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Abstract

For Chineseeostagging, word segmentation
is a preliminary step. To avoid error propa-
gation and improve segmentation by utilizing
pos information, segmentation and tagging
can be performed simultaneously. A challenge
for this joint approach is the large combined
search space, which makes efficient decod-
ing very hard. Recent research has explored
the integration of segmentation ardstag-
ging, by decoding under restricted versions of
the full combined search space. In this paper,
we propose a joint segmentation ardstag-
ging model that does not impose any hard con-
straints on the interaction between word and
posinformation. Fast decoding is achieved
by using a novel multiple-beam search algo-
rithm. The system uses a discriminative sta-
tistical model, trained using the generalized
perceptron algorithm. The joint model gives
an error reduction in segmentation accuracy of
14.6% and an error reduction in tagging ac-
curacy of12.2%, compared to the traditional
pipeline approach.

Introduction

formation to improve word segmentation. For ex-
ample, theeosword pattern “number word” +-~

(a common measure word)” can help in segmenting
the character sequence~*1>_\” into the word se-
quence “— (one) > (measure word)\ (person)”
instead of “— (one) > A\ (personal; adj)”. More-
over, the comparatively rareos pattern “number
word” + “number word” can help to prevent seg-
menting a long number word into two words.

In order to avoid error propagation and make use
of posinformation for word segmentation, segmen-
tation andpostagging can be viewed as a single
task: given a raw Chinese input sentence, the joint
POS tagger considers all possible segmented and
tagged sequences, and chooses the overall best out-
put. A major challenge for such a joint system is
the large search space faced by the decoder. For a
sentence with characters, the number of possible
output sequences 9(2"~1 - T™), whereT is the
size of the tag set. Due to the nature of the com-
bined candidate items, decoding can be inefficient
even with dynamic programming.

Recent research on Chines®s tagging has

started to investigate joint segmentation and tagging,
reporting accuracy improvements over the pipeline

Since Chinese sentences do not contain explicitigpproach. Various decoding approaches have been
marked word boundaries, word segmentation is ased to reduce the combined search space. Ng and
necessary step befop@stagging can be performed. Low (2004) mapped the joint segmentation s
Typically, a Chineseostagger takes segmented in-tagging task into a single character sequence tagging
puts, which are produced by a separate word segroblem. Two types of tags are assigned to each
mentor. This two-step approach, however, has aharacter to represent its segmentationod For
obvious flaw of error propagation, since word segexample, the tag “INN” indicates a character at
mentation errors cannot be corrected byrlstag- the beginning of a noun. Using this methaths

ger. A better approach would be to utiliz®sin- features are allowed to interact with segmentation.
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Since tagging is restricted to characters, the searchlL | wordw
space is reduced ©0((47)"), and beam search de- 2 | word bigramw;w
coding is effective with a small beam size. How- 3 | single-character word
ever, the disadvantage of this model is the difficulty 4 | a word of lengthl with starting character
in incorporating whole word information inteos 5 | aword of lengthl with ending character
tagging. For example, the standard “wordP®s space-separated charactersndc,
tag” feature is not explicitly applicable. Shi and character bigram; c, in any word
Wang (2007) introducedos information to seg- the first / last characters / c2 of any word
mentation by reranking/N-best segmentation out- word w immediately before character
puts are passed to a separately-traireg tagger, 10 | character immediately before word
and the best output is selected using the overat: 11 | the starting characters andc, of two con-
segmentation probability score. In this system, the secutive words
decoding for word segmentation ames tagging 12 | the ending characters andc, of two con-
are still performed separately, and exact inference secutive words
for both is possible. However, the interaction be- 13 | a word of lengthl with previous wordw
tweenrosand segmentation is restricted by rerank- 14 | a word of length with next wordw
ing: posinformation is used to improve segmenta-
tion only for the N segmentor outputs.
In this paper, we propose a novel joint model
for Chinese word segmentation ames tagging, 2 The Baseline System
which does not limiting the interaction between
segmentation andos information in reducing the We built a two-stage baseline system, using the per-
combined search space. Instead, a novel multipR&ptron segmentation model from our previous work
beam search algorithm is used to do decoding effiZhang and Clark, 2007) and the perceptrarstag-
ciently. Candidate ranking is based on a discriminaging model from Collins (2002). We uggaseline
tive joint model, with features being extracted fromsystem to refer to the system which performs seg-
segmented words ambstags simultaneously. The mentation first, followed byostagging (using the
training is performed by a single generalized percesingle-best segmentatioraseline segmentor to re-
tron (Collins, 2002). In experiments with the Chi-fer to the segmentor from (Zhang and Clark, 2007)
nese Treebank data, the joint model gave an errthich performs segmentation only; arseline
reduction of14.6% in segmentation accuracy andPodagger to refer to the Collins tagger which per-
12.2% in the overall segmentation and tagging accuforms Postagging only (given segmentation). The
racy, compared to the traditional pipeline approacHeatures used by the baseline segmentor are shown in
In addition, the overall results are comparable to théable 1. The features used by thestagger, some
best systems in the literature, which exploit knowlof which are different to those from Collins (2002)
edge outside the training data, even though our syand are specific to Chinese, are shown in Table 2.
tem is fully data-driven. The word segmentation features are extracted
Different methods have been proposed to redudéom word bigrams, capturing word, word length
error propagation between pipelined tasks, both iand character information in the context. The word
general (Sutton et al., 2004; Daértll and Marcu, length features are normalized, with those more than
2005; Finkel et al., 2006) and for specific problemd5 being treated as5.
such as language modeling and utterance classifica-The POs tagging features are based on contex-
tion (Saraclar and Roark, 2005) and labeling antlial information from the tag trigram, as well as the
chunking (Shimizu and Haas, 2006). Though ouneighboring three-word window. To reduce overfit-
model is built specifically for Chinese word segmenting and increase the decoding speed, templgtes
tation androstagging, the idea of using the percep-6 and7 only include words with less thahcharac-
tron model to solve multiple tasks simultaneouslyers. Like the baseline segmentor, the baseline tag-
can be generalized to other tasks. ger also normalizes word length features.

6
7
8
9

Table 1: Feature templates for the baseline segmentor
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1 | tagt with word w 3 Joint Segmentation and Tagging M odel

2 | tag bigranyto . . : - :

3 | tag trigramt, ot In this section, we build a joint word segmentation

4 | tagt followed by worduw and postagging model that uses exactly the same

5 | word w followed by tag source of information as the baseline system, by ap-

6 | word w with tagt and previous character plying the feature templates from the baseline word

7 | word w with tagt and next character segmentor ane@ostagger. No extra knowledge is

8 | tagt on single-character word in charac- used by the joint model. However, because word
ter trigrame, wes segmentation andostagging are performed simul-

9 | tagt on a word starting with char taneouslyposinformation participates in word seg-

10 | tagt on a word ending with char mentation.

11 | tagt on a word containing char (not the 3.1 Formulation of thejoint model

starting or ending character)

12 | tag ¢t on a word starting with char, and
containing char

13 | tagt on a word ending with chaty and
containing char

14 | tagt on a word containing repeated clar

We formulate joint word segmentation ardstag-
ging as a single problem, which maps a raw Chi-
nese sentence to a segmentedrngtagged output.
Given an input sentence the outputF'(x) satisfies:

F(x) = argmax Scordy)

15 | tagt on a word starting with character cat- yE€GEN(z)
egoryg '
16 | tagt on a word ending with character cate- whereGEN(x) represents the set of possible outputs

Scoréy) is computed by a feature-based linear
model. Denoting the global feature vector for the
tagged sentencgwith ®(y), we have:

Scordy) = ®(y) -
Templated 5 and16 in Table 2 are inspired by the

CTBMorph feature templates in Tseng et al. (2005)vhere is the parameter vector in the model. Each
which gave the most accuracy improvement in theglement in gives a weight to its corresponding el-
experiments. Here the category of a character Rment in®(y), which is the count of a particular
the set of tags seen on the character during traifeature over the whole sentengeWe calculate the
ing. Other morphological features from Tseng et al& value by supervised learning, using the averaged
(2005) are not used because they require extra wegrceptron algorithm (Collins, 2002), given in Fig-

corpora besides the training data. ure 1.1
We take the union of feature templates from the

During training, the baselineos tagger stores paseline segmentor (Table 1) ards tagger (Ta-
special word-tag pairs intotag dictionary (Ratna- ple 2) as the feature templates for the joint system.
parkhi, 1996). Such information is used by the dea|| features are treated equally and processed to-
coder to prune unlikely tags. For each word occurgether according to the linear model, regardless of
ring more thanV times in the training data, the de-\whether they are from the baseline segmentor or tag-
coder can only assign a tag the word has been segér. |n fact, most features from the baselimes
with in the training data. This method led to im-tagger, when used in the joint model, represent seg-
provement in the decoding speed as well as the oUientation patterns as well. For example, the afore-

put accuracy for Englisrostagging (Ratnaparkhi, mentioned pattern “number word” ", which is
1996). Besides tags for frequent words, our bas

. L In order to provide a comparison for the perceptron algo-
line Postagger also uses the tag dictionary to StOrG hm we also triedsymStTUCt (Tsochantaridis et al., 2004) for

closed-set tags (Xia, 2000) — those associated orfl4rameter estimation, but this training method was prohibitively
with a limited number of Chinese words. slow.

Table 2: Feature templates for the basehastagger
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Inputs: training examples$z;, v;) Input: raw sentenceent — a list of characters

Initialization: setw = 0 Variables: candidate sentenééem — a list of
Algorithm: (word, tag) pairs;
fort=1.7T,i=1..N maximum word-length record
calculatez; = arg max, . GEN(;,) ®(y) - @ mazxlen for each tag;
if z; £ vy the agenda listgendas;
W=+ DP(y;) — P(2) the tag dictionaryagdict;
Outputs: @ start_index for current word;
end_index for current word
Figure 1: The perceptron learning algorithm Initialization: agendas[0] = [*"],

agendasli] =[] (i! = 0)
useful only for theros“number word” in the base- Algorithm:
line tagger, is also an effective indicator of the segfor end-index = 1to sent.length:

mentation of the two words (especiallyi*) in the ~ foreach tag:
joint model. for start_index =

max(1, end_index — mazlen[tag] + 1)
3.2 Thedecoding algorithm to end_index:
One of the main challenges for the joint segmenta- word = sent[start_index..end-index]
tion andPostagging system is the decoding algo- if (word, tag) consistent withtagdict:
rithm. The speed and accuracy of the decoder is for item € agendas|start_index — 1]:
important for the perceptron learning algorithm, but item; = item
the system faces a very large search space of com- item,.append(@ord,tag))
bined candidates. Given the linear model and feature agendaslend_index].insertftem,)
templates, exact inference is very hard even with dy2UtPuts: agendas|sent.length.bestitem
namic programming. Figure 2: The decoding algorithm for the joint word seg-

Experiments with the standard beam-search dgmentor andostagger
coder described in (Zhang and Clark, 2007) resulted
in low accuracy. This beam search algorithm pro-
cesses an input sentence incrementally. At eadije POStagger, candidates in the beam are tagged
stage, the incoming character is combined with exd@quences ending with the current word, which can
isting partial candidates in all possible ways to gen@e compared directly with each other. However, for
erate new partial candidates. An agenda is used #€ joint problem, candidates in the beam are seg-
control the search space, keeping only fBebest mented and tagged sequences up to the current char-
partial candidates ending with the current chara@cter, where the last word can be a complete word or
ter. The algorithm is simple and efficient, with a@ Partial word. A problem arises in whether to give
linear time complexity ofD(BTn), wheren is the POStags to incomplete words. If partial words are
size of input sentence, arl is the size of the tag given POsStags, it is likely that some partial words
set (" = 1 for pure word segmentation). It worked are ‘justified” as complete words by the curreuts
well for word segmentation alone (Zhang and Clarkinformation. On the other hand, if partial words are
2007), even with an agenda size as smalk,aand Ot givenpostag features, the correct segmentation
a simple beam search algorithm also works well fofor 10ng words can be lost during partial candidate
postagging (Ratnaparkhi, 1996). However, wherfomparison (since many short completed words with
applied to the joint model, it resulted in a reductiorPOStags are likely to be preferred to a long incom-
in segmentation accuracy (compared to the baselifete word with ncrostag features.

segmentor) even withs as large a3024. _
g ) g 2\We experimented with both assignirgsfeatures to par-

One possible cause of the popr performqnce of tQ%I words and omitting them; the latter method performed better
standard beam search method is the combined naty(g hoth performed significantly worse than the multiple beam

of the candidates in the search space. In the basearch method described below.
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Another possible cause is the exponential growtgives competent accuracy with a small agenda size
in the number of possible candidates with increasingf B = 16.
sentence size. The number increases fo(™) To further limit the search space, two optimiza-
for the baselineeostagger toO(2"~17™) for the tions are used. First, the maximum word length
joint system. As a result, for an incremental decodfor each tag is recorded and used by the decoder
ing algorithm, the number of possible candidates irnto prune unlikely candidates. Because the major-
creases exponentially with the current word or chaity of tags only apply to words with length or
acter index. In theeostagging problem, a new in- 2, this method has a strong effect. Development
coming word enlarges the number of possible carests showed that it improves the speed significantly,
didates by a factor of" (the size of the tag set). while having a very small negative influence on the
For the joint problem, however, the enlarging facaccuracy. Second, like the baselimestagger, the
tor becomeQT with each incoming character. Thetag dictionary is used for Chinese closed set tags and
speed of search space expansion is much faster, bl tags for frequent words. To words outside the tag
the number of candidates is still controlled by a sindictionary, the decoder still tries to assign every pos-
gle, fixed-size beam at any stage. If we assunmsble tag.
that the beam is not large enough for all the can- _ .
didates at at each stage, then, from the newly gef=> Onlinelearning
erated candidates, the baselimastagger can keep Apart from features, the decoder maintains other
1/T for the next processing stage, while the jointypes of information, including the tag dictionary,
model can keep only /27, and has to discard the the word frequency counts used when building the
rest. Therefore, even when the candidate compaeg dictionary, the maximum word lengths by tag,
ison standard is ignored, we can still see that thend the character categories. The above data can
chance for the overall best candidate to fall out obe collected by scanning the corpus before training
the beam is largely increased. Since the search spaatarts. However, in both the baseline tagger and the
growth is exponential, increasing the fixed beam sizeint Postagger, they are updated incrementally dur-
is not effective in solving the problem. ing the perceptron training process, consistent with

To solve the above problems, we developed a mubnline learning®
tiple beam search algorithm, which compares candi- The online updating of word frequencies, max-
dates only with complete tagged words, and enablésmum word lengths and character categories is
the size of the search space to scale with the inpatraightforward. For the online updating of the tag
size. The algorithm is shown in Figure 2. In thisdictionary, however, the decision for frequent words
decoder, an agenda is assigned to each characteniost be made dynamically because the word fre-
the input sentence, recording tiebest segmented quencies keep changing. This is done by caching
and tagged partial candidates ending with the chathe number of occurrences of the current most fre-
acter. The input sentence is still processed incremeguent word)M/, and taking all words currently above
tally. However, now when a character is processethe threshold\/ /5000 + 5 as frequent words>000
existing partial candidates ending with any previougs a rough figure to control the number of frequent
characters are available. Therefore, the decoder ewerds, set according to Zipf's law. The parameter
merates all possible tagged words ending with thgis used to force all tags to be enumerated before a
current character, and combines each word with theord is seen more thantimes.
partial candidates ending with its previous charac-
ter. All input characters are processed in the sanfe Related Work

way, and the final output is the best candidate in thlqg and Low (2004) and Shi and Wang (2007) were

final agenda. The time complexity of the algorithMyescribed in the Introduction. Both models reduced
is O(WT Bn), with W being the maximum word ————— _
We took this approach because we wanted the whole train-

size,T being the total number agfostags andh the . : )
ing process to be online. However, for comparison purposes,

number of characters in the input. It is also lineafye also tried precomputing the above information before train-
in the input size. Moreover, the decoding algorithning and the difference in performance was negligible.
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the large search space by imposing strong restric %9
tions on the form of search candidates. In particu
lar, Ng and Low (2004) used character-baseus o9t
tagging, which prevents some importards tag-
ging features such as wordrostag; Shi and Wang
(2007) used anV-best reranking approach, which
limits the influence oPostagging on segmentation
to the N-best list. In comparison, our joint model .. S
does not impose any hard limitations on the inter 1 2 3 4 5 6 7 8 9 10
action between segmentation amsinformation? Number of waining terations
;ﬁ;;icgggr'g ssepaeriﬁ ;lslgi(r:i?flﬁ:]/ed by using a nOVqéigure 3: The learning curve of the baseline segmentor
Nakagawa and Uchimoto (2007) proposed a hy o9
brid model for word segmentation amebstagging
using artHMM -based approach. Word information is 089 1
used to process known-words, and character info
mation is used for unknown words in a similar way § 088 1
to Ng and Low (2004). In comparison, our model i
handles character and word information simultane
ously in a single perceptron model.

0.9 4

F-score

0.87 4

0.86

. 12‘3‘4‘5‘6‘7‘8‘9‘10
5 EXperlmentS Number of training iterations
The Chinese Treebank{B) 4 is used for the exper-
iments. It is separated into two partsTe 3 (420K
characters in50K words /10364 sentences) is used
for the final 10-fold cross validation, and the rest
(240K characters inl50K words /4798 sentences)
is used as training and test data for development. 09 |
The standard F-scores are used to measure bo
the word segmentation accuracy and the overall se¢ %
mentation and tagging accuracy, where the overa
accuracy isT'F = 2pr/(p + r), with the precision
p being the percentage of correctly segmented an o4 |
tagged words in the decoder output, and the recall

Figure 4: The learning curve of the baseline tagger

0.92

0.86

F-score

——segmentation accuracy

being the percentage of gold-standard tagged worc ~ °% —o— overall accuracy

that are correctly identified by the decoder. For di- o N
rect comparison with Ng and Low (2004), thes 1t 2 3 4 5 & 7 8 9 10
tagging accuracy is also calculated by the percentac Number of training iterations

of correct tags on each character.

51 Development experiments Figure 5: The learning curves of the joint system

The learning curves of the baseline and joint models . _
are shown in Figure 3, Figure 4 and Figure 5, respegence of perceptron and decide the number of train-

tively. These curves are used to show the convel2d iterations for the test. It should be noticed that
the accuracies from Figure 4 and Figure 5 are not

_ _ _
_Apartfrom the beam search algorithm, we do Impose Some, 54 rahje hecause gold-standard segmentation is
minor limitations on the search space by methods such as the tag

dictionary, but these can be seen as optional pruning metho$€d as the input for the baseline tagger. Accord-
for optimization. ing to the figures, the number of training iterations
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93.50 87.33 89.8Y94.56 88.83 91.14
94.48 89.44 91.6195.30 90.51 92.41
93.58 88.41 90.9895.12 90.30 92.32
93.92 89.15 91.3594.79 90.33 92.45
10 | 96.31 91.58 93.0196.45 91.96 93.45
Av.|95.20 90.33 92.1¥95.90 91.34 93.02

Table 3: Error analysis for the joint model

Tag|Seg NN NR VvV AD JJ CD Baseline Joint
NN |[20.47 — 0.78 4.80 0.67 2.49 0.04 # |SF TF TA |SF TF TA
NR|5.95 3.61 — 0.19 0.04 0.07 O 1 [96.98 92.91 94.1497.21 93.46 94.66
VV |12.13 6.51 0.11 — 0.93 0.56 0.04 2 |97.16 93.20 94.3497.62 93.85 94.79
AD|3.24 030 0 0.71 - 0.33 0.22 3 |95.02 89.53 91.2895.94 90.86 92.38
JJ [3.09 0.93 0.15 0.26 0.26 — 0.04 4 |95.51 90.84 92.5595.92 91.60 93.31
CD|1.08 0.04 0 0 0070 - 5 195.49 90.91 92.5796.06 91.72 93.25

6

7

8

9

for the baseline segment@pstagger, and the joint
system are set t8, 6, and7, respectively for the re-
maining experiments.

There are many factors which can influence the Table 4: The accuracies ly-fold cross validation
accuracy of the joint model. Here we consider the ¢z _ segmentation F-score,
special character category features and the effect of 7 _ overall F-score,
the tag dictionary. The character category features T A —tagging accuracy by character.
(templated 5 and16 in Table 2) represent a Chinese
character by all the tags associated with the charac-
ter in the training data. They have been shown to inguent. These three types of errors significantly out-
prove the accuracy of a Chinesestagger (Tseng number the rest, together contributing92% of all
et al., 2005). In the joint model, these features alsthe errors. Moreover, the most commonly mistaken
represent segmentation information, since they cotags are NN and VV, while among the most frequent
cern the starting and ending characters of a worthgs in the corpus, PU, DEG and M had compara-
Development tests showed that the overall taggintively less errors. Lastly, segmentation errors con-
F-score of the joint model increased fr@&h54% to  tribute around half{1.47%) of all the errors.
84.93% using the character category features. In the
development test, the use of the tag dictionary imP.2 Test results

proves the decoding speed of the joint model, redugy)_fo|d cross validation is performed to test the ac-
ing the decoding time from16 seconds t@56 sec- curacy of the joint word segmentor ardstagger,
onds. The overall tagging accuracy also increaseghq to make comparisons with existing models in the
slightly, consistent with observations from the purieratyre. Following Ng and Low (2004), we parti-
Postagger. tion the sentences inTB 3, ordered by sentence ID,
The error analysis for the development test ifnto 10 groups evenly. In theth test, thenth group
shown in Table 3. Here an error is counted wheis used as the testing data.
a word in the standard output is not produced by the Table 4 shows the detailed results for the cross
decoder, due to incorrect segmentation or tag assigyalidation tests, each row representing one test. As
ment. Statistics about the six most frequently miscan be seen from the table, the joint model outper-
taken tags are shown in the table, where each roigrms the baseline system in each test.
presents the analysis of one tag from the standardTaple 5 shows the overall accuracies of the base-
output, and each column gives a wrongly assigngghe and joint systems, and compares them to the rel-
value. The column “Seg” represents segmentatiof;ant models in the literature. The accuracy of each
errors. Each figure in the table shows the percentaggodel is shown in a row, where “Ng” represents the
of the corresponding error from all the errors. models from Ng and Low (2004) and “Shi” repre-
It can be seen from the table that the NN-VV andents the models from Shi and Wang (2007). Each
VV-NN mistakes were the most commonly made byaccuracy measure is shown in a column, including
the decoder, while the NR-NN mistakes are also frehe segmentation F-scoré k'), the overall tagging
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Model SF |TF TA 6 Conclusion and Future Work
Baseline+ (Ng) | 95.1 | — 91.7
Joint+ (Ng) 95.2 | - 91.9
Baseline+* (Shi)| 95.85| 91.67 -
Joint+* (Shi) 96.05| 91.86 —

Baseline (ours) | 95.20| 90.33 92.17 stage system. |
Joint (ours) 95.90| 91.34 93.02 We used a single linear model for combined word

segmentation andostagging, and chose the gen-
Table 5: The comparison of overall accuraciesdbyfold  eralized perceptron algorithm for joint training. and

We proposed a joint Chinese word segmentation and
postagging model, which achieved a considerable
reduction in error rate compared to a baseline two-

cross validation usingTs beam search for efficient decoding. However, the
+ — knowledge about sepcial characters, application of beam search was far from trivial be-
* — knowledge from semantic net outsideB. cause of the size of the combined search space. Mo-

tivated by the question of what are the compara-
ble partial hypotheses in the space, we developed
a novel multiple beam search decoder which effec-
F-score {'F') and the tagging accuracy by charactergively explores the large search space. Similar tech-
(I'A). As can be seen from the table, our joint modehiques can potentially be applied to other problems
achieved the largest improvement over the baselingwolving joint inference irNLP.
reducing the segmentation error by.58% and the  Other choices are available for the decoding of
overall tagging error by2.18%. a joint linear model, such as exact inference with
The overall tagging accuracy of our joint modeldynamIC brogramming, prowded_that the range .Of
was comparable to but less than the joint model d‘]eatures allows eff|C|ent' processing. The baseline
ature templates for Chinese segmentationramsl

Shi and Wang (2007). Despite the higher accuraig . h dded togeth K ¢ in
improvement from the baseline, the joint system di gging, when added 1ogether, maxes exact infer-
nce for the proposed joint model very hard. How-

not give higher overall accuracy. One likely reasort h | ; the b decod

is that Shi and Wang (2007) included knowledggver’ € accuracy f0ss 1rom Ine beam decoder, as

about special characters and semantic knowled ell as alternative decoding algorithms, are worth
urther exploration.

f b hich lain the high .
rom web corpora (which may explain the highe The joint system takes features only from the

baseline accuracy), while our system is completelg i : d the baselmst ¢
data-driven. However, the comparison is indirect e aselineé segmentor and e base agger 1o

cause our partitions of theTs corpus are different. allow a fair comparison. There may be additional

Shi and Wang (2007) also chunked the sentences k{g_aturgs tha:ct a;e partlculzrly uksefull t(c)j the Jfomt s;b/s-
fore doing10-fold cross validation, but used an un- em. pen leatures, such as Knowiedge ot numboers
and European letters, and relationships from seman-

even split. We chose to follow Ng and Low (2004) .
and split the sentences evenly to facilitate furtheﬁlc networks (Shi and Wang, 2007), have bgen re-
. ported to improve the accuracy of segmentation and
comparison. : . oo
postagging. Therefore, given the flexibility of the

Compared with Ng and Low (2004), our baselindeature-based linear model, an obvious next step is

model gave slightly better accuracy, consistent witthe study of open features in the joint segmentor and

our previous observations about the word segmerostagger.

tors (Zhang and Clark, 2007). Due to the large ac-

curacy gain from the baseline, our joint model perAcknowledgements

formed much better. We thank Hwee-Tou Ng and Menggiu Wang for

In summary, when compared with existing jointthEil’ helpful discussions and sharing of experimen-
word segmentation anelostagging systems in the tal data, and the anonymous reviewers for their sug-
literature, our proposed model achieved the best agestions. This work is supported by the ORS and
curacy boost from the cascaded baseline, and cofglarendon Fund.
petent overall accuracy.
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