
Proceedings of ACL-08: HLT, pages 879–887,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Analyzing the Errors of Unsupervised Learning

Percy Liang Dan Klein
Computer Science Division, EECS Department

University of California at Berkeley
Berkeley, CA 94720

{pliang,klein}@cs.berkeley.edu

Abstract
We identify four types of errors that unsu-
pervised induction systems make and study
each one in turn. Our contributions include
(1) using a meta-model to analyze the incor-
rect biases of a model in a systematic way,
(2) providing an efficient and robust method
of measuring distance between two parameter
settings of a model, and (3) showing that lo-
cal optima issues which typically plague EM
can be somewhat alleviated by increasing the
number of training examples. We conduct
our analyses on three models: the HMM, the
PCFG, and a simple dependency model.

1 Introduction

The unsupervised induction of linguistic structure
from raw text is an important problem both for un-
derstanding language acquisition and for building
language processing systems such as parsers from
limited resources. Early work on inducing gram-
mars via EM encountered two serious obstacles: the
inappropriateness of the likelihood objective and the
tendency of EM to get stuck in local optima. With-
out additional constraints on bracketing (Pereira and
Shabes, 1992) or on allowable rewrite rules (Carroll
and Charniak, 1992), unsupervised grammar learn-
ing was ineffective.

Since then, there has been a large body of work
addressing the flaws of the EM-based approach.
Syntactic models empirically more learnable than
PCFGs have been developed (Clark, 2001; Klein
and Manning, 2004). Smith and Eisner (2005) pro-
posed a new objective function; Smith and Eis-
ner (2006) introduced a new training procedure.
Bayesian approaches can also improve performance
(Goldwater and Griffiths, 2007; Johnson, 2007;
Kurihara and Sato, 2006).

Though these methods have improved induction
accuracy, at the core they all still involve optimizing
non-convex objective functions related to the like-
lihood of some model, and thus are not completely
immune to the difficulties associated with early ap-
proaches. It is therefore important to better under-
stand the behavior of unsupervised induction sys-
tems in general.

In this paper, we take a step back and present
a more statistical view of unsupervised learning in
the context of grammar induction. We identify four
types of error that a system can make: approxima-
tion, identifiability, estimation, and optimization er-
rors (see Figure 1). We try to isolate each one in turn
and study its properties.

Approximation error is caused by a mis-match
between the likelihood objective optimized by EM
and the true relationship between sentences and their
syntactic structures. Our key idea for understand-
ing this mis-match is to “cheat” and initialize EM
with the true relationship and then study the ways
in which EM repurposes our desired syntactic struc-
tures to increase likelihood. We present a meta-
model of the changes that EM makes and show how
this tool can shed some light on the undesired biases
of the HMM, the PCFG, and the dependency model
with valence (Klein and Manning, 2004).

Identifiability error can be incurred when two dis-
tinct parameter settings yield the same probabil-
ity distribution over sentences. One type of non-
identifiability present in HMMs and PCFGs is label
symmetry, which even makes computing a mean-
ingful distance between parameters NP-hard. We
present a method to obtain lower and upper bounds
on such a distance.

Estimation error arises from having too few train-
ing examples, and optimization error stems from
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EM getting stuck in local optima. While it is to be
expected that estimation error should decrease as the
amount of data increases, we show that optimization
error can also decrease. We present striking experi-
ments showing that if our data actually comes from
the model family we are learning with, we can some-
times recover the true parameters by simply run-
ning EM without clever initialization. This result
runs counter to the conventional attitude that EM is
doomed to local optima; it suggests that increasing
the amount of data might be an effective way to par-
tially combat local optima.

2 Unsupervised models

Let x denote an input sentence and y denote the un-
observed desired output (e.g., a parse tree). We con-
sider a model family P = {pθ(x,y) : θ ∈ Θ}. For
example, if P is the set of all PCFGs, then the pa-
rameters θ would specify all the rule probabilities of
a particular grammar. We sometimes use θ and pθ
interchangeably to simplify notation. In this paper,
we analyze the following three model families:

In the HMM, the input x is a sequence of words
and the output y is the corresponding sequence of
part-of-speech tags.

In the PCFG, the input x is a sequence of POS
tags and the output y is a binary parse tree with yield
x. We represent y as a multiset of binary rewrites of
the form (y → y1 y2), where y is a nonterminal and
y1, y2 can be either nonterminals or terminals.

In the dependency model with valence (DMV)
(Klein and Manning, 2004), the input x =
(x1, . . . , xm) is a sequence of POS tags and the out-
put y specifies the directed links of a projective de-
pendency tree. The generative model is as follows:
for each head xi, we generate an independent se-
quence of arguments to the left and to the right from
a direction-dependent distribution over tags. At each
point, we stop with a probability parametrized by the
direction and whether any arguments have already
been generated in that direction. See Klein and Man-
ning (2004) for a formal description.

In all our experiments, we used the Wall Street
Journal (WSJ) portion of the Penn Treebank. We bi-
narized the PCFG trees and created gold dependency
trees according to the Collins head rules. We trained
45-state HMMs on all 49208 sentences, 11-state

PCFGs on WSJ-10 (7424 sentences) and DMVs
on WSJ-20 (25523 sentences) (Klein and Manning,
2004). We ran EM for 100 iterations with the pa-
rameters initialized uniformly (always plus a small
amount of random noise). We evaluated the HMM
and PCFG by mapping model states to Treebank
tags to maximize accuracy.

3 Decomposition of errors

Now we will describe the four types of errors (Fig-
ure 1) more formally. Let p∗(x,y) denote the distri-
bution which governs the true relationship between
the input x and output y. In general, p∗ does not
live in our model family P . We are presented with
a set of n unlabeled examples x(1), . . . ,x(n) drawn
i.i.d. from the true p∗. In unsupervised induction,
our goal is to approximate p∗ by some model pθ ∈ P
in terms of strong generative capacity. A standard
approach is to use the EM algorithm to optimize
the empirical likelihood Ê log pθ(x).1 However, EM
only finds a local maximum, which we denote θ̂EM,
so there is a discrepancy between what we get (pθ̂EM

)
and what we want (p∗).

We will define this discrepancy later, but for now,
it suffices to remark that the discrepancy depends
on the distribution over y whereas learning depends
only on the distribution over x. This is an important
property that distinguishes unsupervised induction
from more standard supervised learning or density
estimation scenarios.

Now let us walk through the four types of er-
ror bottom up. First, θ̂EM, the local maximum
found by EM, is in general different from θ̂ ∈
argmaxθ Ê log pθ(x), any global maximum, which
we could find given unlimited computational re-
sources. Optimization error refers to the discrep-
ancy between θ̂ and θ̂EM.

Second, our training data is only a noisy sam-
ple from the true p∗. If we had infinite data, we
would choose an optimal parameter setting under the
model, θ∗2 ∈ argmaxθ E log pθ(x), where now the
expectation E is taken with respect to the true p∗ in-
stead of the training data. The discrepancy between
θ∗2 and θ̂ is the estimation error.

Note that θ∗2 might not be unique. Let θ∗1 denote

1Here, the expectation Êf(x)
def
= 1

n

Pn
i=1 f(x(i)) denotes

averaging some function f over the training data.
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p∗ = true model

Approximation error (Section 4)

θ∗1 = Best(argmaxθ E log pθ(x))

Identifiability error (Section 5)

θ∗2 ∈ argmaxθ E log pθ(x)

Estimation error (Section 6)

θ̂ ∈ argmaxθ Ê log pθ(x)

Optimization error (Section 7)

θ̂EM
= EM(Ê log pθ(x))

P

Figure 1: The discrepancy between what we get (θ̂EM)
and what we want (p∗) can be decomposed into four types
of errors. The box represents our model family P , which
is the set of possible parametrized distributions we can
represent. Best(S) returns the θ ∈ S which has the small-
est discrepancy with p∗.

the maximizer of E log pθ(x) that has the smallest
discrepancy with p∗. Since θ∗1 and θ∗2 have the same
value under the objective function, we would not be
able to choose θ∗1 over θ∗2, even with infinite data or
unlimited computation. Identifiability error refers to
the discrepancy between θ∗1 and θ∗2.

Finally, the model family P has fundamental lim-
itations. Approximation error refers to the discrep-
ancy between p∗ and pθ∗1 . Note that θ∗1 is not nec-
essarily the best in P . If we had labeled data, we
could find a parameter setting in P which is closer
to p∗ by optimizing joint likelihood E log pθ(x,y)
(generative training) or even conditional likelihood
E log pθ(y | x) (discriminative training).

In the remaining sections, we try to study each of
the four errors in isolation. In practice, since it is
difficult to work with some of the parameter settings
that participate in the error decomposition, we use
computationally feasible surrogates so that the error
under study remains the dominant effect.

4 Approximation error

We start by analyzing approximation error, the dis-
crepancy between p∗ and pθ∗1 (the model found by
optimizing likelihood), a point which has been dis-
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Figure 2: For the PCFG, when we initialize EM with the
supervised estimate θ̂gen, the likelihood increases but the
accuracy decreases.

cussed by many authors (Merialdo, 1994; Smith and
Eisner, 2005; Haghighi and Klein, 2006).2

To confront the question of specifically how
the likelihood diverges from prediction accuracy,
we perform the following experiment: we ini-
tialize EM with the supervised estimate3 θ̂gen =
argmaxθ Ê log pθ(x,y), which acts as a surrogate
for p∗. As we run EM, the likelihood increases but
the accuracy decreases (Figure 2 shows this trend
for the PCFG; the HMM and DMV models behave
similarly). We believe that the initial iterations of
EM contain valuable information about the incor-
rect biases of these models. However, EM is chang-
ing hundreds of thousands of parameters at once in a
non-trivial way, so we need a way of characterizing
the important changes.

One broad observation we can make is that the
first iteration of EM reinforces the systematic mis-
takes of the supervised initializer. In the first E-step,
the posterior counts that are computed summarize
the predictions of the supervised system. If these
match the empirical counts, then the M-step does not
change the parameters. But if the supervised system
predicts too many JJs, for example, then the M-step
will update the parameters to reinforce this bias.

4.1 A meta-model for analyzing EM

We would like to go further and characterize the
specific changes EM makes. An initial approach is
to find the parameters that changed the most dur-
ing the first iteration (weighted by the correspond-

2Here, we think of discrepancy between p and p′ as the error
incurred when using p′ for prediction on examples generated
from p; in symbols, E(x,y)∼ploss(y, argmaxy′ p

′(y′ | x)).
3For all our models, the supervised estimate is solved in

closed form by taking ratios of counts.

881



ing expected counts computed in the E-step). For
the HMM, the three most changed parameters are
the transitions 2:DT→8:JJ, START→0:NNP, and
8:JJ→3:NN.4 If we delve deeper, we can see that
2:DT→3:NN (the parameter with the 10th largest
change) fell and 2:DT→8:JJ rose. After checking
with a few examples, we can then deduce that some
nouns were retagged as adjectives. Unfortunately,
this type of ad-hoc reasoning requires considerable
manual effort and is rather subjective.

Instead, we propose using a general meta-model
to analyze the changes EM makes in an automatic
and objective way. Instead of treating parameters as
the primary object of study, we look at predictions
made by the model and study how they change over
time. While a model is a distribution over sentences,
a meta-model is a distribution over how the predic-
tions of the model change.

Let R(y) denote the set of parts of a predic-
tion y that we are interested in tracking. Each part
(c, l) ∈ R(y) consists of a configuration c and a lo-
cation l. For a PCFG, we define a configuration to
be a rewrite rule (e.g., c = PP→IN NP), and a loca-
tion l = [i, k, j] to be a span [i, j] split at k, where
the rewrite c is applied.

In this work, each configuration is associated with
a parameter of the model, but in general, a configu-
ration could be a larger unit such as a subtree, allow-
ing one to track more complex changes. The size of
a configuration governs how much the meta-model
generalizes from individual examples.

Let y(i,t) denote the model prediction on the i-th
training example after t iterations of EM. To sim-
plify notation, we write Rt = R(y(i,t)). The meta-
model explains how Rt became Rt+1.5

In general, we expect a part in Rt+1 to be ex-
plained by a part in Rt that has a similar location
and furthermore, we expect the locations of the two
parts to be related in some consistent way. The meta-
model uses two notions to formalize this idea: a dis-
tance d(l, l′) and a relation r(l, l′). For the PCFG,
d(l, l′) is the number of positions among i,j,k that
are the same as the corresponding ones in l′, and
r((i, k, j), (i′, k′, j′)) = (sign(i − i′), sign(j −

4Here 2:DT means state 2 of the HMM, which was greedily
mapped to DT.

5If the same part appears in both Rt and Rt+1, we remove
it from both sets.

j′), sign(k − k′)) is one of 33 values. We define a
migration as a triple (c, c′, r(l, l′)); this is the unit of
change we want to extract from the meta-model.

Our meta-model provides the following genera-
tive story of how Rt becomes Rt+1: each new part
(c′, l′) ∈ Rt+1 chooses an old part (c, l) ∈ Rt with
some probability that depends on (1) the distance be-
tween the locations l and l′ and (2) the likelihood of
the particular migration. Formally:

pmeta(Rt+1 | Rt) =∏
(c′,l′)∈Rt+1

∑
(c,l)∈Rt

Z−1
l′ e

−αd(l,l′)p(c′ | c, r(l, l′)),

where Zl =
∑

(c,l)∈Rt
e−αd(l,l

′) is a normalization
constant, and α is a hyperparameter controlling the
possibility of distant migrations (set to 3 in our ex-
periments).

We learn the parameters of the meta-model with
an EM algorithm similar to the one for IBM model
1. Fortunately, the likelihood objective is convex, so
we need not worry about local optima.

4.2 Results of the meta-model
We used our meta-model to analyze the approxima-
tion errors of the HMM, DMV, and PCFG. For these
models, we initialized EM with the supervised es-
timate θ̂gen and collected the model predictions as
EM ran. We then trained the meta-model on the pre-
dictions between successive iterations. The meta-
model gives us an expected count for each migra-
tion. Figure 3 lists the migrations with the highest
expected counts.

From these migrations, we can see that EM tries
to explain x better by making the corresponding y
more regular. In fact, many of the HMM migra-
tions on the first iteration attempt to resolve incon-
sistencies in gold tags. For example, noun adjuncts
(e.g., stock-index), tagged as both nouns and adjec-
tives in the Treebank, tend to become consolidated
under adjectives, as captured by migration (B). EM
also re-purposes under-utilized states to better cap-
ture distributional similarities. For example, state 24
has migrated to state 40 (N), both of which are now
dominated by proper nouns. State 40 initially con-
tained only #, but was quickly overrun with distribu-
tionally similar proper nouns such as Oct. and Chap-
ter, which also precede numbers, just as # does.
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Iteration 0→1

(A) START 4:NN
24:NNP

(B) 4:NN
8:JJ 4:NN

(C) 24:NNP 24:NNP
36:NNPS

Iteration 1→2

(D) 4:NN
8:JJ 4:NN

(E) START 4:NN
24:NNP

(F) 8:JJ
11:RB 27:TO

Iteration 2→3

(G) 24:NNP
8:JJ U.S.

(H) 24:NNP
8:JJ 4:NN

(I) 3:DT 24:NNP
8:JJ

Iteration 3→4

(J) 11:RB
32:RP up

(K) 24:NNP
8:JJ U.S.

(L) 19:, 11:RB
32:RP

Iteration 4→5

(M)
24:NNP
34:$

15:CD

(N) 2:IN 24:NNP
40:NNP

(O) 11:RB
32:RP down

(a) Top HMM migrations. Example: migration (D) means a NN→NN transition is replaced by JJ→NN.

Iteration 0→1 Iteration 1→2 Iteration 2→3 Iteration 3→4 Iteration 4→5

(A) DT NN NN (D) NNP NNP NNP (G) DT JJ NNS (J) DT JJ NN (M) POS JJ NN

(B) JJ NN NN (E) NNP NNP NNP (H) MD RB VB (K) DT NNP NN (N) NNS RB VBP

(C) NNP NNP (F) DT NNP NNP (I) VBP RB VB (L) PRP$ JJ NN (O) NNS RB VBD

(b) Top DMV migrations. Example: migration (A) means a DT attaches to the closer NN.

Iteration 0→1 Iteration 1→2 Iteration 2→3 Iteration 3→4 Iteration 4→5

(A)
RB 1:VP

4:S

RB 1:VP
1:VP

(D)
NNP 0:NP

0:NP

NNP NNP
0:NP

(G)
DT 0:NP

0:NP

DT NN
0:NP

(J)
TO VB

1:VP

TO VB
2:PP

(M)
CD NN

0:NP

CD NN
3:ADJP

(B)
0:NP 2:PP

0:NP

1:VP 2:PP
1:VP

(E)
VBN 2:PP

1:VP

1:VP 2:PP
1:VP

(H)
0:NP 1:VP

4:S

0:NP 1:VP
4:S

(K)
MD 1:VP

1:VP

MD VB
1:VP

(N)
VBD 0:NP

1:VP

VBD 3:ADJP
1:VP

(C)
VBZ 0:NP

1:VP

VBZ 0:NP
1:VP

(F)
0:NP 1:VP

4:S

0:NP 1:VP
4:S

(I)
TO VB

1:VP

TO VB
2:PP

(L)
NNP NNP

0:NP

NNP NNP
6:NP

(O)
0:NP NN

0:NP

0:NP NN
0:NP

(c) Top PCFG migrations. Example: migration (D) means a NP→NNPNP rewrite is replaced by NP→NNPNNP,
where the new NNP right child spans less than the old NP right child.

Figure 3: We show the prominent migrations that occur during the first 5 iterations of EM for the HMM, DMV, and
PCFG, as recovered by our meta-model. We sort the migrations across each iteration by their expected counts under
the meta-model and show the top 3. Iteration 0 corresponds to the correct outputs. Blue indicates the new iteration,
red indicates the old.

DMV migrations also try to regularize model pre-
dictions, but in a different way—in terms of the
number of arguments. Because the stop probability
is different for adjacent and non-adjacent arguments,
it is statistically much cheaper to generate one argu-
ment rather than two or more. For example, if we
train a DMV on only DT JJ NN, it can fit the data
perfectly by using a chain of single arguments, but
perfect fit is not possible if NN generates both DT
and JJ (which is the desired structure); this explains
migration (J). Indeed, we observed that the variance
of the number of arguments decreases with more EM
iterations (for NN, from 1.38 to 0.41).

In general, low-entropy conditional distributions
are preferred. Migration (H) explains how adverbs
now consistently attach to verbs rather than modals.
After a few iterations, the modal has committed
itself to generating exactly one verb to the right,

which is statistically advantageous because there
must be a verb after a modal, while the adverb is op-
tional. This leaves the verb to generate the adverb.

The PCFG migrations regularize categories in a
manner similar to the HMM, but with the added
complexity of changing bracketing structures. For
example, sentential adverbs are re-analyzed as VP
adverbs (A). Sometimes, multiple migrations ex-
plain the same phenomenon.6 For example, migra-
tions (B) and (C) indicate that PPs that previously
attached to NPs are now raised to the verbal level.
Tree rotation is another common phenomenon, lead-
ing to many left-branching structures (D,G,H). The
migrations that happen during one iteration can also
trigger additional migrations in the next. For exam-
ple, the raising of the PP (B,C) inspires more of the

6We could consolidate these migrations by using larger con-
figurations, but at the risk of decreased generalization.
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same raising (E). As another example, migration (I)
regularizes TO VB infinitival clauses into PPs, and
this momentum carries over to the next iteration with
even greater force (J).

In summary, the meta-model facilitates our anal-
yses by automatically identifying the broad trends.
We believe that the central idea of modeling the er-
rors of a system is a powerful one which can be used
to analyze a wide range of models, both supervised
and unsupervised.

5 Identifiability error

While approximation error is incurred when likeli-
hood diverges from accuracy, identifiability error is
concerned with the case where likelihood is indiffer-
ent to accuracy.

We say a set of parameters S is identifiable (in
terms of x) if pθ(x) 6= pθ′(x) for every θ, θ′ ∈ S
where θ 6= θ′.7 In general, identifiability error is
incurred when the set of maximizers of E log pθ(x)
is non-identifiable.8

Label symmetry is perhaps the most familiar ex-
ample of non-identifiability and is intrinsic to mod-
els with hidden labels (HMM and PCFG, but not
DMV). We can permute the hidden labels without
changing the objective function or even the nature
of the solution, so there is no reason to prefer one
permutation over another. While seemingly benign,
this symmetry actually presents a serious challenge
in measuring discrepancy (Section 5.1).

Grenager et al. (2005) augments an HMM to al-
low emission from a generic stopword distribution at
any position with probability q. Their model would
definitely not be identifiable if q were a free param-
eter, since we can set q to 0 and just mix in the stop-
word distribution with each of the other emission
distributions to obtain a different parameter setting
yielding the same overall distribution. This is a case
where our notion of desired structure is absent in the
likelihood, and a prior over parameters could help
break ties.

7For our three model families, θ is identifiable in terms of
(x,y), but not in terms of x alone.

8We emphasize that non-identifiability is in terms of x, so
two parameter settings could still induce the same marginal dis-
tribution on x (weak generative capacity) while having different
joint distributions on (x,y) (strong generative capacity). Recall
that discrepancy depends on the latter.

The above non-identifiabilities apply to all param-
eter settings, but another type of non-identifiability
concerns only the maximizers of E log pθ(x). Sup-
pose the true data comes from a K-state HMM. If
we attempt to fit an HMM with K + 1 states, we
can split any one of the K states and maintain the
same distribution on x. Or, if we learn a PCFG on
the same HMM data, then we can choose either the
left- or right-branching chain structures, which both
mimic the true HMM equally well.

5.1 Permutation-invariant distance

KL-divergence is a natural measure of discrepancy
between two distributions, but it is somewhat non-
trivial to compute—for our three recursive models, it
requires solving fixed point equations, and becomes
completely intractable in face of label symmetry.
Thus we propose a more manageable alternative:

dµ(θ || θ′) def=

∑
j µj |θj − θ′j |∑

j µj
, (1)

where we weight the difference between the j-th
component of the parameter vectors by µj , the j-
th expected sufficient statistic with respect to pθ
(the expected counts computed in the E-step).9 Un-
like KL, our distance dµ is only defined on distri-
butions in the model family and is not invariant to
reparametrization. Like KL, dµ is asymmetric, with
the first argument holding the status of being the
“true” parameter setting. In our case, the parameters
are conditional probabilities, so 0 ≤ dµ(θ || θ′) ≤ 1,
so we can interpret dµ as an expected difference be-
tween these probabilities.

Unfortunately, label symmetry can wreak havoc
on our distance measure dµ. Suppose we want to
measure the distance between θ and θ′. If θ′ is
simply θ with the labels permuted, then dµ(θ || θ′)
would be substantial even though the distance ought
to be zero. We define a revised distance to correct
for this by taking the minimum distance over all la-
bel permutations:

Dµ(θ || θ′) = min
π

dµ(θ ||π(θ′)), (2)

9Without this factor, rarely used components could con-
tribute to the sum as much as frequently used ones, thus, making
the distance overly pessimistic.
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where π(θ′) denotes the parameter setting result-
ing from permuting the labels according to π. (The
DMV has no label symmetries, so just dµ works.)

For mixture models, we can compute Dµ(θ || θ′)
efficiently as follows. Note that each term in the
summation of (1) is associated with one of the K
labels. We can form aK×K matrixM , where each
entry Mij is the distance between the parameters in-
volving label i of θ and label j of θ′. Dµ(θ || θ′) can
then be computed by finding a maximum weighted
bipartite matching on M using the O(K3) Hungar-
ian algorithm (Kuhn, 1955).

For models such as the HMM and PCFG, com-
putingDµ is NP-hard, since the summation in dµ (1)
contains both first-order terms which depend on one
label (e.g., emission parameters) and higher-order
terms which depend on more than one label (e.g.,
transitions or rewrites). We cannot capture these
problematic higher-order dependencies in M .

However, we can bound Dµ(θ || θ′) as follows.
We create M using only first-order terms and find
the best matching (permutation) to obtain a lower
bound Dµ and an associated permutation π0 achiev-
ing it. Since Dµ(θ || θ′) takes the minimum over all
permutations, dµ(θ ||π(θ′)) is an upper bound for
any π, in particular for π = π0. We then use a local
search procedure that changes π to further tighten
the upper bound. Let Dµ denote the final value.

6 Estimation error

Thus far, we have considered approximation and
identifiability errors, which have to do with flaws of
the model. The remaining errors have to do with
how well we can fit the model. To focus on these
errors, we consider the case where the true model is
in our family (p∗ ∈ P). To keep the setting as real-
istic as possible, we do supervised learning on real
labeled data to obtain θ∗ = argmaxθ Ê log p(x,y).
We then throw away our real data and let p∗ = pθ∗ .
Now we start anew: sample new artificial data from
θ∗, learn a model using this artificial data, and see
how close we get to recovering θ∗.

In order to compute estimation error, we need to
compare θ∗ with θ̂, the global maximizer of the like-
lihood on our generated data. However, we cannot
compute θ̂ exactly. Let us therefore first consider the
simpler supervised scenario. Here, θ̂gen has a closed

form solution, so there is no optimization error. Us-
ing our distanceDµ (defined in Section 5.1) to quan-
tify estimation error, we see that, for the HMM, θ̂gen
quickly approaches θ∗ as we increase the amount of
data (Table 1).

# examples 500 5K 50K 500K

Dµ(θ∗ || θ̂gen) 0.003 6.3e-4 2.7e-4 8.5e-5
Dµ(θ∗ || θ̂gen) 0.005 0.001 5.2e-4 1.7e-4
Dµ(θ∗ || θ̂gen-EM) 0.022 0.018 0.008 0.002
Dµ(θ∗ || θ̂gen-EM) 0.049 0.039 0.016 0.004

Table 1: Lower and upper bounds on the distance from
the true θ∗ for the HMM as we increase the number of
examples.

In the unsupervised case, we use the following
procedure to obtain a surrogate for θ̂: initialize EM
with the supervised estimate θ̂gen and run EM for
100 iterations. Let θ̂gen-EM denote the final param-
eters, which should be representative of θ̂. Table 1
shows that the estimation error of θ̂gen-EM is an order
of magnitude higher than that of θ̂gen, which is to ex-
pected since θ̂gen-EM does not have access to labeled
data. However, this error can also be driven down
given a moderate number of examples.

7 Optimization error

Finally, we study optimization error, which is the
discrepancy between the global maximizer θ̂ and
θ̂EM, the result of running EM starting from a uni-
form initialization (plus some small noise). As be-
fore, we cannot compute θ̂, so we use θ̂gen-EM as a
surrogate. Also, instead of comparing θ̂gen-EM and θ̂
with each other, we compare each of their discrep-
ancies with respect to θ∗.

Let us first consider optimization error in terms
of prediction error. The first observation is that
there is a gap between the prediction accuracies
of θ̂gen-EM and θ̂EM, but this gap shrinks consider-
ably as we increase the number of examples. Fig-
ures 4(a,b,c) support this for all three model fami-
lies: for the HMM, both θ̂gen-EM and θ̂EM eventually
achieve around 90% accuracy; for the DMV, 85%.
For the PCFG, θ̂EM still lags θ̂gen-EM by 10%, but we
believe that more data can further reduce this gap.

Figure 4(d) shows that these trends are not par-
ticular to artificial data. On real WSJ data, the gap
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Figure 4: Compares the performance of θ̂EM (EM with a uniform initialization) against θ̂gen-EM (EM initialized with the
supervised estimate) on (a–c) various models, (d) real data. (e) measures distance instead of accuracy and (f) shows a
sample EM run.

between θ̂gen-EM and θ̂EM also diminishes for the
HMM. To reaffirm the trends, we also measure dis-
tance Dµ. Figure 4(e) shows that the distance from
θ̂EM to the true parameters θ∗ decreases, but the gap
between θ̂gen-EM and θ̂EM does not close as deci-
sively as it did for prediction error.

It is quite surprising that by simply running EM
with a neutral initialization, we can accurately learn
a complex model with thousands of parameters. Fig-
ures 4(f,g) show how both likelihood and accuracy,
which both start quite low, improve substantially
over time for the HMM on artificial data.

Carroll and Charniak (1992) report that EM fared
poorly with local optima. We do not claim that there
are no local optima, but only that the likelihood sur-
face that EM is optimizing can become smoother
with more examples. With more examples, there is
less noise in the aggregate statistics, so it might be
easier for EM to pick out the salient patterns.

Srebro et al. (2006) made a similar observation
in the context of learning Gaussian mixtures. They
characterized three regimes: one where EM was suc-
cessful in recovering the true clusters (given lots of
data), another where EM failed but the global opti-
mum was successful, and the last where both failed
(without much data).

There is also a rich body of theoretical work on

learning latent-variable models. Specialized algo-
rithms can provably learn certain constrained dis-
crete hidden-variable models, some in terms of weak
generative capacity (Ron et al., 1998; Clark and
Thollard, 2005; Adriaans, 1999), others in term of
strong generative capacity (Dasgupta, 1999; Feld-
man et al., 2005). But with the exception of Das-
gupta and Schulman (2007), there is little theoretical
understanding of EM, let alone on complex model
families such as the HMM, PCFG, and DMV.

8 Conclusion

In recent years, many methods have improved unsu-
pervised induction, but these methods must still deal
with the four types of errors we have identified in
this paper. One of our main contributions of this pa-
per is the idea of using the meta-model to diagnose
the approximation error. Using this tool, we can bet-
ter understand model biases and hopefully correct
for them. We also introduced a method for mea-
suring distances in face of label symmetry and ran
experiments exploring the effectiveness of EM as a
function of the amount of data. Finally, we hope that
setting up the general framework to understand the
errors of unsupervised induction systems will aid the
development of better methods and further analyses.
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