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Abstract Consequently, with an increasing coverage of a
_ _ _ wide variety of domains in human language tech-
We extend the classical single-task active nology (HLT) systems, we can expect a growing

',ear?ing (AL) apTFXEaCh' '3_ the m“'ti'tl""Sk ac- need for manual annotations to support many kinds
tive learning ( ) para igm, we select ex- of application-specific training data.

amples for several annotation tasks rather than i )
for a single one as usually done in the con- Creating annotated data is extremely labor-

text of AL. We introduce two MTAL meta- intensive. The Active Learning (AL) paradigm
protocols, alternating selection and rank com-  (Cohn et al., 1996) offers a promising solution to
bination, and propose a method to implement  deal with this bottleneck, by allowing the learning
them in practice. We experiment with a two-  z|gorithm to control the selection of examples to
task annotation scenario that includes named oy 51ly annotated such that the human label-

entity and syntactic parse tree annotations on . S
three different corpora. MTAL outperforms ing effort be minimized. AL has been successfully

random selection and a stronger baseline, one- ~ @Pplied already for a wide range of NLP tasks, in-
sided example selection, in which one task is ~ cluding POS tagging (Engelson and Dagan, 1996),
pursued using AL and the selected examples  chunking (Ngai and Yarowsky, 2000), statistical

are provided also to the other task. parsing (Hwa, 2004), and named entity recognition
(Tomanek et al., 2007).
1 Introduction However, AL is designed in such a way that it se-

lects examples for manual annotation with respect to
Supervised machine learning methods have succegssinglelearning algorithm or classifier. Under this
fully been applied to many NLP tasks in the last fewaL annotation policy, one has to perform a separate
decades. These techniques have demonstrated thgihotation cycle for each classifier to be trained. In
superiority over both hand-crafted rules and unsue following, we will refer to the annotations sup-
pervised learning approaches. However, they rejied for a classifier as the annotations for a single
quire large amounts of labeled training data for evergnnotation task
level of linguistic processing (e.g., POS tags, parse \jodern HLT systems often utilize annotations re-

trees, or named entities). When, when domaing,ing from different tasks. For example, a machine
and text genres change (e.g., moving from COmmMORz, nsation system might use features extracted from
sense newspapers to scientific biology journal artha e trees and named entity annotations. For such
cles), extensive retraining on newly supplied traing, application, we obviously need the different an-
ing material is often required, since different doy,gations to reside in the same text corpus. It is not

mains may use different syntactic structures as Wellear how to apply the single-task AL approach here,
as different semantic classes (entities and relationgqe 4 training example that is beneficial for one

* Both authors contributed equally to this work. task might not be so for others. We could annotate
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the same corpus independently by the two tasks améspect to the minimization of annotation efforts.
merge the resulting annotations, but that (as we showIn a proof-of-concept scenario, we focus on two
in this paper) would possibly yield sub-optimal us-ighly dissimilar tasks, syntactic parsing and named
age of human annotation efforts. entity recognition, study the effects of multi-task AL

There are two reasons why multi-task AL, andunder rather extreme conditions. We propose two
by this, a combined corpus annotated for variouMTAL meta-protocols and a method to implement
tasks, could be of immediate benefit. First, annotahem for these tasks. We run experiments on three
tors working onsimilar annotation tasks (e.g., con-corpora for domains and genres that are very differ-
sidering named entities and relations between then®nt (WSJ: newspapers, Brown: mixed genres, and
might exploit annotation data from one subtask foGENIA: biomedical abstracts). Our protocols out-
the benefit of the other. If for each subtask a sepgerform two baselines (random and a stronger one-
rate corpus is sampled by means of AL, annotatorsded selection baseline).
will definitely lack synergy effects and, therefore, In Section 2 we introduce our MTAL framework
annotation will be more laborious and is likely toand present two MTAL protocols. In Section 3 we
suffer in terms of quality and accuracy. Second, fofliscuss the evaluation of these protocols. Section
dissimilar annotation tasks — take, e.g., a compre4 describes the experimental setup, and results are
hensive HLT pipeline incorporating morphological,presented in Section 5. We discuss related work in
syntactic and semantic data — a classifier might resection 6. Finally, we point to open research issues
quire features as input which constitute the outpubr this new approach in Section 7.
of another preceding classifier. As a consequence,
training such a classifier which takes into accour® A Framework for Multi-Task AL
several annotation tasks will best be performed on _ _ _
a rich corpus annotated with respect to all inputl? this section we introduce a sample selection
relevant tasks. Both kinds of annotation tasks, simffamework that aims at reducing the human anno-
lar and dissimilar ones, constitute examples of whagtion effortin a multiple annotation scenario.
we refer to agnulti-taskannotation problems. I

Indeed, there have been efforts in creating re2-'l Task Definition
sources annotated with respect to various annotatidi® measure the efficiency of selection methods, we
tasks though each of them was carried out indepedefine thetraining quality 7') of annotated mate-
dently of the other. In the general language UPenal S as the performanceyielded with a reference
annotation efforts for the WSJ sections of the PenlearnerX trained on that materiall'Q(X, S) = p.
Treebank (Marcus et al., 1993), sentences are anndselection method can be considered better than an-
tated with POS tags, parse trees, as well as discouiaer one if a higher TQ is yielded with the same
annotation from the Penn Discourse Treebank (Miltamount of examples being annotated.
sakaki et al., 2008), while verbs and verb arguments Our framework is an extension of the Active
are annotated with Propbank rolesets (Palmer et alLearning (AL) framework (Cohn et al., 1996)). The
2005). In the biomedical GENIA corpus (Ohta etoriginal AL framework is based on querying in an it-
al., 2002), scientific text is annotated with POS tag®rative manner those examples to be manually anno-
parse trees, and named entities. tated that are most useful for the learner at hand. The

In this paper, we introducenulti-task active TQ of an annotated corpus selected by means of AL
learning (MTAL), an active learning paradigm for is much higher than random selection. This AL ap-
multiple annotation tasks. We propose a new Alproach can be consideredsingle-task Albecause
framework where the examples to be annotated aitfocuses on a single learner for which the examples
selected so that they are as informative as possibédee to be selected. In a multiple annotation scenario,
for a setof classifiers instead of a single classifiehowever, there are several annotation tasks to be ac-
only. This enables the creation of a single combinedomplished at once and for each task typically a sep-
corpus annotated with respect to various annotati@arate statistical model will then be trained. Thus, the
tasks, while preserving the advantages of AL witlgoal ofmulti-task ALis to query those examples for
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human annotation that are most informative &tir 1. better than the TQ of random selection,
learners involved.

2. and better than the TQ of any extrinsic selec-
2.2 One-Sided Selection vs. Multi-Task AL tion.

The naive approach to select examples in a multiple

annotation scenario would be to perform a single- In the following, we introduce two protocols for
task AL selection, i.e., the examples to be annotatéulti-task AL. Multi-task AL protocols can be con-
are selected with respect to one of the learners bnlysideredmeta-protocoldecause they basically spec-
In a multiple annotation scenario we call such an apfy how task-specific, single-task AL approaches can
proachone-sidedselection. It is anntrinsic selec- be combined into one selection decision. By this,
tion for the reference learner, and extrinsicselec- the protocols are independent of the underlying task-
tion for all the other learners also trained on the arpecific AL approaches.

notated material. Obviously, a corpus compiled wit
the help of one-sided selection will have a good T
for that learner for which the intrinsic selection has Thealternating selectioprotocol alternates one-
taken place. For all the other learners, however, weided AL selection. Iry; consecutive AL iterations,
have no guarantee that their TQ will not be inferiothe selection is performed as one-sided selection
than the TQ of a random selection process. with respect to learning algorithnY;. After that,

In scenarios where the different annotation task&nother learning algorithm is considered for selec-
are highly dissimilar we can expect extrinsic selection for s, consecutive iterations and so on. Depend-
tion to be rather poor. This intuition is demonstratedd on the specific scenario, this enables to weight
by experiments we conducted for named entity (NEtj’]e different annotation tasks by aIIOWing them to
and parse annotation tagk&igure 1). In this sce- guide the selection in more or less AL iterations.
nario, extrinsic selection for the NE annotation tasK his protocol is a straight-forward compromise be-
means that examples where selected with respd¥teen the different single-task selection approaches.
to the parsing task. Extrinsic selection performed In this paper we experiment with the special case
about the same as random selection for the NE tagkf s; = 1, where in every AL iteration the selection
while for the parsing task extrinsic selection perleadership is changed. More sophisticated calibra-
formed markedly worse. This shows that exampleson of the parameters; is beyond the scope of this
that were very informative for the NE learner weregpaper and will be dealt with in future work.
not that informative for the parse learner.

.3.1 Alternating Selection

2.3.2 Rank Combination

2.3 Protocols for Multi-Task AL The rank combinationprotocol is more directly
Obviously, we can expect one-sided selection to pebased on the idea to combine single-task AL selec-
form better for the reference learner (the one folion decisions. In each AL iteration, the usefulness
which an intrinsic selection took place) than multi-Scoresx; (e) of each unlabeled exampiefrom the
task AL selection, because the latter would be Rool of examples is calculated with respect to each
compromise for all learners involved in the multi-learnerX; and then translated into a rami, (e)
ple annotation scenario. However, the goal of multiwhere higher usefulness means lower rank number
task AL is to minimize the annotation effort over all(€xamples with identical scores get the same rank
annotation tasks and not just the effort for a singl@umber). Then, for each example, we sum the rank
annotation task. numbers of each annotation task to get the overall
For a multi-task AL protocol to be valuable in arankr(e) = 3 %, rx;(e). All examples are sorted
specific multiple annotation scenario, the TQ for alPy this combined rank antlexamples with lowest

considered learners should be rank numbers are selected for manual annotation.
10f course, all selected examples would be annotated w.r.t. *As the number of ranks might differ between the single an-

all annotation tasks. notation tasks, we normalize them to the coarsest scale. Then
2See Section 4 for our experimental setup. we can sum up the ranks as explained above.
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Figure 1: Learning curves for random and extrinsic seleatioboth tasks: named entity annotation (left) and syrdacti
parse annotation (right), using tMéSJcorpus scenario

This protocol favors examples which are good fonumber of units being annotated (e.g., constituents
all learning algorithms. Examples that are highly infor parsing) and the task-specific weights are defined
formative for one task but rather uninformative forby «;. Given weights are properly defined, such a

another task will not be selected. score can be applied to directly compare different
] ] protocols and quantify their differences.
3 Evaluation of Multi-Task AL In practice, such task-specific weights might also

The notion of training quality (TQ) can be used tgbe considered in the MTAL protocols. In the alter-
quantify the effectiveness of a protocol, and by thishating selection protocol, the numbers of consecu-
annotation costs in a single-task AL scenario. To adive iterationss; each single task protocol can be
tually quantify the overall training quality in a multi- tuned according to the: parameters. As for the
ple annotation scenario one would have to sum ovégnk combination protocol, the weights can be con-
all the single task’s TQs. Of course, depending ofildered when calculating the overall rankie) =
the specific annotation task, one would not want ta_;—1; - 7’x;, (¢) where the parameters ... 3, re-
quantify the number of examples being annotatetect the values oty ... a, (though they need not
but different task-specific units of annotation. Whilenecessarily be the same).
for entity annotations one does typically count the N our experiments, we assumed the same weight
number of tokens being annotated, in the parsin@' all annotation schemata, thus simply setting-
scenario the number of constituents being annotatdd = 1. This was done for the sake of a clear
is a generally accepted measure. As, however, tif@mework presentation. Finding proper weights for
actual time needed for the annotation of one exanibe single tasks and tuning the protocols accordingly
ple usually differs for different annotation tasks, noriS @ subject for further research.
malizing exchange rates have to be specified whic
can then be used as weighting factors. In this papet,
we do not define such weighting factbrand leave 4.1 Scenario and Task-Specific Selection
this challenging question to be discussed in the con-  protocols
text of psycholinguistic research.

We could quantify the overall efficiency scofe
of a MTAL protocol P by

Experiments

The tasks in our scenario comprise one semantic
task (annotation with named entities (NE)) and one
syntactic task (annotation with PCFG parse trees).
n The tasks are highly dissimilar, thus increasing the

E(P) = Z aj - TQ(Xj, uj) potential value of MTAL. Both tasks are subject to

=1 intensive research by the NLP community.

where u; denotes the individual annotation task's The MTAL protocols proposed are meta-

" 4Such weighting factors not only depend on the annotatiogrotocols that combine the selection decisions of

level or task but also on the domain, and especially on the cog€ underlying, task-specific AL protocols. In
nitive load of the annotation task. our scenario, the task-specific AL protocols are
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committee-based (Freund et al., 1997) selectioand has a rich feature set including orthographical,
protocols. In committee-based AL, a committedexical, morphological, POS, and contextual fea-
consists ofk classifiers of the same type trainedures. For parsing, Dan Bikel's reimplementation of
on different subsets of the training d&ta.Each Collins’ parser is employed, using gold POS tags.
committee member then makes its predictions on In each AL iteration we seledi00 sentences for
the unlabeled examples, and those examples @manual annotatiof.We start with a randomly cho-
which the committee members disagree most asen seed set Af00 sentences. Within a corpus we
considered most informative for learning and ar@sed the same seed set in all selection scenarios. We
thus selected for manual annotation. In our scenargbmpare the following five selection scenarios: Ran-
the example grain-size is the sentence level. dom selection RS, which serves as our baseline;
For the NE task, we apply the AL approach ofone-sided AL selection for both tasks (callgi-AL
Tomanek et al. (2007). The committee consists aind PARSE-A); and multi-task AL selection with
k1 = 3 classifiers and the vote entropy (VE) (Engelthe alternating selection protocdal{er-MTAL) and
son and Dagan, 1996) is employed as disagreemehe rank combination protocolgnks-MTAL.
metric. It is calculated on the token-level as We performed our experiments on three dif-
1 Vst Vi) ferent corpora, _namely one from the newspaper
VE(t) = — Z v log ——2 (1) genre WSJ, a mixed-genre corpugfown), and a
logk =5k k biomedical corpusKio ). Our simulation corpora
contain both entity annotations and (constituent)
where% is the ratio ofk classifiers where the parse annotations. For each corpus we have a pool
label/; is assigned to a token The sentence level set (from which we select the examples for annota-
vote entropyl’ E.n.; is then the average over all to- tion) and an evaluation set (used for generating the
kenst; of sentence. learning curves). Th&/SJcorpus is based on the
For the parsing task, the disagreement score \§SJ part of the PNN TREEBANK (Marcus et al.,
based on a committee &5 = 10 instances of Dan 1993); we used the first 10,000 sentences of section
Bikel's reimplementation of Collins’ parser (Bickel, 2-21 as the pool set, and section 00 as evaluation set
2005; Collins, 1999). For each sentence in the ugq 921 sentences). THrown corpus is also based
labeled pool, the agreement between the committeg the respective part of theeERN TREEBANK. We
members was calculated using the function reportheated a sample consisting of 8 of any 10 consec-

by Reichart and Rappoport (2007): utive sentences in the corpus. This was done as
1 Brown contains text from various English text gen-
AF(s) = — Z fscore(m;,my;)  (2) res, and we did that to create a representative sample
i,l€[1...N],i#l of the corpus domains. We finally selected the first

h q h _ b 10,000 sentences from this sample as pool set. Every
W erekT(ik?_nl)ml a;]ret € cbommfltteg mepd?frs and9th from every 10 consecutive sentences package
N = 2 Is the number of pairs of different went into the evaluation set which consists of 2,424

committee members. This function calculates thgentences For botvSJandBrown only parse an-
agreement between the members of each pair by €3l -tions though no entity annotations were avail-

culating their relative f-score and then averages t le. Thus, we enriched both corpora with entity

pairs’ SCores. The disagreement of the committee Yhnotations (three entities: person, location, and or-
a sentence is simply — AF(s). ganization) by means of a tagger trained on the En-
4.2 Experimental settings glish data set of the CoNLL-2003 shared task (Tjong

- . Kim Sang and De Meulder, 2003)TheBio corpus
For the NE task we employed the classifier described

by Tomanek et al. (2007): The NE tagger is based on ®Manual annotation is simulated by just unveiling the anno-

Conditional Random Fields (Lafferty et al., 2001)tations already contained in our corpora.
"We employed a tagger similar to the one presented by Set-
*We randomly sampled = % of the training data to create tles (2004). Our tagger has a performance:84% f-score on
each committee member. the CoNLL-2003 data; inspection of the predicted entities on
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is based on the parsed section of the GENIA corpugearly outperforms MTAL. OrBrown, in general
(Ohta et al., 2002). We performed the same diviwe see the same results, with some minor differ-
sions as foBrown, resulting in 2,213 sentences inences. On the NE task, extrinsic selection (PARSE-
our pool set and 276 sentences for the evaluation séll.) performs better than random selection, but it is
This part of the GENIA corpus comes with entity an-still much worse than intrinsic AL or MTAL. Here,
notations. We have collapsed the entity classes aranks-MTAL significantly outperforms alter-MTAL
notated in GENIA (cell line, cell type, DNA, RNA, and almost performs as good as intrinsic selection.

protein) into a single, biological entity class. For the parser task, we see that extrinsic and ran-
dom selection are equally bad. Both MTAL proto-
5 Results cols perform equally well, again being quite similar

to the intrinsic selection. On the BIO corpuse ob-

In this sect_lon we present gnd d|scus§ our reSUI%served the same tendencies as in the other two cor-
when applying the five selection strategies (RS, N yora, i.e., MTAL clearly outperforms extrinsic and

AL, PARSE-AL, alter-MTAL, and ranks-MTAL) 10, o selection and supplies a better tradeoff be-

our scenario on the three_ corpora. we re”a'f‘ frorF{Neen annotation efforts of the task at hand than one-
calculating the overall efficiency score (Section 3£ided selection

here due to the lack of generally accepted weights . .
g y P g Overall, we can say that in all scenarios MTAL

for the considered annotation tasks. However, we )
. . erforms much better than random selection and ex-
require from a good selection protocol to exceed th

: .. _trinsic selection, and in most cases the performance
performance of random selection and extrinsic se-

lection. In addition, recall from Section 3 that WeOf MTA.L (especially bu_t npt _exclusw_ely, raqk;—
MTAL) is even close to intrinsic selection. This is

set the alternate selection and rank combination pa- =~ 7. : .
. promising evidence that MTAL selection can be a
rameters te; = 1, 5; = 1, respectively to reflect a

tradeoff between the annotation efforts of both talskst?.EttG.r choice thz_m one-sided se!ectl_on in multiple an-
. . . notation scenarios. Thus, considering all annotation
Figures 2 and 3 depict the learning curves fo

the NE tagger and the parser iSJand Brown . fasks in the selection process (even if the selection

. : ! ._protocol is as simple as the alternating selection pro-
respectively. Each figure shows the five selectloF P 9 P

. col) is better than selecting only with respect to
strategies. As expected, on both corpora and booRne task. Further, it should be noted that overall the

tasks intrinsic selection performs best, i.e., for th?nore sophisticated rank combination protocol does
NE tagger NE-AL and for the parser PARSE-AL. P P

. o N rform much r than the simpler alternatin
Further, random selection and extrinsic selectlonOt perto uch better than the simpler alternating

. selection protocol in all scenarios.
perform worst. Most importantly, both MTAL pro- Finall pF' 4 sh the di ¢
tocols clearly outperform extrinsic and random se: inally, Figure < shows the disagreement curves

or the two tasks on th&/SJcorpus. As has already

lection in all our experiments. This is in contras[{j ) :
to NE-AL which performs worse than random se- een discussed by Tomanek and Hahn (2008), dis-

lection for all corpora when used as extrinsic sele@9reem der;t curvgts c;}n be used asff;itzppmg crite-
tion, and for PARSE-AL that outperforms the ran- 0" 8nd to monitor the progress of AL-driven an-

dom baseline only foBrown when used as extrin- notation. This is especially valuable when no anno-

sic selection. That is, the MTAL protocols suggest ated validation set is available (which is needed for

tradeoff between the annotation efforts of the differ'-OIOttIng learning curves). We can see that the dis-

ent tasks, here. agreement curves significantly flatten approximately

ONWS bt orthe NE and he pse motaiof! 2 TS M 2 e e cuves e, 1
tasks, the performance of the MTAL protocols is ’ 9 9

very similar, though ranks-MTAL performs slightly only be.mtgresur.\g as a_stopplrlg crl.terlon but rather
uerds @ switching criterion, i.e., to identify when MTAL

better. For the parser task, up to 30,000 constltuenc%uld be turned into one-sided selection. This would

MTAL performs almost as good as does PARSE: '

AL. This is different for the NE task where NE-AL be the case if in an MTAL scenario, the disagree-

WSJandBrown revealed a good tagging performance. 8The plots for theBio are omitted due to space restrictions.
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Figure 3: Learning curves for parse task\WW$J(left) andBrown (right)

ment curve of one task has a slope of (close to) zerorder to improve the classification error rate for one
Future work will focus on issues related to this.  specific classification task. In contrast, the focus of

multi-task AL is on strategies to select training ma-
6 Related Work terial for multi classifier systems where all classifiers

There is a large body of work on single-task AL ap—Cover different classification tasks.

pro_aches for many NLP tas_,lfs Where_ the focus % Discussion
mainly on better, task-specific selection protocols
and methods to quantify the usefulness score in diQur treatment of MTAL within the context of the
ferent scenarios. As to the tasks involved in ouorthogonal two-task scenario leads to further inter-
scenario, several papers address AL for NER (Shessting research questions. First, future investiga-
et al., 2004; Hachey et al., 2005; Tomanek et altions will have to focus on the question whether
2007) and syntactic parsing (Tang et al., 2001; Hwahe positive results observed in our orthogonal (i.e.,
2004; Baldridge and Osborne, 2004; Becker and Ogighly dissimilar) two-task scenario will also hold
borne, 2005). Further, there is some work on que$er a more realistic (and maybe more complex) mul-
tions arising when AL is to be used in real-life anno+iple annotation scenario where tasks are more sim-
tation scenarios, including impaired inter-annotatoitar and more than two annotation tasks might be
agreement, stopping criteria for AL-driven annotainvolved. Furthermore, several forms witerde-
tion, and issues of reusability (Baldridge and Ospendenciesnay arise between the single annotation
borne, 2004; Hachey et al., 2005; Zhu and Hovytasks. As a first example, consider the (functional)
2007; Tomanek et al., 2007). interdependencies (i.e., task similarity) in higher-
Multi-task AL is methodologically related to ap- level semantic NLP tasks of relation or event recog-
proaches of decision combination, especially in thaition. In such a scenario, several tasks including
context of classifier combination (Ho et al., 1994)entity annotations and relation/event annotations, as
and ensemble methods (Breiman, 1996). Those agell as syntactic parse data, have to be incorporated
proaches focus on the combination of classifiers iat the same time. Another type of (data flow) inter-
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dependency occurs in a second scenario where nteelp of AL is reusable by modified though similar
terial for several classifiers that are data-dependediassifiers (e.g., with respect to the features being
on each other — one takes the output of another classed) — compared to the classifiers employed for the
sifier as input features — has to be efficiently anncselection procedure.

tated. Whether the proposed protocols are beneficial The issue of reusability has already been raised
in the context of such highly interdependent tasks isut not yet conclusively answered in the context of
an open issue. Even more challenging is the idesingle-task AL (see Section 6). Evidence was found
to provide methodologies helping to predict in arthat reusability up to a certain, though not well-
arbitrary application scenario whether the choice ddpecified, level is possible. Of course, reusability
MTAL is truly advantageous. has to be analyzed separately in the context of var-
lpus MTAL scenarios. We feel that these scenarios
quantify the overalannotation costin multiple an- Might both be more challenging and more relevant
notation scenarios. Exchange rates are inherenty the reusability issue than the single-task AL sce-
tied to the specific task and domain. In practice, ongari0, since resources annotated with multiple lay-
might just want to measure the time needed for thg"S ¢&n be used to the design of a larger number of &
annotations. However, in a simulation scenario, §0SSibly more complex) learning algorithms.

common m_etrlc is necessary to compare 'the perfog— Conclusions

mance of different selection strategies with respect

to the overall annotation costs. This requires studA/e proposed an extension to the single-task AL ap-

ies on how to quantify, with a comparable cost funcproach such that it can be used to select examples for

tion, the efforts needed for the annotation of a textuannotation with respect to several annotation tasks.

unit of choice (e.g., tokens, sentences) with respetb the best of our knowledge this is the first paper on

to different annotation tasks. this issue, with a focus on NLP tasks. We outlined
Finally, the question ofeusability of the anno- & problem definition and described a framework for

tated material is an important issue. Reusability if?ulti-task AL. We presented and tested two proto-
the context of AL means to which degree corporg®!S for multi-task AL. Our results are promising as
assembled with the help of any AL technique can bE'€Y give evidence that in a multiple annotation sce-
(re)used as a general resource, i.e., whether they &0, multi-task AL outperforms naive one-sided
well suited for the training of classifiers other tharf?"d random selection.

the ones gsed du.ring the select.ion process.Thi_s ,Ecknowledgments
especially interesting as the details of the classifiers
that should be trained in a later stage are typicallyhe work of the second author was funded by the
not known at the resource building time. Thus, w&erman Ministry of Education and Research within
want to select samples valuable tdaanily of clas- the SrEMNET project (0LDS001A-C), while the
sifiers using the various annotation layers. This, aofvork of the third author was funded by the EC
course, is only possible if data annotated with thavithin the BOOTSREP project (FP6-028099).

Another open question is how to measure an
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