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Abstract several algorithms were proposed for automatically

o o learning entailment rules and paraphrases (viewed
The validity of semantic inferences depends a5 pj-directional entailment rules) (Lin and Pantel,
on the contexts in which they are applied. 5041 Rayichandran and Hovy, 2002: Shinyama et

We propose a generic framework for handling . . .
contextual considerations within applied in- al., 2002; Szpektor et al., 2004; Sekine, 2005).

ference, terme@ontextual Preferences his A common practice is to try matching the struc-
framework defines the various context-aware ture of h, or of the left-hand-side of a rule within
components needed for inference and their ¢ However, context should be considered to allow
relationships. Contextual preferences extend  y5id matching. For example, suppose that to find
and. generalize prewous.notlons,. such as se- acquisitions of companies we specify the tatget-
lectional preferences, while experiments show . . .

that the extended framework allows improving pla_te hypOtheS'@ hypothesis with Va”at?les_x ac-
inference quality on real application data. quireY”. This h should not be matched irchildren
acquire language quickly because in this context
Y is not a company. Similarly, the ruleX’ charge

Y — X accuseY’ should not be applied toThis

Applied semantic inference is typically concernedtore charged my accouhsince the assumed sense
with inferring a target meaning from a given text.Of ‘charge’ in the rule is different than its sense in
For example, to answeWho wrote Idomened? the text. Thus, the intended contexts forand »
Question Answering (QA) systems need to infer th@nd the context within the givehshould be prop-
target meaning ‘Mozart wrote Idomeneo’ from a€fly matched to verify valid inference.
given text ‘Mozart composed ldomenred-ollowing Context matching at inference time was of-
common Textual Entailment terminology (Giampic-ten approached in an application-specific manner
colo et al., 2007), we denote the target meaning by (Harabagiu et al., 2003; Patwardhan and Riloff,
(for hypothesisand the given text by. 2007). Recently, some generic methods were pro-
A typical applied inference operationnsatching posed to handle context-sensitive inference (Dagan
Sometimes) can be directly matched i (in the etal., 2006; Pantel et al., 2007; Downey et al., 2007,
example above, if the given sentence would be litei€onnor and Roth, 2007), but these usually treat
ally “Mozart wrote ldomenéd. Generally, the tar- only a single aspect of context matching (see Sec-
get meaning can be expressed:im many differ- tion 6). We propose a comprehensive framework for
ent ways. Indirect matching is then needed, usingandling various contextual considerations, termed
inference knowledge that may be captured througBontextual Preferencedt extends and generalizes
rules, termed herentailment rules In our exam- previous work, defining the needed contextual com-
ple, ‘Mozart wrote Idomeneo’ can be inferred usingoonents and their relationships. We also present and
the rule X composeY — X write Y'. Recently, implement concrete representation models and un-

1 Introduction
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supervised matching methods for these componentisference due to contextual mismatches. For exam-
While our presentation focuses on semantic infeple, an IE system may identify mentions of public
ence using lexical-syntactic structures, the proposetmonstrations using the hypothekis' X demon-
framework and models seem suitable for other constrate’. Howeverh should not be matched irEhgi-
mon types of representations as well. neers demonstrated the new systedue to a mis-
We applied our models to a test set derived frormatch between the intended sense of ‘demonstrate’
the ACE 2005 event detection task, a standard IR ~ and its sense in. Similarly, when looking for
formation Extraction (IE) benchmark. We show thephysical attack mentions using the hypothesisit-
benefits of our extended framework for textual intackY”, we should not utilize the rule: * X accuse
ference and present component-wise analysis of thé— X attackY”, due to a mismatch between a ver-
results. To the best of our knowledge, these are alé@l attack in- and an intended physical attack/in
the first unsupervised results for event argument ekdinally, r: ‘X produceY — X lay Y’ (applicable

traction in the ACE 2005 dataset. when X refers to poultry and” to eggs) should not
be matched irt: “Bugatti produce the fastest cédrs
2 Contextual Preferences due to a mismatch between the meanings of ‘pro-

duce’ inr andt. Overall, such incorrect inferences
may be avoided by considering contextual informa-

As mentioned above, we follow the generic TeXtion for ¢, h andr during their matching process.
tual Entailment (TE) setting, testing whether a target

meaning hypothesis can be inferred from a given 2.3 The Contextual Preferences Framework

textt. We allowh to be either a text or eemplate  We propose th€ontextual Preferenc€P) frame-
a text fragment with variables. For exampl&he work for addressing context at inference time. In this
stock rose 8%entails an instantiation of the tem- framework, the representation of an objectvhere
plate hypothesisX gainY”. Typically, h represents - may be a text, a template or an entailment rule, is
an information need requested in some applicatiognriched with contextual information denotesd z).
such as a target predicate in IE. This information helps constraining or disambiguat-
In this paper, we focus on parse-based lexicalng the meaning of, and is used to validate proper
syntactic representation of texts and hypotheses, anthtching between pairs of objects.
on the basic inference operation mftching Fol- We consider two components withim(z): (a)
lowing common practice (de Salvo Braz et al., 20054 representation for the global (“topical”) context
Romano et al., 2006; Bar-Haim et al., 200%)is in which = typically occurs, denotedp,(z); (b)
syntactically matched in if it can be embedded in a representation for the preferences and constraints
t's parse tree. For template hypotheses, the matchigithard” preferences) on the possible terms that can
induces a mapping betweérs variables and their instantiate variables withim, denotedcp,(z). For
instantiation ir¢. example, cp, (‘X produceY — X lay Y’) may
Matchingh in ¢ can be performed either directly specify thatX's instantiations should be similar to
or indirectly using entailment rules. Aentailment “chicken” or “duck”.
ruler: ‘LHS — RHS is a directional entailment  Contextual Preferences are used when entailment
relation between two templatefsis matched it us- s assessed between a téxtnd a hypothesia, ei-
ing r if LHS is matched irt andh matchesRHS.  ther directly or by utilizing an entailment-rule On
Inthe example above; ‘ X riseY — X gainY” al-  top of structural matching, we now require that the
lows us to entail X gainY”, with “stock” and “8%”  Contextual Preferences of the participants in the in-
instantiatingh’s variables. We denotears(z) the ference will also match. Whehis directly matched
set of variables ot, wherez is a template or arule. in ¢, we require that each componentdp(h) will
be matched with its counterpartip(t). Whenr is
utilized, we additionally require thatp(r) will be
When matching considers only the structure of hymatched with bothp(t) andcp(h). Figure 1 sum-
potheses, texts and rules it may result in incorreeharizes the matching relationships between the CP

2.1 Notation

2.2 Motivation
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cp(r) responding unsupervised match score. Finally, the

cpg(r) different component scores are combined to yield
r an overall match score, which is used in our exper-
iments to rank inference instances by the likelihood
of their validity. Our goal in this paper is to cover the
t h entire scope of the CP framework by including spe-
va(t)Cpg(t) ~cpa(h) 3ou(h)

cific models that were proposed in previous work,
where available, and elsewhere propose initial mod-
Figure 1: The directional matching relationships betweeg|s to complete the CP scope.

a hypothesis (h), an entailment rule (r) and a text (t) in the

Contextual Preferences framework. 3.1 Contextual Preferences for Global Context
To represent the global context of an objectve
components ok, ¢t andr. utilize Latent Semantic Analysis (LSA) (Deerwester

Like Textual Entailment inference, Contextualet al., 1990), a well-known method for representing
Preferences matching is directional. When matchintipe contextual-usage of words based on corpus sta-
h with ¢ we require that the global context prefer-istics. We use LSA analysis of the BNC corpus
ences specified byp,(h) would subsume those in- in which every term is represented by a normalized
duced bycp,(t), and that the instantiations @fs  vector of the top 100 SVD dimensions, as described
variables int would adhere to the preferences inin (Gliozzo, 2005).
cpy(h) (sincet should entailk, but not necessarily ~ To constructp,(z) we first collect a set of terms
vice versa). For example, if the preferred global conthat are representative for the preferred general con-
text of a hypothesis is sports, it would match a textext of z. Then, the (single) vector which is the sum
that discusses the more specific topic of basketballof the LSA vectors of the representative terms be-

To implement the CP framework, concrete modelsomes the representation @f,(z). This LSA vec-
are needed for each component, specifying its reprtsr captures the “average” typical contexts in which
sentation, how it is constructed, and an appropriatbe representative terms occur.
matching procedure. Section 3 describes the specificThe set of representative terms for a téexton-

CP models that were implemented in this paper. sists of all the nouns and verbs in it, represented

The CP framework provides a generic view ofoy their lemma and part of speech. For a rule
contextual modeling in applied semantic inference LHS — RHS’, the representative terms are the
Mapping from a specific application to the generigvords appearing il.//S and inRHS. For exam-
framework follows the mappings assumed in th@le, the representative terms fox ‘divorceY” — X
Textual Entailment paradigm. For example, in QAmarry Y” are {divorce:y marry:v}. As mentioned
the hypothesis to be proved corresponds to the affigarlier, construction of hypotheses and their contex-
mative template derived from the question (elg. tual preferences depends on the application at hand.
‘X invented the PC’ for Who invented the PCR  In our experiments these are defined manually, as
Thus, cpy(h) can be constructed with respect todescribed in Section 4, derived from the manual de-
the question’s focus whilep, (k) may be gener- finitions of target meanings in the |IE data.
ated from the expected answer type (Moldovan et The score of matching the, components of two
al., 2000; Harabagiu et al., 2003). Construction opbjects, denoted by, (-, -), is the Cosine similarity
hypotheses’ CP for IE is demonstrated in Section 4f their LSA vectors. Negative values are set to 0.

3 Contextual Preferences Models 3.2 Contextual Preferences for Variables

, , - 3.2.1 Representation
This section presents the current models that we im-

plemented for the various components of the CIIDeI
framework. For each component type we describe
its representation, how it is constructed, and a cor- *http://www.natcorp.ox.ac.uk/

For comparison with prior work, we follow (Pan-
et al., 2007) and represent preferences for vari-
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able instantiations using a distributional approacl8.2.2 Matchingcp.e
and in addition incorporate a standard specification o, primary matching method is based on repli-
of named-entity types. Thusp, is represented by cating the best-performing method reported in (Pan-
two lists. The first list, denotedp,.c, Contains ex- +g| et al., 2007), which utilizes the CBC distribu-
amples for valid instantiations of that variable. Fokjgnal word clustering algorithm (Pantel, 2003). In
example,cpue(X kill ¥ — V" die of X) may be gnort, this method extends eagh,.. list with CBC
[X: {snakebitediseasg, Y: {man patient]. The ¢|ysters that contain at least one term in the list, scor-
second list, denotedp,.,, contains the variable’s jg them according to their “relevancy”. The score
preferred named-entity types (if any). For examgy matching twaep,.. lists, denoted herSc e (-, -,
ple, cpu:n (X born inY’) may be [X: {Persor}, Y g the score of the highest scoring member that ap-
{Locatipn}]. We denO_t_GSPu:e_(Z) ] andcpv:-n(z) ] pears in both lists.
as the lists for a specific variabjeof the object:. We applied the final binary match score presented
For a textt, in which a template is matched, the in (Pantel et al., 2007), denoted héiearyC BC:
preferencep,..(t) for each template variable is sim-y,,..(r, ) is 1 if Scc(r, t) is above a threshold and
ply its instantiation int. For example, whenX eat 0 otherwise. As a more natural ranking method, we
Y” is matched int: “Many Americans eat fish reg- also utilize Scz¢ directly, denotedrankedCBC,
ularly”, we construcicp,..(t) = [X: {Many Ameri- havingm,..(r,t) = Scpc(r, t).
cang, Y: {fish}]. Similarly, cp,.,(t) for each vari-  |n addition, we tried a simpler method that di-
able is the named-entity type of its instantiation inectly compares the terms in twe,.. lists, uti-
¢ (if it is a named entity). We identify entity types izing the commonly-used term similarity metric of
using the default LingpigeNamed-Entity Recog- (Lin, 1998a). This method, denotdd N, uses the
nizer (NER), which recognizes the typkecation  same raw distributional data as CBC but computes
Personand Organization In the above example, only pair-wise similarities, without any clustering
cpun(t)[X] would be{Persor}. phase. We calculated the scores of the 1000 most
For aruler: LHS — RHS, we automatically similar terms for every term in the Reuters RVC1
add tocp,..(r) all the variable instantiations that corpus. Then, a directional similarity of term
were found common for both 7S and RHS in a to termb, s(a,b), is set to be their similarity score
corpus (see Section 4), as in (Pantel et al., 2007; Pef- is in b’'s 1000 most similar terms and 0 other-
nacchiotti et al., 2007). To construeb,.,(r), we wise. The final score of matchingwith ¢ is deter-
currently use a simple approach where each individnined by a nearest-neighbor approach, as the score
ual term incp,..(r) is analyzed by the NER system,of the most similar pair of terms in the correspond-
and its type (if any) is added @, (r). ing two lists of the same variablem,..(r,t) =

For a template hypothesis, we currently repremanEvars(r)[maxaecl)v:e(t)[j],bEcpv:e(r)[j] [s(a, D)]].
sentep, (h) only by its list of preferred named-entity
types,cpy:,. Similarly tocp,(h), the preferred types ) _ _
for each template variable were adapted from those e use a simple scoring mechanism for compar-

defined in our IE data (see Section 4). ing between two named-entity typesndb, s(a, b):

. . . .1 for identical types and 0.8 otherwise.
To allow compatible comparisons with previous . . . .
A variable 7 has a single preferred entity type

work (see Sections 5 and 6), we utilize in this 17 the t t its instantiation i
paper onlycp,.. when matching betweenp, (1) 'S Cp”:”(t)_[tj]’ E ype © IIS |n? an :jatlon |r}tf.
and cp,(t), as only this representation was exam: OWEVET, It can have several preerred types/or

ined in prior work on context-sensitive rule applica—When matching with ¢, j's maich score is that

tions. cp,.,, is utilized for context matches involving Or: its highest fscclalring _tyg)le, and the fin:l sco_re Is

cpy(h). We denote the score of matching twp, the product of all variable scoresmm'( 1) =

Components bynv(.’ ) Hjevars(h) (maXaECPU:n(h) (7] [S(a’7 CPu:n (t) []])])
Variable j may also have several typesinthe

3.2.3 Matchingep,.,,

2http:/iwww.alias-i.com/lingpipe/ 3http://about.reuters.com/researchandstandards/corpus/
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types of the common argumentsdp,..(r). When given event predicate, and specified the appropri-
matchingh with r, s(a, cpy.n (t)[J]) is replaced with ate semantic roles for each variable. We consid-
the average score farand each type iap,.,(r)[j]. ered only binary hypotheses, due to the type of
available entailment rules (see below). Hor
jure, the set of hypotheses included injure V'
A final score for a given match, denotatiCP, is and ‘injure V in T where role(A)={Agent, In-
obtained by the product of all six matching scorestrument, role(V)={Victim}, and role(T)={Time,
of the various CP components (multiplying by 1Place}. Thus, correct match of an argument corre-
if a component score is missing). The six scoresponds to correct role identification. The templates
are the results of matching any of the two compowere represented as Minipar (Lin, 1998b) depen-
nents ofh, t andr: mgy(h,t), my(h,t), mg(h,r), dency parse-trees.
my(h, ), mg(r,t) andm,(r, t) (as specified above, The Contextual Preferences fdr were con-
my(r,t) is based on matchingp,.. while m,(h,r) structed manually: the named-entity types for
andm,(h,t) are based on matching,.,). We use cp,.,(h) were set by adapting the entity types given
rankedC BC for calculatingm,, (r, t). in the guidelines to the types supported by the Ling-
Unlike previous work (e.g. (Pantel et al., 2007))pipe NER (described in Section 3.2}p,(h) was
we also utilize theprior score of a ruler, which generated from a short list of nouns and verbs that
is provided by the rule-learning algorithm (see nextwere extracted from the verbal event definition in
section). We denote bgllCP+pr the final match the ACE guidelines. Fomjure, this list included
score obtained by the product of tléiCP score {injure:v, injury:n, wound:}. This assumes that

3.3 Overall Score for a Match

with the prior score of the matched rule. when writing down an event definition the user
_ _ would also specify such representative keywords.
4 Experimental Settings Entailment-rules for a givem (rules in which

Evaluating the contribution of Contextual Prefer-RHSIS equal t.o n) were leamned automatically .by
o the DIRT algorithm (Lin and Pantel, 2001), which

ences models requires: (a) a sample of test hypothe- . .
also produces a quality score for each rule. We im-

ses, and (b) a corresponding corpus that contain . .
sentences which entail these hypotheses, where ;cgj?mented a canonized version DIRT (Szpektor

hypothesis matches (either direct or viarules) are aﬁ/'lri\gip?aa:ggg’crzlegre)’sogr;ﬁnzsti t?;; ‘Zg)r F\)/\I/Jesrszrlzgd by

notated. We found that the available event memio{:‘ollected From this COrDUS
annotations in the ACE 2005 training $grovide a pus. . .

SN ... We assessed the CP framework by its ability to
useful test set that meets these generic criteria, with

the added value of a standard real-world dataset. correctly rank, for each predicate (event), all the

The ACE annotation includes 33 types of eventscandldate entailing mentions _that are fo_uno! for .'t
. . . Ih the test corpus. Such ranking evaluation is suit-

for which all event mentions are annotated in the . . .
) L able for unsupervised settings, with a perfect rank-

corpus. The annotation of each mention includes the

instantiated arguments for the predicates, which reped placing all corret_:t mentlon§ before any incor-
rglct ones. The candidate mentions are found in the

resent the participants in the event, as well as gener. | ed test corpus by matching the specified event
attributes such as time and place. ACE guidelings P y 9 P

specify for each event type its possible argument y_potheses, eithe_r directly or vi.a the given s_et_of en-
. ?éulment rules, using a syntactic matcher similar to
where all arguments are optional. Each argument Fﬁe one in (Szpektor and Dagan, 2007). Finally, the
associated with a semantic role and a list of possible ' ) ’
named-entity types. For instance, Bmure event

mentions are ranked by their match scores, as de-
may have the argumenfsgent, Victim, Instrument, scribed in Section 3.3. As detailed in the next sec-
Time, Placé, whereVictim should be a person.

tion, those candidate mentions which are also an-
r?lotated as mentions of the same event in ACE are
For each event type we manually created a sma

considered correct.
set of template hypotheses that correspond to theThe evaluation aims to assess the correctness of

“http://projects.ldc.upenn.edu/ace/ inferring a target semantic meaning, which is de-
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noted by a specific predicate. Therefore, we elimguantify the baseline performance of the DIRT rule
inated four ACE event types that correspond to muket used. To assess our ranking quality, we measure
tiple distinct predicates. For instance, thansfer- for each event the commonly used Average Preci-
Money event refers to botldonating and lending sion (AP) measure (Voorhees and Harmann, 1998),
money, which are not distinguished by the ACE anwhich is the area under the non-interpolated recall-
notation. We also omitted three events with less thaorecision curve, while considering for each setup all
10 mentions and two events for which the given seatorrect extracted matches as 100% Recall. Overall,
of learned rules could not match any mention. Wave reportMean Average PrecisiofMAP), macro
were left with 24 event types for evaluation, whichaveragdrecisionand macro averageecallover the
amount to 4085 event mentions in the dataset. Out 8iCE events. Tables 1 and 2 summarize the main re-
these, our binary templates can correctly match onkults of our experiments. As far as we know, these
mentions with at least two arguments, which appeare the first published unsupervised results for iden-
2076 times in the dataset. tifying event arguments in the ACE 2005 dataset.
Comparing with previous evaluation methodolo- Examining Recall, we see that it increases sub-
gies, in (Szpektor et al., 2007; Pantel et al., 200Atantially when rules are applied: by more than
proper context matching was evaluated by post-had®0% for the top 50 rules, and by abow50% for
judgment of a sample of rule applications for a samthe top 100, showing the benefit of entailment-rules
ple of rules. Such annotation needs to be repeatéa covering language variability. The difference be-
each time the set of rules is changed. In additiortyveen All and Any results shows that about 65%
since the corpus annotation is not exhaustive, ref the rules that correctly match one argument also
call could not be computed. By contrast, we use match correctly both arguments.
standard real-world dataset, in which all mentions We use two baselines for measuring the CP rank-
are annotated. This allows immediate comparisoimg contribution: Precision, which corresponds to
of different rule sets and matching methods, withouthe expected MAP of random ranking, and MAP
requiring any additional (post-hoc) annotation. of ranking using theprior rule score provided by
DIRT. Without rules, the baselinall Precision is
5 Results and Analysis 34.1%, showing that even the manually constructed

hypotheses, which correspond directly to the event

We expenmen_ted with three rule setups oyer '.[hﬁredicate, extract event mentions with limited accu-
ACE dataset, in order to measure the contributio L
racy when context is ignored. When rules are ap-

of the CP framework. In the first setup no rules arelied, Precision is very low. But ranking is consider-

used, applyl.ng Of"y direct matghes of template h>}é)lbly improved using only the prior score (from 1.4%
potheses to identify event mentions. In the other tw

Po 22.7% for 50 rules), showing that the prior is an
setups we also utilize®IRT's top 50 or 100 rules . o Tor ov U ) wing prior
. informative indicator for valid matches.
for each hypothesis.

Our main result is that thallCP and allCP+pr

A mat(?[h IS confldetreéj correct‘: when ZL” m?tctr;]e%ethods rank matches statistically significantly bet-
argurpeinds are ?x rlac eTh‘?O”e‘r‘ y according (?[_ SEr than the baselines in all setups (according to the
annotated eventroies. This main measurementis Qg -y oy double-sided signed-ranks test at the level
notedAll. As an additional measurement, denote £0.01 (Wilcoxon, 1945)). In thall setup, ranking
Any, we (;(_Jnsmier 6; rgatch a‘:fl correct if at least oNfs improved by 70% for direct matching (Table 1).
argument s extracted correctly. . When entailment-rules are also utilized, prior-only

Once event matches are extracted, we first me?énking is improved by about 35% and 50% when
sure for each event its Recall, the number of corre%tsing allCP and allCP+pr, respectively (Table 2)

mentions identified out of all annotated event MENrigure 2 presents the average Recall-Precision curve

tions® and Precision, the number of correct matcheaf the ‘50 Rules, All' setup for applyingllCP or

out of all extracted candidate matches. These ﬁgur%ﬁCP+pr compared to prior-only ranking baseline

5For Recall, we ignored mentions with less than two argu(Other setups behave similarly). The improvement
ments, as they cannot be correctly matched by binary templatéf. ranking is evident: the drop in precision is signif-
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R P MAP (%) o0 50 Rules - All
(%) || (%) | cpy | cpy | allCP |
[Al [ 14.0] 34.1] 465] 52.2] 60.2| “1.
[Any [ 21.8] 66.0] 72.2[ 80.5] 84.1] w1}
709
Table 1: Recall (R), Precision (P) and Mean Average Pre- _ |
cision (MAP) when only matching template hypothese5§
directly. R
o
# T R P MAP (%) ] .
Rules| (%) || (%) | prior | allCP | allCP+pr e B
Al 50 || 29.6| 14| 22.7| 30.6 34.1 204
100 || 34.9| 0.7] 20.5| 26.3 30.2 10] T
50 || 46.5| 35| 41.2| 437 48.6 o
A 160 [ 52,9 1.8 355 35.1 08 I N
elative Recall
‘ --- baseline ------ CP —CP+prior‘

Table 2: Recall (R), Precision (P) and Mean Average Pre-
cision (MAP) when also using rules for matching.

Figure 2: Recall-Precision curves for ranking using: (a)
only the prior (baseline); (4lICP; (c) allCP+pr.

icantly slower when CP is used. The behavior of CP

with and without the prior is largely the same up Qg highest score in the table. The strong impact of

50% Recall, but later on our implemented CP mod;, tchings, andt's preferences is also evident in Ta-

els are noisier and should be combined with the priqgle 1, where ranking based on eithgr, or cp, sub-
’ v
rule score. _ stantially improves precision, while their combina-
Templates are incorrectly matched for several regy provides the best ranking. These results indicate
sons. First, there are context mismatches which affat the two CP components capture complementary

not scored sufficiently low by our models. Anotheri,ormation and both are needed to assess the cor-
main cause is incorrect learned rules in whicH S rectness of a match.

andRH S are topically related, e.g.X convictY — When ignoring the prior rule scorep(r, t) is the

X arrestY”, or rules that are used in the wrong €Ny aior contributor over the baseline Precision. For
tailment direction, e.g.X marryY — X divorceY”

A cpy(r,t), this is in synch with the result in (Pantel
(DIRT does not learn rule direction). As such rulegy al., 2007), which is based on this single model

do correspond to plausible contexts of the hypoth&gitnayt utilizing prior rule scores. On the other
Sis, the_zi_r matches _obtain relatively high CP scoreﬁand,cpv(r, t) does not improve the ranking when
In addltlon,_ some mcorre_ct matches are caused qu prior is used, suggesting that this contextual
our syntactic matcher, which currently does not hany o ge| for the rule’s variables is not stronger than the

dle certain phenomena such as co-reference, modglext-insensitive prior rule score. Furthermore,
ity or negation, and due to Minipar parse errors.  rg|ative to thisep, (r, t) model from (Pantel et al.,

2007), our combineallCP model, with or without
the prior (first row of Table 2), obtains statistically
Table 3 displays the contribution of different CPsignificantly better ranking (at the level of 0.01).
components to ranking, when adding only that com- Comparing between the algorithms for match-
ponent’s match score to the baselines, and under ahg cp,.. (Section 3.2.2) we found that while
lation tests, when using all CP component scores exankedC BC is statistically significantly better than
cept the tested component, with or without the priowinaryCBC, rankedCBC and LIN generally
As it turns out, matching with ¢ (i.e. ¢p(h,t), achieve the same results. When considering the
which combinesp, (h,t) andcp, (h,t)) is mostuse- tradeoffs between the twd,/ N is based on a much
ful. With our current models, using onlyp(h,t)  simpler learning algorithm whil€' BC’s output is
along with the prior, while ignoringp(r), achieves more compact and allows faster CP matches.

5.1 Component Analysis
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Addition To Ablation From for a target relation are identified prior to applying
- P prior || allCP | allCP+pr extraction rules.

Baseline 14] 227 306 34.1 Recently, the need for context-aware inference

cpg(h,t) | "104 | *35.4 ) 324 33.7 | was raised (Szpektor et al., 2007). (Pantel et al.,

cpy (h, t) 110 | 29.9 27.6 32.9 2007) propose to learn the preferred instantiations of

cp(h,t) ‘89 | *37.5 | 28.6 30.0 ) . .

Py (1) 25 306 1 325 51 rule variables, termed Infgrentlal Selecnongl Prefer-

epo (7, 1) 2171 219 | 12,9 33.6 ences (ISP). Their clusterlng-basgd_model is the one

p(r, 1) 6.0 | 296 || “17.9 36.8 we implemented forn,(r,t). A similar approach

cpy(h,T) *8 1 29 4 31.9 34.3 is taken in (Pennacchiotti et al., 2007), where LSA

cpy(h, ) *10.7 | 22.7 || *27.9 34.4 similarity is used to compare between the preferred

cp(h,r) *16.5 | 22.4 || *29.2 34.4 variable instantiations for a rule and their instanti-

epg(h,rt) | =77 302 | *27.5 “29.2 ations in the matched text. (Downey et al., 2007)

cpy(h,r,t) | "275 | 29.2 | 7.7 30.2 use HMM-based similarity for the same purpose.
* Indicates statistically significant changes compared to the baseline,All these methods are analogous to matchingr)
according to the Wilcoxon test at the level of 0.01. with CPy (t) in the CP framework.

(Dagan et al., 2006; Connor and Roth, 2007) pro-
Table 3: MAP(%), under the 50 rules, All setup, whenposed generic approaches for identifying valid appli-
adding component match scores to Precision (P) or priog,inns of lexical rules by classifying the surround-
only MAP baselines, and when ranking wisiCP or . .
; A ing global context of a word as valid or not for that
allCP+pr methods but ignoring that component scores. )
rule. These approaches are analogous to matching
cpg(r) with epgy(t) in our framework.

Currently, some models do not improve the re-7 Conclusions
sults when the prior is used. Yet, we would like to

further weaken the dependency on the prior scorgve presented the Contextual Preferences (CP)
since it is biased towards frequent contexts. Wgamework for assessing the validity of inferences
aim to properly identify also infrequent contexts (ofin context. CP enriches the representation of tex-
meanings) at inference time, which may be achievegal objects with typical contextual information that
by better CP models. More generally, when usegonstrains or disambiguates their meaning, and pro-
on top of all other components, some of the modvides matching functions that compare the prefer-
els slightly degrade performance, as can be seen byices of objects involved in the inference. Experi-
those figures in the ablation tests which are highenents with our implemented CP models, over real-
than the corresponding baseline. However, due tgorld IE data, show significant improvements rela-
their different roles, each of the matching compotive to baselines and some previous work.

nents might capture some unique preferences. Forn future research we plan to investigate improved
examplecp(h, r) should be useful to filter out rules models for representing and matching CP, and to ex-
that don’t match the intended meaning of the givefend the experiments to additional applied datasets.
h. Overall, this suggests that future research for befye also plan to apply the framework to lexical infer-

ter models should aim to obtain a marginal improveence rules, for which it seems directly applicable.
ment by each component.
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