Joint Processing and Discriminative Training for
Letter-to-Phoneme Conversion

Sittichai Jiampojamarn'

fDepartment of Computing Science

University of Alberta

Edmonton, AB, T6G 2ES&, Canada
{sj,kondrak}@cs.ualberta.ca

Abstract

We present a discriminative structure-
prediction model for the letter-to-phoneme
task, a crucial step in text-to-speech process-
ing. Our method encompasses three tasks
that have been previously handled separately:
input segmentation, phoneme prediction,
and sequence modeling. The key idea is
online discriminative training, which updates
parameters according to a comparison of the
current system output to the desired output,
allowing us to train all of our components
together. By folding the three steps of a
pipeline approach into a unified dynamic
programming framework, we are able to
achieve substantial performance gains. Our
results surpass the current state-of-the-art on
six publicly available data sets representing
four different languages.

1 Introduction

Letter-to-phoneme (L2P) conversion is the task
of predicting the pronunciation of a word, repre-
sented as a sequence of phonemes, from its or-
thographic form, represented as a sequence of let-
ters. The L2P task plays a crucial role in speech
synthesis systems (Schroeter et al., 2002), and is
an important part of other applications, including
spelling correction (Toutanova and Moore, 2001)
and speech-to-speech machine translation (Engel-
brecht and Schultz, 2005).

Converting a word into its phoneme represen-
tation is not a trivial task. Dictionary-based ap-
proaches cannot achieve this goal reliably, due to
unseen words and proper names. Furthermore, the

905

Colin Cherry*

Grzegorz Kondrak'

'Microsoft Research
One Microsoft Way
Redmond, WA, 98052
colinc@microsoft.com

construction of even a modestly-sized pronunciation
dictionary requires substantial human effort for each
new language. Effective rule-based approaches can
be designed for some languages such as Spanish.
However, Kominek and Black (2006) show that in
languages with a less transparent relationship be-
tween spelling and pronunciation, such as English,
Dutch, or German, the number of letter-to-sound
rules grows almost linearly with the lexicon size.
Therefore, most recent work in this area has focused
on machine-learning approaches.

In this paper, we present a joint framework for
letter-to-phoneme conversion, powered by online
discriminative training. By updating our model pa-
rameters online, considering only the current system
output and its feature representation, we are able to
not only incorporate overlapping features, but also to
use the same learning framework with increasingly
complex search techniques. We investigate two on-
line updates: averaged perceptron and Margin In-
fused Relaxed Algorithm (MIRA). We evaluate our
system on L2P data sets covering English, French,
Dutch and German. In all cases, our system outper-
forms the current state of the art, reducing the best
observed error rate by as much as 46%.

2 Previous work

Letter-to-phoneme conversion is a complex task, for
which a number of diverse solutions have been pro-
posed. It is a structure prediction task; both the input
and output are structured, consisting of sequences of
letters and phonemes, respectively. This makes L2P
a poor fit for many machine-learning techniques that
are formulated for binary classification.

Proceedings of ACL-08: HLT, pages 905-913,
Columbus, Ohio, USA, June 2008. (©)2008 Association for Computational Linguistics

The L2P task is also characterized by the exis-
tence of a hidden structure connecting input to out-
put. The training data consists of letter strings paired
with phoneme strings, without explicit links con-
necting individual letters to phonemes. The subtask
of inserting these links, called letter-to-phoneme
alignment, is not always straightforward. For ex-
ample, consider the word “phoenix” and its corre-
sponding phoneme sequence [f i n 1 k s], where
we encounter cases of two letters generating a sin-
gle phoneme (ph—f), and a single letter generat-
ing two phonemes (x—k s). Fortunately, align-
ments between letters and phonemes can be discov-
ered reliably with unsupervised generative models.
Originally, L2P systems assumed one-to-one align-
ment (Black et al., 1998; Damper et al., 2005), but
recently many-to-many alignment has been shown
to perform better (Bisani and Ney, 2002; Jiampoja-
marn et al., 2007). Given such an alignment, L2P
can be viewed either as a sequence of classification
problems, or as a sequence modeling problem.

In the classification approach, each phoneme is
predicted independently using a multi-class classi-
fier such as decision trees (Daelemans and Bosch,
1997; Black et al., 1998) or instance-based learn-
ing (Bosch and Daelemans, 1998). These systems
predict a phoneme for each input letter, using the
letter and its context as features. They leverage the
structure of the input but ignore any structure in the
output.

L2P can also be viewed as a sequence model-
ing, or tagging problem. These approaches model
the structure of the output, allowing previously pre-
dicted phonemes to inform future decisions. The
supervised Hidden Markov Model (HMM) applied
by Taylor (2005) achieved poor results, mostly be-
cause its maximum-likelihood emission probabili-
ties cannot be informed by the emitted letter’s con-
text. Other approaches, such as those of Bisani and
Ney (2002) and Marchand and Damper (2000), have
shown that better performance can be achieved by
pairing letter substrings with phoneme substrings,
allowing context to be captured implicitly by these
groupings.

Recently, two hybrid methods have attempted
to capture the flexible context handling of
classification-based methods, while also mod-
eling the sequential nature of the output. The

906

constraint satisfaction inference (CSInf) ap-
proach (Bosch and Canisius, 2006) improves the
performance of instance-based classification (Bosch
and Daelemans, 1998) by predicting for each letter
a trigram of phonemes consisting of the previous,
current and next phonemes in the sequence. The
final output sequence is the sequence of predicted
phonemes that satisfies the most unigram, bigram
and trigram agreement constraints. The second
hybrid approach (Jiampojamarn et al., 2007) also
extends instance-based classification. It employs a
many-to-many letter-to-phoneme alignment model,
allowing substrings of letters to be classified into
substrings of phonemes, and introducing an input
segmentation step before prediction begins. The
method accounts for sequence information with
post-processing: the numerical scores of possible
outputs from an instance-based phoneme predictor
are combined with phoneme transition probabili-
ties in order to identify the most likely phoneme
sequence.

3 A joint approach

By observing the strengths and weaknesses of previ-
ous approaches, we can create the following priori-
tized desiderata for any L2P system:

1. The phoneme predicted for a letter should be
informed by the letter’s context in the input
word.

2. In addition to single letters, letter substrings
should also be able to generate phonemes.

3. Phoneme sequence information should be in-
cluded in the model.

Each of the previous approaches focuses on one
or more of these items. Classification-based ap-
proaches such as the decision tree system (Black
et al.,, 1998) and instance-based learning sys-
tem (Bosch and Daelemans, 1998) take into ac-
count the letter’s context (#1). By pairing letter sub-
strings with phoneme substrings, the joint n-gram
approach (Bisani and Ney, 2002) accounts for all
three desiderata, but each operation is informed only
by a limited amount of left context. The many-
to-many classifier of Jiampojamarn et al. (2007)
also attempts to account for all three, but it adheres

(a) | Phonemes | (b) PhonemesJ (c) PhonemesJ
I 4
Sequence
model Discrim.
Phoneme HMM Discrim.
classifier Phrasal
Decoder

Letter Letter
segmenter segmenter

Letters

Letters I Letters I

Figure 1: Collapsing the pipeline.

strictly to the pipeline approach illustrated in Fig-
ure la. It applies in succession three separately
trained modules for input segmentation, phoneme
prediction, and sequence modeling. Similarly, the
CSInf approach modifies independent phoneme pre-
dictions (#1) in order to assemble them into a cohe-
sive sequence (#3) in post-processing.

The pipeline approaches are undesirable for two
reasons. First, when decisions are made in sequence,
errors made early in the sequence can propagate for-
ward and throw off later processing. Second, each
module is trained independently, and the training
methods are not aware of the tasks performed later
in the pipeline. For example, optimal parameters for
a phoneme prediction module may vary depending
on whether or not the module will be used in con-
junction with a phoneme sequence model.

We propose a joint approach to L2P conversion,
grounded in dynamic programming and online dis-
criminative training. We view L2P as a tagging task
that can be performed with a discriminative learn-
ing method, such as the Perceptron HMM (Collins,
2002). The Perceptron HMM naturally handles
phoneme prediction (#1) and sequence modeling
(#3) simultaneously, as shown in Figure 1b. Fur-
thermore, unlike a generative HMM, it can incor-
porate many overlapping source n-gram features to
represent context. In order to complete the conver-
sion from a pipeline approach to a joint approach,
we fold our input segmentation step into the ex-
act search framework by replacing a separate seg-
mentation module (#2) with a monotone phrasal de-
coder (Zens and Ney, 2004). At this point all three of
our desiderata are incorporated into a single module,

907

Algorithm 1 Online discriminative training.

I = 6

2: for K iterations over training set do

3: for all letter-phoneme sequence pairs (x,y)

in the training set do

& §—argmaxyey o O,y
5 update weights « according to ¢ and y
6: end for
7
8

: end for
: return o

as shown in Figure Ic.

Our joint approach to L2P lends itself to several
refinements. We address an underfitting problem of
the perceptron by replacing it with a more robust
Margin Infused Relaxed Algorithm (MIRA), which
adds an explicit notion of margin and takes into ac-
count the system’s current n-best outputs. In addi-
tion, with all of our features collected under a unified
framework, we are free to conjoin context features
with sequence features to create a powerful linear-
chain model (Sutton and McCallum, 2006).

4 Online discriminative training

In this section, we describe our entire L2P system.
An outline of our discriminative training process is
presented in Algorithm 1. An online process re-
peatedly finds the best output(s) given the current
weights, and then updates those weights to make the
model favor the correct answer over the incorrect
ones.

The system consists of the following three main
components, which we describe in detail in Sections
4.1, 4.2 and 4.3, respectively.

1. A scoring model, represented by a weighted
linear combination of features (a - ®(x, y)).

2. A search for the highest scoring phoneme se-
quence for a given input word (Step 4).

3. An online update equation to move the model
away from incorrect outputs and toward the
correct output (Step 5).

4.1 Model

Given an input word x and an output phoneme se-
quence y, we define ®(x,y) to be a feature vector

representing the evidence for the sequence y found
in z, and « to be a feature weight vector provid-
ing a weight for each component of ®(z,y). We
assume that both the input and output consist of m
substrings, such that x; generates y;, 0 < ¢ < m.
At training time, these substrings are taken from a
many-to-many letter-to-phoneme alignment. At test
time, input segmentation is handled by either a seg-
mentation module or a phrasal decoder.

Table 1 shows our feature template that we in-
clude in ®(x,y). We use only indicator features;
each feature takes on a binary value indicating
whether or not it is present in the current (x,y)
pair. The context features express letter evidence
found in the input string x, centered around the
generator z; of each y;. The parameter c estab-
lishes the size of the context window. Note that
we consider not only letter unigrams but all n-grams
that fit within the window, which enables the model
to assign phoneme preferences to contexts contain-
ing specific sequences, such as ing and tion. The
transition features are HMM-like sequence features,
which enforce cohesion on the output side. We in-
clude only first-order transition features, which look
back to the previous phoneme substring generated
by the system, because our early development exper-
iments indicated that larger histories had little im-
pact on performance; however, the number of previ-
ous substrings that are taken into account could be
extended at a polynomial cost. Finally, the linear-
chain features (Sutton and McCallum, 2006) asso-
ciate the phoneme transitions between y;_1 and y;
with each n-gram surrounding x;. This combina-
tion of sequence and context data provides the model
with an additional degree of control.

4.2 Search

Given the current feature weight vector «, we are in-
terested in finding the highest-scoring phoneme se-
quence ¢ in the set Y of all possible phoneme se-
quences. In the pipeline approach (Figure 1b), the
input word is segmented into letter substrings by an
instance-based classifier (Aha et al., 1991), which
learns a letter segmentation model from many-to-
many alignments (Jiampojamarn et al., 2007). The
search for the best output sequence is then effec-
tively a substring tagging problem, and we can com-
pute the arg max operation in line 4 of Algorithm 1

908

context Ti—cs Yi
$i+ca yl
Li—cli—c+1,> Yi

Lite—1Ti+c> Yi
Li—c---Liter Yi
Yi—1,Yi

$i—C’ yi—l’ yZ

transition
linear
chain

xi+c’ yi—la y”L
mi—cxi—c-i-la yi—la y’b

Lidc—1Titcs Yi—1, Yi

Li—c - Lidcr Yi—1> Yi

Table 1: Feature template.

with the standard HMM Viterbi search algorithm.

In the joint approach (Figure 1c), we perform seg-
mentation and L2P prediction simultaneously by ap-
plying the monotone search algorithm developed for
statistical machine translation (Zens and Ney, 2004).
Thanks to its ability to translate phrases (in our case,
letter substrings), we can accomplish the arg max
operation without specifying an input segmentation
in advance; the search enumerates all possible seg-
mentations. Furthermore, the language model func-
tionality of the decoder allows us to keep benefiting
from the transition and linear-chain features, which
are explicit in the previous HMM approach.

The search can be efficiently performed by the
dynamic programming recurrence shown below.
We define Q(j,p) as the maximum score of the
phoneme sequence ending with the phoneme p gen-
erated by the letter sequence x7...x;. Since we
are no longer provided an input segmentation in ad-
vance, in this framework we view x as a sequence of
J letters, as opposed to substrings. The phoneme p’
is the phoneme produced in the previous step. The
expression gb(xj., +1,P,p) is a convenient way to ex-
press the subvector of our complete feature vector
®(z,y) that describes the substring pair (7,3 ;),
where z; = x?,ﬂ, yi—1 = p/ and y; = p. The
value N limits the size of the dynamically created

substrings. We use N = 2, which reflects a simi-
lar limit in our many-to-many aligner. The special
symbol $ represents a starting phoneme or ending
phoneme. The value in Q(I + 1,$) is the score of
highest scoring phoneme sequence corresponding to
the input word. The actual sequence can be retrieved
by backtracking through the table Q).

Q(0,%) =0

QU,p) = max {a-¢(),,0,p)+ QU)}

?’.p,
J=N<G'<j

QUJ+1,9) = H;E;\X{Oé -0(8,9,8) + Q(J.p)}

4.3 Online update

We investigate two model updates to drive our online
discriminative learning. The simple perceptron up-
date requires only the system’s current output, while
MIRA allows us to take advantage of the system’s
current n-best outputs.

Perceptron

Learning a discriminative structure prediction
model with a perceptron update was first proposed
by Collins (2002). The perceptron update process
is relatively simple, involving only vector addition.
In line 5 of Algorithm 1, the weight vector « is up-
dated according to the best output 3 under the cur-
rent weights and the true output y in the training
data. If § = y, there is no update to the weights;
otherwise, the weights are updated as follows:

a=a+o(z,y) - (z,7) 6]

We iterate through the training data until the system
performance drops on a held-out set. In a separable
case, the perceptron will find an « such that:

2

Since real-world data is not often separable, the av-
erage of all « values seen throughout training is used
in place of the final o, as the average generalizes bet-
ter to unseen data.

VieY —{y}:a ®(x,y) > a- D(x,7)

MIRA

In the perceptron training algorithm, no update is
derived from a particular training example so long
as the system is predicting the correct phoneme se-
quence. The perceptron has no notion of margin: a

909

slim preference for the correct sequence is just as
good as a clear preference. During development, we
observed that this lead to underfitting the training ex-
amples; useful and consistent evidence was ignored
because of the presence of stronger evidence in the
same example. The MIRA update provides a princi-
pled method to resolve this problem.

The Margin Infused Relaxed Algorithm or
MIRA (Crammer and Singer, 2003) updates the
model based on the system’s n-best output. It em-
ploys a margin update which can induce an update
even when the 1-best answer is correct. It does so by
finding a weight vector that separates incorrect se-
quences in the n-best list from the correct sequence
by a variable width margin.

The update process finds the smallest change in
the current weights so that the new weights will sep-
arate the correct answer from each incorrect answer
by a margin determined by a structured loss func-
tion. The loss function describes the distance be-
tween an incorrect prediction and the correct one;
that is, it quantifies just how wrong the proposed se-
quence is. This update process can be described as
an optimization problem:

ming, || an — ap ||
subjectto Vg € Y, :
an - ((z,y) — (x,9)) = £y, 9)

where Y, is a set of n-best outputs found under the
current model, y is the correct answer, «, is the cur-
rent weight vector, «, is the new weight vector, and
£(y,9) is the loss function.

Since our direct objective is to produce the cor-
rect phoneme sequence for a given word, the most
intuitive way to define the loss function ¢(y,y) is
binary: 0 if § = y, and 1 otherwise. We refer to
this as 0-1 loss. Another possibility is to base the
loss function on the phoneme error rate, calculated
as the Levenshtein distance between y and . We
can also compute a combined loss function as an
equally-weighted linear combination of the 0-/ and
phoneme loss functions.

MIRA training is similar to averaged perceptron
training, but instead of finding the single best an-
swer, we find the n-best answers (Y,,) and update
weights according to Equation 3. To find the n-best
answers, we modify the HMM and monotone search
algorithms to keep track of the n-best phonemes at

3)

90.0
80.0 ~
70.0 1
60.0
50.0
40.0 ~
30.0 ~
20.0 ~
10.0 1

0.0 T T T T T T T

0 1 2 3 4 5 6 7 8
Context size

(%)

Word accuracy

Figure 2: Perceptron update with different context size.

each cell of the dynamic programming matrix. The
optimization in Equation 3 is a standard quadratic
programming problem that can be solved by us-
ing Hildreth’s algorithm (Censor and Zenios, 1997).
The details of our implementation of MIRA within
the SVM'9"* framework (Joachims, 1999) are given
in the Appendix A. Like the perceptron algorithm,
MIRA returns the average of all weight vectors pro-
duced during learning.

5 Evaluation

We evaluated our approach on English, German and
Dutch CELEX (Baayen et al., 1996), French Brulex,
English Nettalk and English CMUDict data sets.
Except for English CELEX, we used the data sets
from the PRONALSYL letter-to-phoneme conver-
sion challenge'. Each data set is divided into 10
folds: we used the first one for testing, and the rest
for training. In all cases, we hold out 5% of our
training data to determine when to stop perceptron
or MIRA training. We ignored one-to-one align-
ments included in the PRONALSYL data sets, and
instead induced many-to-many alignments using the
method of Jiampojamarn et al. (2007).

Our English CELEX data set was extracted di-
rectly from the CELEX database. After removing
duplicate words, phrases, and abbreviations, the data
set contained 66,189 word-phoneme pairs, of which
10% was designated as the final test set, and the rest
as the training set. We performed our development
experiments on the latter part, and then used the final

Available at http://www.pascal-network.org/
Challenges/PRONALSYL/. The results have not been an-
nounced.

910

89.0

X 88.0 -
87.0 (
86.0

85.0 -

84.0 A

83.0 T T T T T
0 10 20 30 40 50

n-best list size

Y%

Word accuracy

Figure 3: MIRA update with different size of n-best list.

test set to compare the performance of our system to
other results reported in the literature.

We report the system performance in terms of
word accuracy, which rewards only completely cor-
rect phoneme sequences. Word accuracy is more
demanding than phoneme accuracy, which consid-
ers the number of correct phonemes. We feel that
word accuracy is a more appropriate error metric,
given the quality of current L2P systems. Phoneme
accuracy is not sensitive enough to detect improve-
ments in highly accurate L2P systems: Black et al.
(1998) report 90% phoneme accuracy is equivalent
to approximately 60% word accuracy, while 99%
phoneme accuracy corresponds to only 90% word
accuracy.

5.1 Development Experiments

We began development with a zero-order Perceptron
HMM with an external segmenter, which uses only
the context features from Table 1. The zero-order
Perceptron HMM is equivalent to training a multi-
class perceptron to make independent substring-to-
phoneme predictions; however, this framework al-
lows us to easily extend to structured models. We in-
vestigate the effect of augmenting this baseline sys-
tem in turn with larger context sizes, the MIRA up-
date, joint segmentation, and finally sequence fea-
tures. We report the impact of each contribution on
our English CELEX development set.

Figure 2 shows the performance of our baseline
L2P system with different context size values (c).
Increasing the context size has a dramatic effect on
accuracy, but the effect begins to level off for con-
text sizes greater than 5. Henceforth, we report the

Perceptron | MIRA
Separate segmentation 84.5% 85.8%
Phrasal decoding 86.6% 88.0%

Table 2: Separate segmentation versus phrasal decoding
in terms of word accuracy.

results with context size ¢ = 5.

Figure 3 illustrates the effect of varying the size of
n-best list in the MIRA update. n = 1 is equivalent
to taking into account only the best answer, which
does not address the underfitting problem. A large
n-best list makes it difficult for the optimizer to sep-
arate the correct and incorrect answers, resulting in
large updates at each step. We settle on n = 10 for
the subsequent experiments.

The choice of MIRA’s loss function has a min-
imal impact on performance, probably because our
baseline system already has a very high phoneme ac-
curacy. We employ the loss function that combines
0-1 and phoneme error rate, due to its marginal im-
provement over 0-/ loss on the development set.

Looking across columns in Table 2, we observe
over 8% reduction in word error rate when the per-
ceptron update is replaced with the MIRA update.
Since the perceptron is a considerably simpler algo-
rithm, we continue to report the results of both vari-
ants throughout this section.

Table 2 also shows the word accuracy of our sys-
tem after adding the option to conduct joint segmen-
tation through phrasal decoding. The 15% relative
reduction in error rate in the second row demon-
strates the utility of folding the segmentation step
into the search. It also shows that the joint frame-
work enables the system to reduce and compensate
for errors that occur in a pipeline. This is particu-
larly interesting because our separate instance-based
segmenter is highly accurate, achieving 98% seg-
mentation accuracy. Our experiments indicate that
the application of joint segmentation recovers more
than 60% of the available improvements, according
to an upper bound determined by utilizing perfect
segmentation.”

Table 3 illustrates the effect of our sequence fea-
tures on both the perceptron and MIRA systems.

Perfect with respect to our many-to-many alignment (Ji-

ampojamarn et al., 2007), but not necessarily in any linguistic
sense.

911

Feature Perceptron | MIRA
zero order 86.6% 88.0%
+ 1% order HMM 87.1% 88.3%
+ linear-chain 87.5% 89.3%
All features 87.8% 89.4%

Table 3: The effect of sequence features on the joint sys-
tem in terms of word accuracy.

Replacing the zero-order HMM with the first-order
HMM makes little difference by itself, but com-
bined with the more powerful linear-chain features,
it results in a relative error reduction of about 12%.
In general, the linear-chain features make a much
larger difference than the relatively simple transition
features, which underscores the importance of us-
ing source-side context when assessing sequences of
phonemes.

The results reported in Tables 2 and 3 were cal-
culated using cross validation on the training part of
the CELEX data set. With the exception of adding
the 15¢ order HMM, the differences between ver-
sions are statistically significant according to McNe-
mar’s test at 95% confidence level. On one CPU of
AMD Opteron 2.2GHz with 6GB of installed mem-
ory, it takes approximately 32 hours to train the
MIRA model with all features, compared to 12 hours
for the zero-order model.

5.2 System Comparison

Table 4 shows the comparison between our approach
and other systems on the evaluation data sets. We
trained our system using n-gram context, transition,
and linear-chain features. All parameters, includ-
ing the size of n-best list, size of letter context, and
the choice of loss functions, were established on
the English CELEX development set, as presented
in our previous experiments. With the exception of
the system described in (Jiampojamarn et al., 2007),
which we re-ran on our current test sets, the results
of other systems are taken from the original papers.
Although these comparisons are necessarily indirect
due to different experimental settings, they strongly
suggest that our system outperforms all previous
published results on all data sets, in some case by
large margins. When compared to the current state-
of-the-art performance of each data set, the relative
reductions in error rate range from 7% to 46%.

Corpus MIRA | Perceptron || M-M HMM | Joint n-gram* | CSInf* | PbA* | CART*
Eng. CELEX 90.51% | 88.44% 84.81% 76.3% 84.5% - -
Dutch CELEX 95.32% | 95.13% 91.69% - 94.5% - -
German CELEX || 93.61% | 92.84% 90.31% 92.5% - - 89.38%
Nettalk 67.82% | 64.87% 59.32% 64.6% - 65.35% -
CMUDict 71.99% | 71.03% 65.38% - - - 57.80%
Brulex 94.51% | 93.89% 89.77% 89.1% - - -

Table 4: Word accuracy on the evaluated data sets. MIRA, Perceptron: our systems. M-M HMM: Many-to-Many
HMM system (Jiampojamarn et al., 2007). Joint n-gram: Joint n-gram model (Demberg et al., 2007). CSInf: Con-
straint satisfaction inference (Bosch and Canisius, 2006). PbA: Pronunciation by Analogy (Marchand and Damper,
2006). CART: CART decision tree system (Black et al., 1998). The columns marked with * contain results reported

in the literature.

6 Conclusion

We have presented a joint framework for letter-to-
phoneme conversion, powered by online discrimi-
native training. We introduced two methods to con-
vert multi-letter substrings into phonemes: one rely-
ing on a separate segmenter, and the other incorpo-
rating a unified search that finds the best input seg-
mentation while generating the output sequence. We
investigated two online update algorithms: the per-
ceptron, which is straightforward to implement, and
MIRA, which boosts performance by avoiding un-
derfitting. Our systems employ source n-gram fea-
tures and linear-chain features, which substantially
increase L2P accuracy. Our experimental results
demonstrate the power of a joint approach based on
online discriminative training with large feature sets.
In all cases, our MIRA-based system advances the
current state of the art by reducing the best reported
error rate.

Appendix A. MIRA Implementation

We optimize the objective shown in Equation 3
using the SVM'9ht framework (Joachims, 1999),
which provides the quadratic program solver shown
in Equation 4.

ming¢ 5 | w | +C3, &
subject to V7,
w-t; > rhs; —§&

“)

In order to approximate a hard margin using the
soft-margin optimizer of SVM!9" we assign a very
large penalty value to C, thus making the use of any
slack variables (&;) prohibitively expensive. We de-
fine the vector w as the difference between the new

912

“-” indicates no reported results. We have underlined the best previously reported results.

and previous weights: w = a,, — a,. We constrain
w to mirror the constraints in Equation 3. Since each
7 in the n-best list (Y,,) needs a constraint based on
its feature difference vector, we define a ¢; for each:

Substituting that equation along with the inferred
equation a,, = a, + w into our original MIRA con-
straints yields:

(a0 +w) - ti > £(y, §)

Moving «, to the right-hand-side to isolate w - t; on
the left, we get a set of mappings that implement
MIRA in SVM! 9’5 optimizer:

w o — Ol
rhs; Uy, 9) — ao - t;

The output of the SVM!9"* optimizer is an update
vector w to be added to the current «,,.

Acknowledgements

This research was supported by the Alberta Ingenu-
ity Fund, and the Natural Sciences and Engineering
Research Council of Canada.

References

David W. Aha, Dennis Kibler, and Marc K. Albert. 1991.
Instance-based learning algorithms. Machine Learn-
ing, 6(1):37-66.

Harald Baayen, Richard Piepenbrock, and Leon Gulikers.
1996. The CELEX2 lexical database. LDC96L14.

Maximilian Bisani and Hermann Ney. 2002. Investi-
gations on joint-multigram models for grapheme-to-
phoneme conversion. In Proceedings of the 7th Inter-
national Conference on Spoken Language Processing,
pages 105-108.

Alan W. Black, Kevin Lenzo, and Vincent Pagel. 1998.
Issues in building general letter to sound rules. In The
Third ESCA Workshop in Speech Synthesis, pages 77—
80.

Antal Van Den Bosch and Sander Canisius. 2006.
Improved morpho-phonological sequence processing
with constraint satisfaction inference. Proceedings of
the Eighth Meeting of the ACL Special Interest Group
in Computational Phonology, SIGPHON 06, pages
41-49.

Antal Van Den Bosch and Walter Daelemans. 1998.
Do not forget: Full memory in memory-based learn-
ing of word pronunciation. In Proceedings of NeM-
LaP3/CoNLL98, pages 195-204, Sydney, Australia.

Yair Censor and Stavros A. Zenios. 1997. Parallel Opti-
mization: Theory, Algorithms, and Applications. Ox-
ford University Press.

Michael Collins. 2002. Discriminative training meth-
ods for Hidden Markov Models: theory and experi-
ments with perceptron algorithms. In EMNLP ’02:
Proceedings of the ACL-02 conference on Empirical
methods in natural language processing, pages 1-8,
Morristown, NJ, USA.

Koby Crammer and Yoram Singer. 2003. Ultraconser-
vative online algorithms for multiclass problems. The
Journal of Machine Learning Research, 3:951-991.

Walter Daelemans and Antal Van Den Bosch. 1997.
Language-independent data-oriented grapheme-to-
phoneme conversion. In Progress in Speech Synthesis,
pages 77-89. New York, USA.

Robert 1. Damper, Yannick Marchand, John DS.
Marsters, and Alexander I. Bazin. 2005. Aligning
text and phonemes for speech technology applications
using an EM-like algorithm. International Journal of
Speech Technology, 8(2):147-160.

Vera Demberg, Helmut Schmid, and Gregor Mohler.
2007. Phonological constraints and morphological
preprocessing for grapheme-to-phoneme conversion.
In Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 96-103,
Prague, Czech Republic.

Herman Engelbrecht and Tanja Schultz. 2005. Rapid
development of an afrikaans-english speech-to-speech
translator. In International Workshop of Spoken Lan-
guage Translation (IWSLT), Pittsburgh, PA, USA.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden markov models to letter-to-phoneme con-
version. In Human Language Technologies 2007: The

913

Conference of the North American Chapter of the As-
sociation for Computational Linguistics, Proceedings
of the Main Conference, pages 372-379, Rochester,
New York, USA.

Thorsten Joachims. 1999. Making large-scale support
vector machine learning practical. pages 169-184.
MIT Press, Cambridge, MA, USA.

John Kominek and Alan W Black. 2006. Learning
pronunciation dictionaries: Language complexity and
word selection strategies. In Proceedings of the Hu-
man Language Technology Conference of the NAACL,
Main Conference, pages 232-239, New York City,
USA.

Yannick Marchand and Robert I. Damper. 2000. A
multistrategy approach to improving pronunciation by
analogy. Computational Linguistics, 26(2):195-219.

Yannick Marchand and Robert I. Damper. 2006. Can syl-
labification improve pronunciation by analogy of En-
glish? Natural Language Engineering, 13(1):1-24.

Juergen Schroeter, Alistair Conkie, Ann Syrdal, Mark
Beutnagel, Matthias Jilka, Volker Strom, Yeon-Jun
Kim, Hong-Goo Kang, and David Kapilow. 2002. A
perspective on the next challenges for TTS research.
In IEEE 2002 Workshop on Speech Synthesis.

Charles Sutton and Andrew McCallum. 2006. An in-
troduction to conditional random fields for relational
learning. In Lise Getoor and Ben Taskar, editors,
Introduction to Statistical Relational Learning. MIT
Press.

Paul Taylor. 2005. Hidden Markov Models for grapheme
to phoneme conversion. In Proceedings of the 9th
European Conference on Speech Communication and
Technology.

Kristina Toutanova and Robert C. Moore. 2001. Pro-
nunciation modeling for improved spelling correction.
In ACL ’02: Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, pages
144-151, Morristown, NJ, USA.

Richard Zens and Hermann Ney. 2004. Improvements in
phrase-based statistical machine translation. In HLT-
NAACL 2004: Main Proceedings, pages 257-264,
Boston, Massachusetts, USA.

