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Abstract

The validity of semantic inferences depends
on the contexts in which they are applied.
We propose a generic framework for handling
contextual considerations within applied in-
ference, termedContextual Preferences. This
framework defines the various context-aware
components needed for inference and their
relationships. Contextual preferences extend
and generalize previous notions, such as se-
lectional preferences, while experiments show
that the extended framework allows improving
inference quality on real application data.

1 Introduction

Applied semantic inference is typically concerned
with inferring a target meaning from a given text.
For example, to answer “Who wrote Idomeneo?”,
Question Answering (QA) systems need to infer the
target meaning ‘Mozart wrote Idomeneo’ from a
given text “Mozart composed Idomeneo”. Following
common Textual Entailment terminology (Giampic-
colo et al., 2007), we denote the target meaning byh
(for hypothesis) and the given text byt.

A typical applied inference operation ismatching.
Sometimes,h can be directly matched int (in the
example above, if the given sentence would be liter-
ally “Mozart wrote Idomeneo”). Generally, the tar-
get meaning can be expressed int in many differ-
ent ways. Indirect matching is then needed, using
inference knowledge that may be captured through
rules, termed hereentailment rules. In our exam-
ple, ‘Mozart wrote Idomeneo’ can be inferred using
the rule ‘X composeY → X write Y ’. Recently,

several algorithms were proposed for automatically
learning entailment rules and paraphrases (viewed
as bi-directional entailment rules) (Lin and Pantel,
2001; Ravichandran and Hovy, 2002; Shinyama et
al., 2002; Szpektor et al., 2004; Sekine, 2005).

A common practice is to try matching the struc-
ture ofh, or of the left-hand-side of a ruler, within
t. However, context should be considered to allow
valid matching. For example, suppose that to find
acquisitions of companies we specify the targettem-
plate hypothesis(a hypothesis with variables) ‘X ac-
quireY ’. This h should not be matched in “children
acquire language quickly”, because in this context
Y is not a company. Similarly, the rule ‘X charge
Y → X accuseY ’ should not be applied to “This
store charged my account”, since the assumed sense
of ‘charge’ in the rule is different than its sense in
the text. Thus, the intended contexts forh and r
and the context within the givent should be prop-
erly matched to verify valid inference.

Context matching at inference time was of-
ten approached in an application-specific manner
(Harabagiu et al., 2003; Patwardhan and Riloff,
2007). Recently, some generic methods were pro-
posed to handle context-sensitive inference (Dagan
et al., 2006; Pantel et al., 2007; Downey et al., 2007;
Connor and Roth, 2007), but these usually treat
only a single aspect of context matching (see Sec-
tion 6). We propose a comprehensive framework for
handling various contextual considerations, termed
Contextual Preferences. It extends and generalizes
previous work, defining the needed contextual com-
ponents and their relationships. We also present and
implement concrete representation models and un-
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supervised matching methods for these components.
While our presentation focuses on semantic infer-
ence using lexical-syntactic structures, the proposed
framework and models seem suitable for other com-
mon types of representations as well.

We applied our models to a test set derived from
the ACE 2005 event detection task, a standard In-
formation Extraction (IE) benchmark. We show the
benefits of our extended framework for textual in-
ference and present component-wise analysis of the
results. To the best of our knowledge, these are also
the first unsupervised results for event argument ex-
traction in the ACE 2005 dataset.

2 Contextual Preferences

2.1 Notation

As mentioned above, we follow the generic Tex-
tual Entailment (TE) setting, testing whether a target
meaning hypothesish can be inferred from a given
text t. We allowh to be either a text or atemplate,
a text fragment with variables. For example, “The
stock rose 8%” entails an instantiation of the tem-
plate hypothesis ‘X gainY ’. Typically, h represents
an information need requested in some application,
such as a target predicate in IE.

In this paper, we focus on parse-based lexical-
syntactic representation of texts and hypotheses, and
on the basic inference operation ofmatching. Fol-
lowing common practice (de Salvo Braz et al., 2005;
Romano et al., 2006; Bar-Haim et al., 2007),h is
syntactically matched int if it can be embedded in
t’s parse tree. For template hypotheses, the matching
induces a mapping betweenh’s variables and their
instantiation int.

Matchingh in t can be performed either directly
or indirectly using entailment rules. Anentailment
rule r: ‘LHS → RHS’ is a directional entailment
relation between two templates.h is matched int us-
ing r if LHS is matched int andh matchesRHS.
In the example above,r: ‘X riseY →X gainY ’ al-
lows us to entail ‘X gainY ’, with “stock” and “8%”
instantiatingh’s variables. We denotevars(z) the
set of variables ofz, wherez is a template or a rule.

2.2 Motivation

When matching considers only the structure of hy-
potheses, texts and rules it may result in incorrect

inference due to contextual mismatches. For exam-
ple, an IE system may identify mentions of public
demonstrations using the hypothesish: ‘X demon-
strate’. However,h should not be matched in “Engi-
neers demonstrated the new system”, due to a mis-
match between the intended sense of ‘demonstrate’
in h and its sense int. Similarly, when looking for
physical attack mentions using the hypothesis ‘X at-
tackY ’, we should not utilize the ruler: ‘X accuse
Y →X attackY ’, due to a mismatch between a ver-
bal attack inr and an intended physical attack inh.
Finally, r: ‘X produceY → X lay Y ’ (applicable
whenX refers to poultry andY to eggs) should not
be matched int: “Bugatti produce the fastest cars”,
due to a mismatch between the meanings of ‘pro-
duce’ inr andt. Overall, such incorrect inferences
may be avoided by considering contextual informa-
tion for t, h andr during their matching process.

2.3 The Contextual Preferences Framework

We propose theContextual Preferences(CP) frame-
work for addressing context at inference time. In this
framework, the representation of an objectz, where
z may be a text, a template or an entailment rule, is
enriched with contextual information denotedcp(z).
This information helps constraining or disambiguat-
ing the meaning ofz, and is used to validate proper
matching between pairs of objects.

We consider two components withincp(z): (a)
a representation for the global (“topical”) context
in which z typically occurs, denotedcpg(z); (b)
a representation for the preferences and constraints
(“hard” preferences) on the possible terms that can
instantiate variables withinz, denotedcpv(z). For
example,cpv(‘X produceY → X lay Y ’) may
specify thatX ’s instantiations should be similar to
“chicken” or “duck”.

Contextual Preferences are used when entailment
is assessed between a textt and a hypothesish, ei-
ther directly or by utilizing an entailment-ruler. On
top of structural matching, we now require that the
Contextual Preferences of the participants in the in-
ference will also match. Whenh is directly matched
in t, we require that each component incp(h) will
be matched with its counterpart incp(t). Whenr is
utilized, we additionally require thatcp(r) will be
matched with bothcp(t) andcp(h). Figure 1 sum-
marizes the matching relationships between the CP
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Figure 1: The directional matching relationships between
a hypothesis (h), an entailment rule (r) and a text (t) in the
Contextual Preferences framework.

components ofh, t andr.
Like Textual Entailment inference, Contextual

Preferences matching is directional. When matching
h with t we require that the global context prefer-
ences specified bycpg(h) would subsume those in-
duced bycpg(t), and that the instantiations ofh’s
variables int would adhere to the preferences in
cpv(h) (sincet should entailh, but not necessarily
vice versa). For example, if the preferred global con-
text of a hypothesis is sports, it would match a text
that discusses the more specific topic of basketball.

To implement the CP framework, concrete models
are needed for each component, specifying its repre-
sentation, how it is constructed, and an appropriate
matching procedure. Section 3 describes the specific
CP models that were implemented in this paper.

The CP framework provides a generic view of
contextual modeling in applied semantic inference.
Mapping from a specific application to the generic
framework follows the mappings assumed in the
Textual Entailment paradigm. For example, in QA
the hypothesis to be proved corresponds to the affir-
mative template derived from the question (e.g.h:
‘X invented the PC’ for “Who invented the PC?”).
Thus, cpg(h) can be constructed with respect to
the question’s focus whilecpv(h) may be gener-
ated from the expected answer type (Moldovan et
al., 2000; Harabagiu et al., 2003). Construction of
hypotheses’ CP for IE is demonstrated in Section 4.

3 Contextual Preferences Models

This section presents the current models that we im-
plemented for the various components of the CP
framework. For each component type we describe
its representation, how it is constructed, and a cor-

responding unsupervised match score. Finally, the
different component scores are combined to yield
an overall match score, which is used in our exper-
iments to rank inference instances by the likelihood
of their validity. Our goal in this paper is to cover the
entire scope of the CP framework by including spe-
cific models that were proposed in previous work,
where available, and elsewhere propose initial mod-
els to complete the CP scope.

3.1 Contextual Preferences for Global Context

To represent the global context of an objectz we
utilize Latent Semantic Analysis (LSA) (Deerwester
et al., 1990), a well-known method for representing
the contextual-usage of words based on corpus sta-
tistics. We use LSA analysis of the BNC corpus1,
in which every term is represented by a normalized
vector of the top 100 SVD dimensions, as described
in (Gliozzo, 2005).

To constructcpg(z) we first collect a set of terms
that are representative for the preferred general con-
text of z. Then, the (single) vector which is the sum
of the LSA vectors of the representative terms be-
comes the representation ofcpg(z). This LSA vec-
tor captures the “average” typical contexts in which
the representative terms occur.

The set of representative terms for a textt con-
sists of all the nouns and verbs in it, represented
by their lemma and part of speech. For a ruler:
‘LHS → RHS’, the representative terms are the
words appearing inLHS and inRHS. For exam-
ple, the representative terms for ‘X divorceY → X
marry Y ’ are {divorce:v, marry:v}. As mentioned
earlier, construction of hypotheses and their contex-
tual preferences depends on the application at hand.
In our experiments these are defined manually, as
described in Section 4, derived from the manual de-
finitions of target meanings in the IE data.

The score of matching thecpg components of two
objects, denoted bymg(·, ·), is the Cosine similarity
of their LSA vectors. Negative values are set to 0.

3.2 Contextual Preferences for Variables

3.2.1 Representation

For comparison with prior work, we follow (Pan-
tel et al., 2007) and represent preferences for vari-

1http://www.natcorp.ox.ac.uk/
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able instantiations using a distributional approach,
and in addition incorporate a standard specification
of named-entity types. Thus,cpv is represented by
two lists. The first list, denotedcpv:e, contains ex-
amples for valid instantiations of that variable. For
example,cpv:e(X kill Y → Y die of X) may be
[X: {snakebite, disease}, Y : {man, patient}]. The
second list, denotedcpv:n, contains the variable’s
preferred named-entity types (if any). For exam-
ple, cpv:n(X born inY ) may be [X: {Person}, Y :
{Location}]. We denotecpv:e(z)[j] andcpv:n(z)[j]
as the lists for a specific variablej of the objectz.

For a textt, in which a templatep is matched, the
preferencecpv:e(t) for each template variable is sim-
ply its instantiation int. For example, when ‘X eat
Y ’ is matched int: “Many Americans eat fish reg-
ularly”, we constructcpv:e(t) = [X: {Many Ameri-
cans}, Y : {fish}]. Similarly, cpv:n(t) for each vari-
able is the named-entity type of its instantiation in
t (if it is a named entity). We identify entity types
using the default Lingpipe2 Named-Entity Recog-
nizer (NER), which recognizes the typesLocation,
Personand Organization. In the above example,
cpv:n(t)[X] would be{Person}.

For a ruler: LHS → RHS, we automatically
add to cpv:e(r) all the variable instantiations that
were found common for bothLHS andRHS in a
corpus (see Section 4), as in (Pantel et al., 2007; Pen-
nacchiotti et al., 2007). To constructcpv:n(r), we
currently use a simple approach where each individ-
ual term incpv:e(r) is analyzed by the NER system,
and its type (if any) is added tocpv:n(r).

For a template hypothesis, we currently repre-
sentcpv(h) only by its list of preferred named-entity
types,cpv:n. Similarly tocpg(h), the preferred types
for each template variable were adapted from those
defined in our IE data (see Section 4).

To allow compatible comparisons with previous
work (see Sections 5 and 6), we utilize in this
paper onlycpv:e when matching betweencpv(r)
and cpv(t), as only this representation was exam-
ined in prior work on context-sensitive rule applica-
tions.cpv:n is utilized for context matches involving
cpv(h). We denote the score of matching twocpv

components bymv(·, ·).

2http://www.alias-i.com/lingpipe/

3.2.2 Matchingcpv:e

Our primary matching method is based on repli-
cating the best-performing method reported in (Pan-
tel et al., 2007), which utilizes the CBC distribu-
tional word clustering algorithm (Pantel, 2003). In
short, this method extends eachcpv:e list with CBC
clusters that contain at least one term in the list, scor-
ing them according to their “relevancy”. The score
of matching twocpv:e lists, denoted hereSCBC(·, ·),
is the score of the highest scoring member that ap-
pears in both lists.

We applied the final binary match score presented
in (Pantel et al., 2007), denoted herebinaryCBC:
mv:e(r, t) is 1 if SCBC(r, t) is above a threshold and
0 otherwise. As a more natural ranking method, we
also utilizeSCBC directly, denotedrankedCBC,
havingmv:e(r, t) = SCBC(r, t).

In addition, we tried a simpler method that di-
rectly compares the terms in twocpv:e lists, uti-
lizing the commonly-used term similarity metric of
(Lin, 1998a). This method, denotedLIN , uses the
same raw distributional data as CBC but computes
only pair-wise similarities, without any clustering
phase. We calculated the scores of the 1000 most
similar terms for every term in the Reuters RVC1
corpus3. Then, a directional similarity of terma
to termb, s(a, b), is set to be their similarity score
if a is in b’s 1000 most similar terms and 0 other-
wise. The final score of matchingr with t is deter-
mined by a nearest-neighbor approach, as the score
of the most similar pair of terms in the correspond-
ing two lists of the same variable:mv:e(r, t) =
maxj∈vars(r)[maxa∈cpv:e(t)[j],b∈cpv:e(r)[j][s(a, b)]].

3.2.3 Matchingcpv:n

We use a simple scoring mechanism for compar-
ing between two named-entity typesa andb, s(a, b):
1 for identical types and 0.8 otherwise.

A variable j has a single preferred entity type
in cpv:n(t)[j], the type of its instantiation int.
However, it can have several preferred types forh.
When matchingh with t, j’s match score is that
of its highest scoring type, and the final score is
the product of all variable scores:mv:n(h, t) =∏

j∈vars(h)(maxa∈cpv:n(h)[j][s(a, cpv:n(t)[j])]).
Variablej may also have several types inr, the

3http://about.reuters.com/researchandstandards/corpus/
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types of the common arguments incpv:e(r). When
matchingh with r, s(a, cpv:n(t)[j]) is replaced with
the average score fora and each type incpv:n(r)[j].

3.3 Overall Score for a Match

A final score for a given match, denotedallCP, is
obtained by the product of all six matching scores
of the various CP components (multiplying by 1
if a component score is missing). The six scores
are the results of matching any of the two compo-
nents ofh, t and r: mg(h, t), mv(h, t), mg(h, r),
mv(h, r), mg(r, t) andmv(r, t) (as specified above,
mv(r, t) is based on matchingcpv:e while mv(h, r)
andmv(h, t) are based on matchingcpv:n). We use
rankedCBC for calculatingmv(r, t).

Unlike previous work (e.g. (Pantel et al., 2007)),
we also utilize theprior score of a ruler, which
is provided by the rule-learning algorithm (see next
section). We denote byallCP+pr the final match
score obtained by the product of theallCP score
with the prior score of the matched rule.

4 Experimental Settings

Evaluating the contribution of Contextual Prefer-
ences models requires: (a) a sample of test hypothe-
ses, and (b) a corresponding corpus that contains
sentences which entail these hypotheses, where all
hypothesis matches (either direct or via rules) are an-
notated. We found that the available event mention
annotations in the ACE 2005 training set4 provide a
useful test set that meets these generic criteria, with
the added value of a standard real-world dataset.

The ACE annotation includes 33 types of events,
for which all event mentions are annotated in the
corpus. The annotation of each mention includes the
instantiated arguments for the predicates, which rep-
resent the participants in the event, as well as general
attributes such as time and place. ACE guidelines
specify for each event type its possible arguments,
where all arguments are optional. Each argument is
associated with a semantic role and a list of possible
named-entity types. For instance, anInjure event
may have the arguments{Agent, Victim, Instrument,
Time, Place}, whereVictimshould be a person.

For each event type we manually created a small
set of template hypotheses that correspond to the

4http://projects.ldc.upenn.edu/ace/

given event predicate, and specified the appropri-
ate semantic roles for each variable. We consid-
ered only binary hypotheses, due to the type of
available entailment rules (see below). ForIn-
jure, the set of hypotheses included‘A injure V’
and ‘injure V in T’ where role(A)={Agent, In-
strument}, role(V)={Victim}, and role(T)={Time,
Place}. Thus, correct match of an argument corre-
sponds to correct role identification. The templates
were represented as Minipar (Lin, 1998b) depen-
dency parse-trees.

The Contextual Preferences forh were con-
structed manually: the named-entity types for
cpv:n(h) were set by adapting the entity types given
in the guidelines to the types supported by the Ling-
pipe NER (described in Section 3.2).cpg(h) was
generated from a short list of nouns and verbs that
were extracted from the verbal event definition in
the ACE guidelines. ForInjure, this list included
{injure:v, injury:n, wound:v}. This assumes that
when writing down an event definition the user
would also specify such representative keywords.

Entailment-rules for a givenh (rules in which
RHS is equal toh) were learned automatically by
the DIRT algorithm (Lin and Pantel, 2001), which
also produces a quality score for each rule. We im-
plemented a canonized version ofDIRT (Szpektor
and Dagan, 2007) on the Reuters corpus parsed by
Minipar. Each rule’s arguments forcpv(r) were also
collected from this corpus.

We assessed the CP framework by its ability to
correctly rank, for each predicate (event), all the
candidate entailing mentions that are found for it
in the test corpus. Such ranking evaluation is suit-
able for unsupervised settings, with a perfect rank-
ing placing all correct mentions before any incor-
rect ones. The candidate mentions are found in the
parsed test corpus by matching the specified event
hypotheses, either directly or via the given set of en-
tailment rules, using a syntactic matcher similar to
the one in (Szpektor and Dagan, 2007). Finally, the
mentions are ranked by their match scores, as de-
scribed in Section 3.3. As detailed in the next sec-
tion, those candidate mentions which are also an-
notated as mentions of the same event in ACE are
considered correct.

The evaluation aims to assess the correctness of
inferring a target semantic meaning, which is de-
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noted by a specific predicate. Therefore, we elim-
inated four ACE event types that correspond to mul-
tiple distinct predicates. For instance, theTransfer-
Money event refers to bothdonating and lending
money, which are not distinguished by the ACE an-
notation. We also omitted three events with less than
10 mentions and two events for which the given set
of learned rules could not match any mention. We
were left with 24 event types for evaluation, which
amount to 4085 event mentions in the dataset. Out of
these, our binary templates can correctly match only
mentions with at least two arguments, which appear
2076 times in the dataset.

Comparing with previous evaluation methodolo-
gies, in (Szpektor et al., 2007; Pantel et al., 2007)
proper context matching was evaluated by post-hoc
judgment of a sample of rule applications for a sam-
ple of rules. Such annotation needs to be repeated
each time the set of rules is changed. In addition,
since the corpus annotation is not exhaustive, re-
call could not be computed. By contrast, we use a
standard real-world dataset, in which all mentions
are annotated. This allows immediate comparison
of different rule sets and matching methods, without
requiring any additional (post-hoc) annotation.

5 Results and Analysis

We experimented with three rule setups over the
ACE dataset, in order to measure the contribution
of the CP framework. In the first setup no rules are
used, applying only direct matches of template hy-
potheses to identify event mentions. In the other two
setups we also utilizedDIRT’s top 50 or 100 rules
for each hypothesis.

A match is considered correct when all matched
arguments are extracted correctly according to their
annotated event roles. This main measurement is de-
notedAll. As an additional measurement, denoted
Any, we consider a match as correct if at least one
argument is extracted correctly.

Once event matches are extracted, we first mea-
sure for each event its Recall, the number of correct
mentions identified out of all annotated event men-
tions5 and Precision, the number of correct matches
out of all extracted candidate matches. These figures

5For Recall, we ignored mentions with less than two argu-
ments, as they cannot be correctly matched by binary templates.

quantify the baseline performance of the DIRT rule
set used. To assess our ranking quality, we measure
for each event the commonly used Average Preci-
sion (AP) measure (Voorhees and Harmann, 1998),
which is the area under the non-interpolated recall-
precision curve, while considering for each setup all
correct extracted matches as 100% Recall. Overall,
we reportMean Average Precision(MAP), macro
averagePrecisionand macro averageRecallover the
ACE events. Tables 1 and 2 summarize the main re-
sults of our experiments. As far as we know, these
are the first published unsupervised results for iden-
tifying event arguments in the ACE 2005 dataset.

Examining Recall, we see that it increases sub-
stantially when rules are applied: by more than
100% for the top 50 rules, and by about150% for
the top 100, showing the benefit of entailment-rules
to covering language variability. The difference be-
tween All and Any results shows that about 65%
of the rules that correctly match one argument also
match correctly both arguments.

We use two baselines for measuring the CP rank-
ing contribution: Precision, which corresponds to
the expected MAP of random ranking, and MAP
of ranking using theprior rule score provided by
DIRT. Without rules, the baselineAll Precision is
34.1%, showing that even the manually constructed
hypotheses, which correspond directly to the event
predicate, extract event mentions with limited accu-
racy when context is ignored. When rules are ap-
plied, Precision is very low. But ranking is consider-
ably improved using only the prior score (from 1.4%
to 22.7% for 50 rules), showing that the prior is an
informative indicator for valid matches.

Our main result is that theallCP and allCP+pr
methods rank matches statistically significantly bet-
ter than the baselines in all setups (according to the
Wilcoxon double-sided signed-ranks test at the level
of 0.01 (Wilcoxon, 1945)). In theAll setup, ranking
is improved by 70% for direct matching (Table 1).
When entailment-rules are also utilized, prior-only
ranking is improved by about 35% and 50% when
using allCP and allCP+pr, respectively (Table 2).
Figure 2 presents the average Recall-Precision curve
of the ‘50 Rules, All’ setup for applyingallCP or
allCP+pr, compared to prior-only ranking baseline
(other setups behave similarly). The improvement
in ranking is evident: the drop in precision is signif-
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R P MAP (%)
(%) (%) cpv cpg allCP

All 14.0 34.1 46.5 52.2 60.2

Any 21.8 66.0 72.2 80.5 84.1

Table 1: Recall (R), Precision (P) and Mean Average Pre-
cision (MAP) when only matching template hypotheses
directly.

# R P MAP (%)
Rules (%) (%) prior allCP allCP+pr

All
50 29.6 1.4 22.7 30.6 34.1
100 34.9 0.7 20.5 26.3 30.2

Any
50 46.5 3.5 41.2 43.7 48.6
100 52.9 1.8 35.5 35.1 40.8

Table 2: Recall (R), Precision (P) and Mean Average Pre-
cision (MAP) when also using rules for matching.

icantly slower when CP is used. The behavior of CP
with and without the prior is largely the same up to
50% Recall, but later on our implemented CP mod-
els are noisier and should be combined with the prior
rule score.

Templates are incorrectly matched for several rea-
sons. First, there are context mismatches which are
not scored sufficiently low by our models. Another
main cause is incorrect learned rules in whichLHS
andRHS are topically related, e.g. ‘X convictY →
X arrestY ’, or rules that are used in the wrong en-
tailment direction, e.g. ‘X marryY →X divorceY ’
(DIRT does not learn rule direction). As such rules
do correspond to plausible contexts of the hypothe-
sis, their matches obtain relatively high CP scores.
In addition, some incorrect matches are caused by
our syntactic matcher, which currently does not han-
dle certain phenomena such as co-reference, modal-
ity or negation, and due to Minipar parse errors.

5.1 Component Analysis

Table 3 displays the contribution of different CP
components to ranking, when adding only that com-
ponent’s match score to the baselines, and under ab-
lation tests, when using all CP component scores ex-
cept the tested component, with or without the prior.

As it turns out, matchingh with t (i.e. cp(h, t),
which combinescpg(h, t) andcpv(h, t)) is most use-
ful. With our current models, using onlycp(h, t)
along with the prior, while ignoringcp(r), achieves
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Figure 2: Recall-Precision curves for ranking using: (a)
only the prior (baseline); (b)allCP; (c) allCP+pr.

the highest score in the table. The strong impact of
matchingh andt’s preferences is also evident in Ta-
ble 1, where ranking based on eithercpg or cpv sub-
stantially improves precision, while their combina-
tion provides the best ranking. These results indicate
that the two CP components capture complementary
information and both are needed to assess the cor-
rectness of a match.

When ignoring the prior rule score,cp(r, t) is the
major contributor over the baseline Precision. For
cpv(r, t), this is in synch with the result in (Pantel
et al., 2007), which is based on this single model
without utilizing prior rule scores. On the other
hand,cpv(r, t) does not improve the ranking when
the prior is used, suggesting that this contextual
model for the rule’s variables is not stronger than the
context-insensitive prior rule score. Furthermore,
relative to thiscpv(r, t) model from (Pantel et al.,
2007), our combinedallCP model, with or without
the prior (first row of Table 2), obtains statistically
significantly better ranking (at the level of 0.01).

Comparing between the algorithms for match-
ing cpv:e (Section 3.2.2) we found that while
rankedCBC is statistically significantly better than
binaryCBC, rankedCBC and LIN generally
achieve the same results. When considering the
tradeoffs between the two,LIN is based on a much
simpler learning algorithm whileCBC ’s output is
more compact and allows faster CP matches.
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Addition To Ablation From
P prior allCP allCP+pr

Baseline 1.4 22.7 30.6 34.1
cpg(h, t) ∗10.4 ∗35.4 32.4 33.7
cpv(h, t) ∗11.0 29.9 27.6 32.9
cp(h, t) ∗8.9 ∗37.5 28.6 30.0
cpg(r, t) ∗4.2 ∗30.6 32.5 35.4
cpv(r, t) ∗21.7 21.9 ∗12.9 33.6
cp(r, t) ∗26.0 ∗29.6 ∗17.9 36.8
cpg(h, r) ∗8.1 22.4 31.9 34.3
cpv(h, r) ∗10.7 22.7 ∗27.9 34.4
cp(h, r) ∗16.5 22.4 ∗29.2 34.4
cpg(h, r, t) ∗7.7 ∗30.2 ∗27.5 ∗29.2
cpv(h, r, t) ∗27.5 29.2 ∗7.7 30.2

∗ Indicates statistically significant changes compared to the baseline,

according to the Wilcoxon test at the level of 0.01.

Table 3: MAP(%), under the ‘50 rules, All’ setup, when
adding component match scores to Precision (P) or prior-
only MAP baselines, and when ranking withallCP or
allCP+pr methods but ignoring that component scores.

Currently, some models do not improve the re-
sults when the prior is used. Yet, we would like to
further weaken the dependency on the prior score,
since it is biased towards frequent contexts. We
aim to properly identify also infrequent contexts (or
meanings) at inference time, which may be achieved
by better CP models. More generally, when used
on top of all other components, some of the mod-
els slightly degrade performance, as can be seen by
those figures in the ablation tests which are higher
than the corresponding baseline. However, due to
their different roles, each of the matching compo-
nents might capture some unique preferences. For
example,cp(h, r) should be useful to filter out rules
that don’t match the intended meaning of the given
h. Overall, this suggests that future research for bet-
ter models should aim to obtain a marginal improve-
ment by each component.

6 Related Work

Context sensitive inference was mainly investigated
in an application-dependent manner. For exam-
ple, (Harabagiu et al., 2003) describe techniques for
identifying the question focus and the answer type in
QA. (Patwardhan and Riloff, 2007) propose a super-
vised approach for IE, in which relevant text regions

for a target relation are identified prior to applying
extraction rules.

Recently, the need for context-aware inference
was raised (Szpektor et al., 2007). (Pantel et al.,
2007) propose to learn the preferred instantiations of
rule variables, termed Inferential Selectional Prefer-
ences (ISP). Their clustering-based model is the one
we implemented formv(r, t). A similar approach
is taken in (Pennacchiotti et al., 2007), where LSA
similarity is used to compare between the preferred
variable instantiations for a rule and their instanti-
ations in the matched text. (Downey et al., 2007)
use HMM-based similarity for the same purpose.
All these methods are analogous to matchingcpv(r)
with cpv(t) in the CP framework.

(Dagan et al., 2006; Connor and Roth, 2007) pro-
posed generic approaches for identifying valid appli-
cations of lexical rules by classifying the surround-
ing global context of a word as valid or not for that
rule. These approaches are analogous to matching
cpg(r) with cpg(t) in our framework.

7 Conclusions

We presented the Contextual Preferences (CP)
framework for assessing the validity of inferences
in context. CP enriches the representation of tex-
tual objects with typical contextual information that
constrains or disambiguates their meaning, and pro-
vides matching functions that compare the prefer-
ences of objects involved in the inference. Experi-
ments with our implemented CP models, over real-
world IE data, show significant improvements rela-
tive to baselines and some previous work.

In future research we plan to investigate improved
models for representing and matching CP, and to ex-
tend the experiments to additional applied datasets.
We also plan to apply the framework to lexical infer-
ence rules, for which it seems directly applicable.
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