence colSTRL algorithm.
stituents are reordered for emphasis, but may also _
encode implicit temporal, conditional, and other re-1  Sentence Transformation Rules
lation types (for example, ‘Opening the drawer, héd Sentence Transformation Rule (STR)takes a
found the gun.). The remainder comprises mainlyparse tree as input and generates new sentences. We
coordination structures (for example, ‘Although hdformalize an STR as the pair— r, wherel is a
won, he was sad’) and discourse markers indicatintgee fragment that can consist of non-terminals, POS
inter-sentence relations (such as ‘However, he sodags and lexical items.r is a set{r;}, each ele-
cheered up.). While we plan to develop an annoment of which is a template that consists of the non-
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terminals ofl and, possibly, some new tokens. This
template is used to generate a new sentence, called a /\

- NP, VP

relation. /\ _
The process of applying an STIR- r to a parse NEB : NP» . famous

treeT of a sentence begins with finding a match for oS T

[ in T. A match is said to be found ifis a subtree Retoons:

of T'. If matched, the non-terminals of eachare 1 [John Smith]N P; be [a renaissance artistj/Ps

instantiated with the terminals that they coveflin
Instantiation is followed by generation of the output
relations in one of two waysintroduction or sub-

Stltunon’_ which is Specmeq by the corresponding Figure 2: Example of application of the STR in Figure 1.
If an r; is marked as an introductory one, then the,ihe first relation, an introduction, we use the verb ‘be’,

relation is the terminal sequence obtained by replagrithout dealing with its inflections.N P, and NP, are
ing the non-terminals im; with their instantiations. both substitutions, each replacingpP, to generate the

For substitution, firstly, the non-terminals of thg last two relations.
are replaced by their instantiations. The instantiated

r; replaces all the terminals inthat are covered by o former Soviet RepubligsRussia’ and‘China’
thel-match. The notions of introduction and substis the four members of a list. To resolve such ambi-
tution were motivated by ideas introduced in (Bargyities, we need a nested representation of the sen-
Haim et al., 2007). tence. This motivates the use of syntactic parse trees
Figure 1 shows an example of an STR and Figurgs a |ogical choice of feature space. (Note, however,

2 shows the application of this STR to a sentence. lihat semantic and pragmatic ambiguities might still
the first relation)V-P, and NV P, are instantiated with  remain.)

the corresponding terminals in the parse tree. In the
second and third relations, the terminals\oP; and 5.3 Algorithm Overview

2 [John Smith] N P; [was famous]
3 [arenaissance artisly/P, [was famous]

NP, replace the terminals covered ByF,. In our corpus annotation, the relations and their ar-
Lhs. NP, gument boundaries (chunks) are explicitly marked.
TR For each training example, our learning algorithm
NP NP first finds the smallest valid STR — the STR with the
RHS: smallestL H S in terms of depth. Then it refines the
1. NPy beN Py (introduction) LHS by specializing it using statistics taken from

the entire data set.

2. N Pj (substitution)

3. NPy (substitution) 5.4 Generating the Smallest Valid STR

To transform an example into the smallest valid
Figure 1: Example of a Sentence Transformation Rule. TR, we utilize the augmented parse tree of the
the LH S matches a part of a given parse tree, then théentence. For each chunk in the sentence, we find
RHS will generate three relations. the lowest node in the parse tree that covers the
chunk and does not cover other chunks (even par-
tially). It may, however, cover words that do not
belong to any chunk. We refer to such a node as
In Section 2, we discussed the example where theaechunk root We then find the lowest node that cov-
could be an ambiguity between a list and an apposérs all the chunk roots, referring to it as that-
tion structure in the fragmemivo former Soviet re- tern root The initial LHS consists of the sub-
publics, Russia and Chindn addition, simple sur- tree of the parse tree rooted at the pattern root and
face examination of the sentence could also identifyhose leaf nodes are all either chunk roots or nodes
the noun phraseShanghai Co-operation Organi- that do not belong to any chunk. All the nodes are
zation (SCO), ‘the fledgling association that binds labeled with the corresponding labels in the aug-

5.2 The Feature Space
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mented parse tree. For example, if we consider the For this purpose, we specialize thé/ S so that it
parse tree and relations shown in Figure 2, then dgevers as few examples from the other comma types
ing the above procedure gives us the initlaf S as possible, while covering as many examples from
asS (NP,(NPy, NP, ) VP). The three relations the current comma type as possible. Given the most
gives us theRH S with three elementsN P, be general STR, we generate a set of additional, more
NPy,"NP; VP and ‘NP, VP, all three being detailed, candidate rules. Each of these is obtained
introduction. from the original rule by adding a single node to
This initial L H S need not be the smallest one thathe tree pattern in the ruleSH S, and updating the
explains the example. So, we proceed by finding thelle’s RH.S accordingly. We then score each of the
lowest node in the initialLHS such that the sub- candidates (including the original rule). If there is
tree of theL HS at that node can form a new STRa clear winner, we continue with it using the same
that covers the example using both introductml  procedure (i.e., specialize it). If there isn’'t a clear
substitution. In our example, the initi@lF7 S has a winner, we stop and use the current winner. After

subtree N P,(N P, N P»,) that can cover all the re- finishing with a rule (line 18), we remove from the
lations with theRH S consisting of N P, be N P,’,
NP, and NP,. The firstRHS is an introduction, ples that are covered by it (line 19).

while the second and the third are both substitutions. To generate the additional candidate rules that we
Since no subtree of thiBH S can generate all three add, we define théringe of a rule as the siblings
relations even with substitution, this is the require@nd children of the nodes in ifsH S in the original
STR. The final step ensures that we have the smaflarse tree. Each fringe node defines an additional
est valid STR at this stage.

5.5 Statistical Refinement
The STR generated using the procedure outline@s the rule’dringe rules We define the score of an
above explains the relations generated by a singfelR as

example. In addition to covering the relations gen-
erated by the example, we wish to ensure that it does
not cover erroneous relations by matching any of the

other comma types in the annotated data.

set of positive examples of its comma type all exam-

candidate rule, whosé H S is obtained by adding
the fringe node to the rule’s HS tree. We refer to
the set of these candidate rules, plus the original one,

R, R
Score(Rule,p,n) = —£ — ==
lp[  |n]
wherep andn are the set of positive and negative
examples for this comma type, ait) and k,, are

Algorithm 1 ASTRL : A Sentence Transformation the number of positive and negative examples that
Rule Learning.

1. for all t: Comma typelo

are covered by the STR. For each example, all exam-
ples annotated with the same comma type are pos-

2. Initialize ST RList[t] = 0 itive while all examples of all other comma types
3: p = Set of annotated examples of type ) . )
4:  n = Annotated examples of all other types are negative. The score is used to select the win-
5. foralzepdo ner among the fringe rules. The complete algorithm
6: r = Smallest Valid STR that covers h dis li din Al ithm 1. E
7: Get fringe ofr. L H S using the parse tree W_e ave use |S. Isted In i gOfIt m : 0"’ conve-
g: S = Score(r,p,n) nience, the algorithm’s main loop is given in terms
. Sprev = —00 i i i -
10: while S # S,rc0 do of comma types, allthough thls Is ngt strictly nec
11: if adding some fringe node toLH S causes a signifi- €Ssary. The stopping criterion in line 11 checks
cant change in scotéen i iynifi
12: Setr = New rule that includes that fringe node whether any frmge. rule haS. a Slgmflcantly petter
13: Sprew = S score than the rule it was derived from, and exits the
igi g= Scm"te(ﬁp,?) . specialization loop if there is none.
. ecompute new 1ringe nodes . .
16 end if P 9 Since we start with the smallest STR, we only
ig: end while need to add nodes to it to refine it and never have
: Add r to STRList[t]
19 Remove all examples from that are covered by to de!ete any nodes_ from the tree. A|S(? note that the
20:  endfor algorithm is essentially a greedy algorithm that per-
21: end for
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complex, search strategies could also be used.  settings described above, for this metric, we also
_ present the results of the Charniak-Charniak setting,
6 Evaluation where both the train and test sets were annotated
6.1 Experimental Setup with the output of the Charniak parser. The improve-
. ment in recall in this setting over the Gold-Charniak
To evaluate ASTRL, we used the WSJ derived cor- - g .
: . S case indicates that the parser makes systematic er-
pus. We experimented with three scenarios; in two . .
. . rors with respect to the phenomena considered.
of them we trained using the gold standard trees
and then tested on gold standard parse tr&esd- Setting = R E
Gold), and text annotated using a state-of-the-art sta- GGlglg-fold ) 86-; 28-4 232
P : old-Charnial 77. 1 1
tlstlcal_ parser (Chgrnlak and Johnson, 20@5())I(1I- Charniak-Chamiak | 77.2 | 64.8 | 704
CharniaR), respectively. In the third, we trained and
tested on the Charniak Pars@h@rniak-Charniak. ~ Table 2: ASTRL performance (precision, recall and f-
In gold standard parse trees the syntactic catacore) for relation extraction. The comma types were
. . . . used only to learn the rules. During evaluation, only the
gories are annotated with functional tags. Since cuf-,” .
. relations were scored.
rent statistical parsers do not annotate sentences wit
such tags, we augment the syntactic trees with the

output of a Named Entity tagger. For the Name&.3 Comma Resolution Performance

Entity information, we used a publicly available NEWe present a detailed analysis of the performance of

Recognizer capable of recognizing a range of Ca{he algorithm for comma resolution. Since this paper

egories including Person, Location and Organlga}-s‘ the first one that deals with the task, we could not

tion. On the CONLL-03 shared task, its f-s_core IScompare our results to previous work. Also, there
about 909%. We evaluate our system from different.

ints of Vi q ibed bel E I th IIS no clear baseline to use. We tried a variant of
poInts o View, as described below. or all In€ eValy, o ot frequent baseline common in other disam-

uation methods, we performed five-fold cross Va”b'guation tasks. in which we labeled all commas as
dation and report the average precision, recall a HER (the mo’st frequent type) except when there
f-scores. are list indicators likeand, or and but in adjacent
chunks (which are obtained using a shallow parser),
in which case the commas are labeladT. This
Firstly, we present the evaluation of the performancgiyes an average precision 0.85 and an average recall
of ASTRL from the point of view of relation ex- of 0.36 for identifying the comma type. However,
traction. After learning the STRs for the differentihis haseline does not help in identifying relations.
comma types using the gold standard parses, Weye yse the following approach to evaluate the
generated relations by applying the STRs on the tegbmma type resolutioand relation extraction per-
set once. Table 2_ ShOWS_ the precision,_ recall andymance — a relation extracted by the system is con-
f-score of the relations, without accounting for thesigered correct only if both the relation and the type
comma type of the STR that was used to generaff; the comma structure that generated it are correctly
them. This metric, called thiRelation metrian fur- identified. We call this metric th&elation-Type
ther discussion, is the most relevant one from thgetric Another way of measuring the performance
point of view of the TE task. Since a list does nok comma resolution is to measure the correctness of
generate any relations in our annotation scheme, Wge relations per comma type. In both cases, lists are
use the commas to identify the list elements. Treakcored as in the Relation metric. The performance of
ing each list in a sentence as a single relation, Wgr system with respect to these two metrics are pre-
score the list with the fraction of its correctly identi-ganted in Table 3. In this table, we also compare the

6.2 Relation Extraction Performance

fied elements. performance of the STRs learned by ASTRL with
In addition to the Gold-Gold and Gold-Charniakthe smallest valid STRs without further specializa-
4A web demo of the NER is 4tttp://L2R.cs.uiuc. tion (i.e., using just the procedure outlined in Sec-
edu/ ~ cogcomp/demos.php . tion 5.4).
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Type [ Gold-Gold Setting [ Gold-Charniak Setting
Relation-Type metric

Smallest Valid STRs ASTRL Smallest Valid STRs ASTRL
P R F P R F P R F P R F
Total 66.2 | 76.1 | 70.7 818 | 739 | 776 | 61.0| 584 | 595 72.2 | 59.5 | 65.1

Relations Metric, Per Comma Type
ATTRIBUTE 40.4 | 68.2 | 50.4 70.6 | 59.4 | 64.1 || 355 | 39.7 | 36.2 56.6 | 37.7 | 44.9
SUBSTITUTE | 80.0 | 84.3 | 81.9 879 | 848 | 86.1| 758 | 729 | 74.3 78.0 | 76.1 | 76.9
LIST 70.9 | 58.1 | 63.5 76.2 | 57.8 | 65.5 | 58.7 | 53.4 | 55.6 65.2 | 53.3 | 58.5
LOCATION 93.8 | 86.4 | 89.1 93.8 | 86.4| 89.1 | 703 | 37.2| 47.2 70.3 | 37.2 | 47.2

Table 3: Performance of STRs learned by ASTRL and the snalidil STRs in identifying comma typesnd
generating relations.

There is an important difference between the Re- Setting P | R | F
. ) . Gold-Gold | 789 | 928 | 85.2
lation metric (Table 2) and the Relation-type met- Gold-Charniak | 725 | 92.2 | 81.2

ric (top part of Table 3) that depends on the seman-
tic interpretation of the comma types. For examplel@Ple 4: ASTRL performance (precision, recall and f-
consider the sentence ‘John Smith, 59, went homes.core) foroTHER dentification.

If the system labels the commas in this as beth

TRIBUTE and SUBSTITUTE, then, both will gener- 7 Conclusions

ate the relation ‘John Smith is 59." According to ' .
) . . ) 9 We defined the task of comma resolution, and devel-
the Relation metric, there is no difference between

. o oped a novel machine learning algorithm that learns
them. However, there is a semantic difference bes— . .
: entence Transformation Rules to perform this task.
tween the two sentences — theTRIBUTE relation : :
: . . . . We experimented with both gold standard and parser
says that being 59 is an attribute of John Smith while .
. L annotated sentences, and established a performance
thesuBsTITUTErelation says that John Smith is the . .
L ; level that seems good for a task of this complexity,
number 59. This difference is accounted for by the . . .
. : and which will provide a useful measure of future
Relation-Type metric. . .
systems developed for this task. When given au-
tomatically parsed sentences, performance degrades
From this standpoint, we can see that the speciabut is still much higher than random, in both sce-
ization step performed in the full ASTRL algorithm narios. We designed a comma annotation scheme,
greatly helps in disambiguating between the-  where each comma unit is assigned one of four types
TRIBUTE andsuBSTITUTEtypes and consequently, and an inference rule mapping the patterns of the
the Relation-Type metric shows an error reductioninit with the entailed relations. We created anno-
of 23.5% and 13.8% in the Gold-Gold and Gold+tated datasets which will be made available over the
Charniak settings respectively. In the Gold-Goldveb to facilitate further research.
scenario the performance of ASTRL is much better Future work will investigate four main directions:
than in the Gold-Charniak scenario. This reflects thg) studying the effects of inclusion of our approach
non-perfect performance of the parser in annotatingn the performance of Textual Entailment systems;
these sentences (parser F-score of 90%). (i) using features other than those derivable from

syntactic parse and named entity annotation of the

Another key evaluation question is the Ioer_in|out sentence; (iii) recognizing a wider range of im-
formance of the method in identification of thePlicit relations, represented by commas and in other
OTHER category. A comma is judged to be asvays; (iv) adaptation to other domains.

OTHER if no STR in the system applies to it.

The performance of ASTRL in this aspect is preACknowledgement
sented in Table 4. The categorization of this catéFhe UIUC authors were supported by NSF grant
gory is important if we wish to further classify the ITR 11S-0428472, DARPA funding under the Boot-
OTHER commas into finer categories. strap Learning Program and a grant from Boeing.
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