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Abstract

This paper provides evidence that the use of
more unlabeled data in semi-supervised learn-
ing can improve the performance of Natu-
ral Language Processing (NLP) tasks, such
as part-of-speech tagging, syntactic chunking,
and named entity recognition. We first pro-
pose a simple yet powerful semi-supervised
discriminative model appropriate for handling
large scale unlabeled data. Then, we describe
experiments performed on widely used test
collections, namely, PTB Il data, CoNLL'00
and '03 shared task data for the above three
NLP tasks, respectively. We incorporate up
to 1G-words (one billion tokens) of unlabeled
data, which is the largest amount of unlabeled
data ever used for these tasks, to investigate
the performance improvement. In addition,
our results are superior to the best reported re-
sults for all of the above test collections.

Introduction

}@cslab.kecl.ntt.co.jp

amounts of labeled training data. In this situation,
supervised learning can provide competitive results,
and it is difficult to improve them any further by
using SSL. In fact, few papers have succeeded in
showing significantly better results than state-of-the-
art supervised learning. Ando and Zhang (2005) re-
ported a substantial performance improvement com-
pared with state-of-the-art supervised learning re-
sults for syntactic chunking with the CoNLL00
shared task data (Tjong Kim Sang and Buchholz,
2000) and NER with the CoNLL03 shared task
data (Tjong Kim Sang and Meulder, 2003).

One remaining question is the behavior of SSL
when using as much labeled and unlabeled data
as possible. This paper investigates this question,
namely, the use of a large amount of unlabeled data
in the presence of (fixed) large labeled data.

To achieve this, it is paramount to make the SSL
method scalable with regard to the size of unlabeled
data. We first propose a scalable model for SSL.
Then, we apply our model to widely used test collec-

Today, we can easily find a large amount of untions, namely Penn Treebank (PTB) Ill data (Mar-

labeled data for many supervised learning applic&Us et al., 1994) for POS tagging, CoNLL'00 shared
tions in Natural Language Processing (NLP). Therdask data for syntactic chunking, and CoNLL'03
fore, to improve performance, the development othared task data for NER. We used up to 1G-words
an effective framework for semi-supervised learningone billion tokens) of unlabeled data to explore the
(SSL) that uses both labeled and unlabeled data is &#erformance improvement with respect to the unla-
tractive for both the machine learning and NLP combeled data size. In addition, we investigate the per-
munities. We expect that such SSL will replace modermance improvement for ‘unseen data’ from the
supervised learning in real world applications.  viewpoint of unlabeled data coverage. Finally, we
In this paper, we focus on traditional and imporcompare our results with those provided by the best
tant NLP tasks, namely part-of-speech (POS) taguirrent systems.
ging, syntactic chunking, and named entity recog- The contributions of this paper are threefold.
nition (NER). These are also typical supervisedrirst, we present a simple, scalable, but power-
learning applications in NLP, and are referred tdul task-independent model for semi-supervised se-
as sequential labeling and segmentation problemguential labeling and segmentation. Second, we re-
In some cases, these tasks have relatively larg®rt the best current results for the widely used test
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collections described above. Third, we confirm thaa difference in that generative models aieected
the use of more unlabeled data in SSL can really leagfaphical models while our conditional PM is an
to further improvements. undirected However, this difference causes no vi-
. olations when we construct our approach.
2 Conditional Model for SSL Let uS introduceN =(As, . .., A Ao, -+ o Arss),
We design our model for SSL as a natural semand h = (f,..., frlogpy,...,logps), which is
supervised extension of conventional superviseitie concatenation of feature vectfrand the log-
conditional random fields (CRFs) (Lafferty et al.likelihood of J-joint PMs. Then, we can define a
2001). As our approach for incorporating unlafew potential function by embedding the joint PMs;
beled data, we basically follow the idea proposed in

. \Ijil(y(!7m7A/7®)
(Suzuki et al., 2007). = exp(\ - f,(y,,x)) - Hj D (o, y,; 0,1
2.1 Conventional Supervised CRFs =exp(\ - he(y,, x)).

Letx € X andy € Y be an input and output, Wherewhere@ —{0,}7_,, andh.(y,,z) is h obtained
X and) represent the set of possible inputs and ou}—rom the ¢ JI=0 co

: . ; orresponding cliquein G(x,y). Since
puts, ;gsp?cgvelycr?tar;ds f(c;éthe set or:_clrllqu? n eachp;(zj.,y.) has rangel0, 1], which is non-
antun tLrec_et %rap 'Za mo f(f”vl!)' W Idc indl- negative,¥’, can also be used as a potential func-
cates the interdependency of a gverandy. Y. g, Thus, the conditional model for our SSL can
denotes the output from the corresponding clique : )

: . : be written as:
Each cliquec € C has apotential function¥.. Then,
the CRFs define the conditional probabiliiyy|x) P(ylz; X', ©) =
as a product o .s. In addition, letf = (f, ..., f1)
be a feature vector, anl = (\y,...,\;) be a pa- whereZ'(z) =", y[l.cc Yo(y., z; X', ©). Here-
rameter vector, whose lengths drep(y|x; X\) on a afterin this paper, we refer to this conditional model

1
Z'(w)

II viy.zX.0), (2

CREF is defined as follows: as a Joint probability model Embedding style Semi-
1 Supervised Conditional Modelor JESS-CM for
p(y\:v;)\) = mnc Ve(ye, T3 A), 1) short.

Given labeled datd);={(x", y")}\_,, the MAP

p— . i _ - . ] n=11 )
whereZ(z) =X yey [eec Ve(Ye, #; A) IS the par-- o ination of\ under a fixed® can be written as:
tition function. We generally assume that the po-

tential function is a non-negative real value func- £'(XN'[®) =) log P(y"|z"; X', ®) +log p(X),

tion. Therefore, the exponentiated weighted sum "

over the features of a clique is widely used, so thatyherep(’) is a prior probability distribution of\’.
U.(y., x;N)=exp(X - f.(y., z)) wheref_ (y.,x) Clearly, JESS-CM shown in Equation 2 has exactly
is a feature vector obtained from the correspondintpe same form as Equation 1. With a fix& the
cliquecin G(z,y). log-likelihood,log p;, can be seen simply as the fea-
. . . ture functions of JESS-CM as witfj. Therefore,
2.2 Semi-supervised .Extensmn for CR_FS embedded joint PMs do not violate the global con-
Suppose we have/ kinds of probability mod- yergence conditions. As a result, as with super-
els PMs). The j-th joint PM is represented by \jsed CRFs, it is guaranteed thethas a value that
pj(x;,y;0;) whered; is a model parameter:; = achjeves the global maximum @ (X|©). More-
7Tj(x) is simply an inputz transformed by a pre- gyer, we can obtain the same form of gradient as that

defined function7;. We assumer; has the same of sypervised CRFs (Sha and Pereira, 2003), that is,
graph structure ag. This meansp;(x;,y) can

be factorized by the cliquesin G(x,y). That is, VLX) =Epy,.a:x.0) [h(V, X)]
pi(x;,y;0;)=I1.pj(xjc, y.; 0;). Thus, we can in- _ZEP(y\m";X,@) [h(Y, ™) +Vlogp(X).
corporate generative models such as Bayesian net- "

works including (1D and 2D) hidden Markov mod-Thus, we can easily optimiz&€! by using the
els (HMMs) as these joint PMs. Actually, there isforward-backward algorithm since this paper solely
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focuses on a sequence model and a gradient-baségput: raining datab = {D;, Du}
optimization algorithm in the same manner as those ‘;":;Len'lzgi'lig ‘;Zg’ i{{(fm}% )n=1,
used in supervised CRF parameter estimation. Initialize - ©© uniform"dgtributioﬁ;L 0

We cannot naturally incorporate unlabeled datado
into standard discriminative learning methods since 1.t <t +1
the correct outputy for unlabeled data are un- 2 (ReJestima™ ~ A
known. On the other hand with a generative ap- , T&XIMizeL (A'[©) with fixed © — O~ usingD:.

. T 3. Estimate®®: (Initial values =@(~1)
proach, a well-known way to achieve this incorpora- — ndate one step toward maximizieg (©|\)

tion is to use maximum marginal likelihooMML ) with fixed ' usingD,,.
parameter estimation, i.e., (Nigam et al., 2000).go_until 7‘@(”9—(9?1)' <e
. . M : | \
Given unlabeled dat®, = {x™};;_;, MML esti-  geestimate\’: perform the same procedure as 1.

mation in our setting maximizes the marginal distri- output: a JESS-CMP(y|z, X', ©1).
bution of a joint PM over a missing (hidden) variable

y, namely, it maximize$_,, log >, cy p(x™, y; 0).

Following this idea, there have been Ir'trooluce%calable for handling large scale unlabeled data, we

a parameter estimation approach for non—generatné%ly perform one step of MDF estimation for each

approaches that can effectively incorporate unlaés explained on 3. in Figure 1. In addition, the cal-
belf\;lj di.ita (SUDZ.UM _et_al., f(l):07).t!-|ere, \,Ne reDflizr 10 yjation cost for estimating parameters of embedded
as Maximum Biscriminant Func !ons.sumvl .) ejoint PMs (HMMs) is independent of the number of
parameter estimation. MDF estimation substitut BIMMs. J. that we used (Suzuki et al., 2007). As a

f (, 1{[) wﬂ?_ dls::rl?;]mant func‘igng}(gcég)s. I:hl\i rg- result, the cost for calculating the JESS-CM param-
ore, 10 estimate the paramettr o ) y eters,\’ and @, is essentially the same as execut-

using MDF estimation, the following objective func'ing T iterations of the MML estimation for a single

tion is maximized with a fixed’ HMM using the EM algorithm plug” + 1 time opti-
L2\ = Z log Z g(x™, y; X, ©) + log p(©), mizations of the MAP estimation for a conventional
m yey supervised CRF if it converged when= T'. In

_ _ S addition, our parameter estimation algorithm can be
©®. Since the normalization factor does not af-

fect the determination of, the discriminant func- 2.4 Comparison with Hybrid Model

tion of JESS-CM shown in Equation 2 is definedSSL based on a hybrid generative/discriminative ap-
asg(z,y; N, 0) = [leec Vily., z; X, ©). With  proach proposed in (Suzuki et al., 2007) has been
a fixed X', the local maximum of2?(®|\’) around defined as a log-linear model that discriminatively
the initialized value o® can be estimated by an iter- combines several discriminative mode}s{,’, and
ative computation such as the EM algorithm (Dempgenerative model@,jG, such that:

ster et al., 1977).

Figure 1: Parameter estimation algorithm for JESS-CM.

" . - : R(ylz; A, ©,T)
2.3 Scalability: Efficient Training Algorithm IT; pP (yla; M) I PG (xj,y;0;)7
A parameter estimation algorithm &f and® can - >y LL P (ylas Xi) v T 05 (5,93 0;) 73

be obtained by maximizing the objective functions
L'(X'|@) andL*(®|X) iteratively and alternately. whereA={X;}/_;, andT={{v;}_;, {7;}}7;1 }
Figure 1 summarizes an algorithm for estimatixig With the hybrid model, if we use the same labeled
and® for JESS-CM. training data to estimate both andT’, ;s will be-
This paper considers a situation where there amme negligible (zero or nearly zero) sing@ is al-
many more unlabeled dafd than labeled dat&’, ready fitted to the labeled training data thi& are
that is,N << M. This means that the calculationtrained by using unlabeled data. As a solution, a
cost for unlabeled data is dominant. Thus, in ordegiven amount of labeled training data is divided into

to make the overall parameter estimation procedute/o distinct sets, i.e., 4/5 for estimatiny, and the
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remaining 1/5 for estimating (Suzuki et al., 2007).

(a) POS-tagging: (WSJin PTB IlI)

o . . # of labels 45

Moreover, it is necessary to split features into sev- pataset (WSJ sec. IDs)| # of sent.| # of words
eral sets, and then train several corresponding dis- Training 0-18| 38219] 912,344
fAAi H Pl : Development 19-21 5,527 131,768
criminative models separately and preliminarily. In 7 22-24| 5462| 129.654

contrast, JESS-CM is free from this kind of addi-

(b) Chunking: (WSJin PTB IIl: CoNLL'00 shared task data)

tional process, and the entire parameter estimation “#oflabels 23 (w/ IOB-tagging)
procedure can be performed in a single pass. Sur- _Dataset (WSJ sec. IDs)| #of sent.| # of words
prisingly, although JESS-CM is a simpler version of ~ poacd 1008 8ess) ALIAT
the hybrid model in terms of model structure and  Test 20 2,012| 47,377

parameter estimation procedure, JESS-CM provides

(c) NER: (Reuters Corpus: CoNLL'03 shared task data)

F-scores of 94.45 and 88.03 for CONLL'00 and '03 ~ _#0flabels | 29 W/ 10B-tagging+2nd-order encoding)
. . ) Data set (time period) | # of sent.| # of words
data, respectively, which are 0.15 and 0.83 points —zmng 55-30/08/96] 14,987 203621
higher than those reported in (Suzuki et al., 2007)  Development| 30-31/08/96| 3,466 51,362
Test 06-07/12/96] 3,684 46,435

for the same configurations. This performance im-
provement is basically derived from the full bene-Table 1. Details of training, development, and test data
fit of using labeled training data for estimating thellabeled data set) used in our experiments

parameter of the conditional model while the com- Tgata abbr.[ (time period)| #ofsent]  # of words
bination weights,I', of the hybrid model are esti-  Tipster |wsj |04/90-03/92| 1,624,744 36,725,301
. . Reuters |reu |09/96-08/974 13,747,227 215,510,564

mated solely by using 1/5 of the labeled training Corpus *(excluding 06-07/12/96)
data. These facts indicate that JESS-CM has sev-English |afp |05/94-12/96| 5,510,730 135,041,450
iati i Gigaword| apw | 11/94-12/96 | 7,207,790 154,024,679
eral _advantageous characteristics compared with the ow |oarea_12/06| 3004200 72928587
hybrid model. nyt |07/94-12/96 | 15,977,991 357,952,297
xin | 01/95-12/96 | 1,740,832 40,078,312
3 Experiments total all 48,903,604 1,012,261,140

In our experiments, we report POS tagging, syntac- Table 2: Unlabeled data used in our experiments

tic chunking and NER performance incorporating up

to 1G-words of unlabeled data. STER corpus, we extracted all the Wall Street Jour-
nal articles published between 1990 and 1992. With

3.1 Data Set the English Gigaword corpus, we extracted articles

To compare the performance with that of previfrom five news sources published between 1994 and

ous studies, we selected widely used test colleg996. The unlabeled data used in this paper is de-

tions. For our POS tagging experiments, we use@iled in Table 2. Note that the total size of the unla-

the Wall Street Journal in PTB Il (Marcus et al.,beled data reaches 1G-words (one billion tokens).

1994) with the same data split as used in (Shen et

al., 2007). For our syntactic chunking and NER ex3-2 Design of JESS-CM

periments, we used exactly the same training, develve used the same graph structure as the linear chain

opment and test data as those provided for the shar€®RF for JESS-CM. As regards the design of the fea-

tasks of CONLL'00 (Tjong Kim Sang and Buchholz,ture functionsf;, Table 3 shows the feature tem-

2000) and CoNLL03 (Tjong Kim Sang and Meul- plates used in our experiments. In the tabl@di-

der, 2003), respectively. The training, developmergates a focused token positiaki,_ ;. represents the

and test data are detailed in Tabfe.1 bi-gram of featureX obtained froms — 1 ands po-

The unlabeled data for our experiments wasitions.{X,}2_, indicates that ranges fromA to
taken from the Reuters corpus, TIPSTER corpuB. For example{X, 222572 is equal to five feature
(LDC93T3C) and the English Gigaword corpustemplates,{X;_2, Xs—1, X5, Xs+1, Xs42}. ‘word
third edition (LDC2007TQ7). As regards the TIP-type’' or wtp represents features of a word such as
" The second-order encoding used in our NER eXperimen{,;,apltal|zat|on, the existence of digits, and punctua-

is the same as that described in (Sha and Pereira, 2003) excB@n as shown in (Sutton et al., 2006) without regular
removing I0B-tag of previous position label. expressions. Although it is common to use external
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(a) POS tagging:(total 47 templates) L2, respectively. This means that JESS-CM has two

sh [Ys—1is]y 8 f'Ns ’ S7Sf'Ns ° —1° . .
[{y[y][\%du}l [Lj[jjtpj [ys]fgi,WtPu}}}}fﬁziz, tunable parameters;? andy, in the Gaussian and
{1y s Wy — 1], [Us, WD, 1.0 [Ws— 106, WD, _ 1.1 33E2 Dirichlet priors, respectively. The values of these
(b) Syntactic chunking: (total 39 templates) tunable parameters are chosen by employing a bi-
{z]_l[y’wld]} {[[yy_f\'d“gog}}pf?] [ys[’dejV;jp(ﬁf]‘} nary line search. We used the value for the best per-
['yS,p;)%H:u],{[ys;mp%fjfzgil, ‘ formance with the development $etHowever, it
(c) NER: (total 79 templates) may be computationally unrealistic to retrain the en-
sl o :s], {lys, Wau], [ys, WG], [ys, POS], [ys, wtp, . tire procedure several times using 1G-words of unla-
[ysfl:sa IWdu]v [ysflzm po%]v [y571:S7thu] u=s—27
{lys, Wdu—1:0], [ys, POS, 1], [y, WP, 1.0, ], beled data. Therefore, these tunable parameter val-
[Ys— 1555 POS, _ 110 )s [Ws— 108 WD, _ 1. ] 3512, ues are selected using a relatively small amount of
(Y5, POS _1:aca s (U, WIPs _1:cco g1 ] [¥Us— 10, POS_yciaqa ], unlabeled data (17M-words), and we used the se-
[ysflzsz\ths—l:s:s{—l]' [yS>Wd4IS]' [yS7Wd4rS]! . .
{[ys, PN, [ys, SENs], [ys 106, PEN], [ys 100, SENSTFY lected values in all our experiments. The left graph
wd: word, pos: part-of-speech lwd : lowercase of word, in Figure 2 shows typicah behavior. The left end

wtp: ‘word type’, wd4{l,r}: words within the left or right 4 tokens

{pf.5-N: N character prefix or suffix of word is equivalent to optimizingZ# without a prior, and

the right end is almost equivalent to considering

pj(x;,y) for all j to be a uniform distribution. This

is why it appears to be bounded by the performance
obtained from supervised CRF. We omitted the in-

fluence ofr? because of space constraints, but its be-
havior is nearly the same as that of supervised CRF.

Table 3: Feature templates used in our experiments

e

Supervised CRF % 5
e

o
3
3

—

=X = Convergence Condition Value

°

o
>

)
o
8

] \}
o
g
gence condition value
[log-scale]

—
A
B3

00013

Entire sentence accuracy
Entire sentence accuracy

Convergence ¢

peromene SN Unfortunately,£?(®|\") may have two or more

o aslogseall 0 0 ket © " local maxima. Our parameter estimation procedure
(a) Influence ofy (b) Changes in performance  does not guarantee to provide either the global opti-
in Dirichlet prior and convergence property

mum or a convergence solution @ and\’ space.
An example of non-convergence is the oscillation of
the estimated®. That is,® traverses two or more

resources such as gazetteers for NER, we used non)ec.al maxima. Therefore. we examined its con-

All ogrfeatur_e_s can be automatically extracted fron\]/ergence property experimentally. The right graph
the given training data.

in Figure 2 shows a typical convergence property.
3.3 Design of Joint PMs (HMMs) Fortunately, in all our experiments, JESS-CM con-

We used first order HMMs for embedded joint pmdverged in a small number of iterations. No oscilla-
since we assume that they have the same graph str§ie! i observed here.
ture as JESS-CM as d_escribed in Section 2.2._ 4 Results and Discussion

To reduce the required human effort, we simply
used the feature templates shown in Table 3 to gendtl  Impact of Unlabeled Data Size
ate the features of the HMMs. With our design, ondable 4 shows the performance of JESS-CM us-
feature template corresponded to one HMM. Thig\g 1G-words of unlabeled data and the perfor-
design preserves the feature whereby each HMKhance gain compared with supervised CRF, which
emits a single symbol from a single state (or transis trained under the same conditions as JESS-CM ex-
tion). We can easily ignore overlapping features thatept that joint PMs are not incorporated. We empha-
appear in a single HMM. As a result, 47, 39 and 7$ize that our model achieved these large improve-
distinct HMMs are embedded in the potential funcments solely using unlabeled data as additional re-
tions of JESS-CM for POS tagging, chunking andources, without introducing a sophisticated model,
NER experiments, respectively. deep feature engineering, handling external hand-

Figure 2: Typical behavior of tunable parameters

3.4 Tunable Parameters 2Since CoNLL'00 shared task data has no development set,

. . we divided the labeled training data into two distinct sets, 4/5
In our experiments, we selected Gaussian ang training and the remainder for the development set, and de-
Dirichlet priors as the prior distributions i' and termined the tunable parameters in preliminary experiments.
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(a) POS tagging (b) Chunking (c) NER
measure§ label accuracy entire sent. acc. || Fg—; | sent. acc. Fg—1 entire sent. acc.
eval. data dev. test dev. test test test dev. test dev. test
JESS-CM (CRF/HMM) 97.35 97.40| 56.34 57.01|| 95.15 65.06 94.48 89.92| 91.17 85.12
(gain from supervised CRF) (+0.17) (+0.19)| (+1.90) (+1.63)|| (+1.27) (+4.92) || (+2.74) (+3.57)| (+3.46) (+3.96)

Table 4: Results for POS tagging (PTB Il data), syntactic chunking (CoNLL'00 data), and NER (CoNLL'03 data)
incorporated with 1G-words of unlabeled data, and the performance gain from supervised CRF

(ratio a%ainst the labeled training data size) (ratio against the labeled training data size) (ratio against the labeled training data size)
X x10 x100 x1000 x1 x10 x100 x1000 ~ x5000 x1 x10 x100 x1000  "x5000

95.2 95.0 ad
974 || Mt aaax®
> —& dev. L 930 [{—®—test ’;;A” ”””””””””””””
8 o 94.8 o ik Supervised CRF |
g o o =&
Sa90 b AL 5 5910 performance (dev.)
0973 X 7] @
Q / g 944 S
‘_( A Supervised CRF £ £890
_‘g 972 W performance (test) = LL L LL
« R EE (dev) — 940 Supervised CRF _| 870 I Supervised CRF
K i performance performance (test) |
97.1 Lo e Lo Lo Lo 93A6 Lo Lo Lo Lol Lol 85'0 L —— IR Ll s
0 1 10 100 1,000 10,000 0 1 10 100 1,000 10,000 0 1 10 100 1,000 10,000
Unlabeled data size (Mega words) : [log—scale] Unlabeled data size (Mega words) : [log-scale] Unlabeled data size (Mega words): [log-scale]

(a) POS tagging (b) Syntactic chunking (c) NER

Figure 3: Performance changes with respect to unlabeled data size in JESS-CM

crafted resources, or task dependent human knovgarded as a variant of the MML estimation (see Sec-
edge (except for the feature design). Our method cdion 2.2), namely, it is MML estimation with a bias,
greatly reduce the human effort needed to obtain 4(x, y), and smooth factors\r,;. MML estima-
high performance tagger or chunker. tion can be seen as modelipgr) since it is equiv-
Figure 3 shows the learning curves of JESS-CNlent to maximizingy,, log p(x™) with marginal-
with respect to the size of the unlabeled data, whetged hidden variableg, where3”, -y p(z,y) =
the x-axis is on the logarithmic scale of the unlap(z). Generally, more data will lead to a more ac-
beled data size (Mega-word). The scale at the toprate model ofp(x). With our method, as with
of the graph shows the ratio of the unlabeled dataodelingp(z) in MML estimation, more unlabeled
size to the labeled data size. We observe that a smélata is preferable since it may provide more accurate
amount of unlabeled data hardly improved the pefmodeling. This also means that it provides better
formance since the supervised CRF results are conglusters’ over the output space singeis used as
petitive. It seems that we require at least dozerfydden states in HMMs. These are intuitive expla-
of times more unlabeled data than labeled trainingations as to why more unlabeled data in JESS-CM
data to provide a significant performance improveProduces better performance.
ment. The most important and interesting behav-
ior is that the performance improvements against th%
unlabeled data size are almost linear on a logaritWe try to investigate the impact of unlabeled data
mic scale within the size of the unlabeled data useoh the performance of unseen data. We divide the
in our experiments. Moreover, there is a possibiltest set (or the development set) into two disjoint
ity that the performance is still unsaturated at theets: L.app and L.neg app..app is a set of sen-
1G-word unlabeled data point. This suggests thaeénces constructed by words thataipeared in the
increasing the unlabeled data in JESS-CM may fut-abeled training data.. -app is a set of sentences
ther improve the performance. that have at least one word that does appear in
Suppose/=1, the discriminant function of JESS- theL abeled training data.
CMis g(x,y) = Az, y)p1(x1,y;0:)M+ where Table 5 shows the performance with these two
A(xz,y) = exp(A - >, f.(y.,x)). Note that both sets obtained from both supervised CRF and JESS-
A(z,y) and A\;,; are given and fixed during the CM with 1G-word unlabeled data. As the super-
MDF estimation of joint PM parametef®. There- vised CRF results, the performance of the-app
fore, the MDF estimation in JESS-CM can be resets is consistently much lower than that of the cor-

2 Expected Performance for Unseen Data
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(a) POS tagging (b) Chunking (c) NER

eval. data] development test test development test

L.—app L.app|| L.—app L.app|| L.—app L.app|| L.—app L.app|| L.—app L.app
rates of sentences(46.1%) | (53.9%) || (40.4%)| (59.6%)|| (70.7%)| (29.3%)|| (54.3%)| (45.7%)|| (64.3%)| (35.7%)

supervised CRF (baseline) 46.78| 60.99 48.57| 60.01 56.92| 67.91 79.60| 97.35 75.69| 91.03

JESS-CM (CRF/HMM) 49.02 62.60 50.79 61.24 62.47 71.30 85.87 97.47 80.84 92.85
(gain from supervised CRF) (+2.24)| (+1.61)|| (+2.22)| (+1.23)|| (+5.55)| (+3.40)| (+6.27)| (+0.12)|| (+5.15)| (+1.82)
U.app [ 83.7%] 96.3%[ 84.3%] 95.8%] 89.5%| 99.2%[ 95.3%] 99.8%] 94.9%][ 100.0%

Table 5: Comparison with bapp and L.app sets obtained from both supervised CRF and JESS-CM with 1G-word
unlabeled data evaluated by thetire sentence accuraciesnd the ratio of U.app.

unlab. data dev (Aug. 30-31)|test (Dec. 06-07) system dev. | test |additional resources
(period) |#sent|#wds| Fg—1 U.app|| Fs—1 U.app JESS-CM (CRF/HMM)|97.3597.40 1G-word unlabeled data
reu(Sep.) | 1.0M| 17M| 93.50 82.0%| 88.27] 69.7% (Shen et al., 2007) 97.2897.33—
reu(Oct.) | 1.3M| 20M|93.04]  71.0%)| 88.82] 72.0% (Toutanova et al., 2003097.1597.24 crude company name detector
reu(Nov.) | 1.2M| 18M| 92.94]  68.7%)| 89.08  74.3% [sup. CRF (baseline)] [97.1897.21—
reu(Dec.) 9M| 15M|92.91 67.0%89.29 84.4%

] . Table 7: POS tagging results of the previous top systems
Table 6: Influence of U.app in NER experiments: *(€X<or PTB 11l data evaluated by label accuracy
cluding Dec. 06-07)

system test |additional resources
] JESS-CM (CRF/HMM) 95.15 1G-word unlabeled data
respondlng L.app sets. Moreover, we can observe 94.67/15M-word unlabeled data
; . (Ando and Zhang, 2005) |94.39 15M-word unlabeled data
that the ratios of Lvapp are not so small; nearly half (Suzuki et al., 2007) 5438 ToMoword unlabeled data
(46.1% and 40.4%) in the PTB Ill data, and more ~zhangetal., 2002) 94.17full parser output

than half (70.7%, 54.3% and 64.3%) in CoONLL'0Q _(Kudo and Matsumoto, 200{93.91
and '03 data, respectively. This indicates that words 2tPervised CRF (baseline)}93.88 -
not appearing in the labeled training data are realfjable 8: Syntactic chunking results of the previous top
harmful for supervised learning. Although the perSystems for CONLL'00 shared task data(kr score)
formance with L-app sets is still poorer than with
L.app sets, the JESS-CM results indicate that the i0-31 Aug. 1996 and 6-7 Dec. 1996 Reuters news
troduction of unlabeled data effectively improves tha@rticles, respectively. We find that temporal proxim-
performance of L=app sets, even more than that ofty leads to better performance. This aspect can also
L.app sets. These improvements are essentially velpg explained as U.app. Basically, the U.app increase
important; when a tagger and chunker are actuallgads to improved performance.
used, input data can be obtained from anywhere andThe evidence provided by the above experiments
this may mostly include words that do not appeaimplies that increasing the coverage of unlabeled
in the given labeled training data since the labeledata offers the strong possibility of increasing the
training data is limited and difficult to increase. Thisexpected performance of unseen data. Thus, it
means that the improved performance ofépp can strongly encourages us to use an SSL approach that
link directly to actual use. includes JESS-CM to construct a general tagger and
Table 5 also shows the ratios of sentences th&hunker for actual use.
are constructed from words that eared in the . . .
1G-word Unlabeled data used ir?uc)azr experiment? Comparison with Previous Top Systems
(U.app) in the L—~app and L.app. This indicates that and Related Work
most of the words in the development or test sets arg POS tagging, the previous best performance was
covered by the 1G-word unlabeled data. This maseported by (Shen et al., 2007) as summarized in
be the main reason for JESS-CM providing largerable 7. Their method uses a novel sophisticated
performance gains for both the overall and-app model that learns both decoding order and labeling,
set performance of all three tasks. while our model uses a standard first order Markov
Table 6 shows the relation between JESS-CM pemodel. Despite using such a simple model, our
formance and U.app in the NER experiments. Themethod can provide a better result with the help of
development data and test data were obtained froumlabeled data.
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System dev. | test |additional resources ods discriminatively combine models trained by us-
JESS-CM(CRF/HMM)[94.4889.92 1G-word unlabeled data. - labeled data in ordert i informative f
93688938 37 vword urebeled data  INQ UNnlabeled data in order to create informative fea-

(Ando and Zhang, 200593.15/89.31/ 27M-word unlabeled data  ture representation for discriminative learning. Un-

(Florian et al., 2003) |93.87|88.76/ own large gazetteers, ; _traini i
SM-word labeled data like self/co-training approaches (Blum and Mitchell,

(Suzukietal, 2007) | N/A |88.41 27M-word uniabeled data ~ 1998), which use estimated labels as ‘correct la-

[sup. CRF (baseline)] |91.7486.35— bels’, this approach automatically judges the relia-
Table 9: NER results of the previous top systems fobility of additional features obtained from unlabeled
CoNLL'03 shared task data evaluated by score data in terms of discriminative training. Ando and

Zhang (2007) have also pointed out that this method-

) ) ology seems to be one key to achieving higher per-
As shown in Tables 8 and 9, the previous besy mance in NLP applications.

performance for syntactic chunking and NER Was There s an approach that combines individually

reported by ‘(Ando angly Zhang, 2005), and is re3nq independently trained joint PMs into a discrimi-
ferred to as ‘ASO-semi’. ASO-semi also iNCOrpO+yative model (Li and McCallum, 2005). There is an
rates unlabeled data solely as additional informasgsential difference between this method and JESS-
tion in the same way as JESS-CM. ASO-semi Us§S\) e categorize their approach as an ‘indirect
unlabeled data for constructing auxiliary prObIem%\pproach’ since the outputs of the target tagk

that are expected to capture a good feature reprgre not considered during the unlabeled data incor-
sentation of the target problem. As regards syntagyoration, Note that ASO-semi is also an ‘indirect

tic chunking, JESS-CM significantly outperformedapproacwl On the other hand, our approach is a

ASO-semi for the same 15M-word unlabeled datgjirect approach’ because the distributionapiob-

size obtained from the Wall Street Journal in 1991144 from JESS-CM is used as ‘seeds’ of hidden
as described in (Ando and Zhang, 2005). Unforgiates during MDF estimation for join PM param-

tunately with NER, JESS-CM is slightly inferior 10 gter5 (see Section 4.1). In addition, MDF estima-

ASO-semi for the same 27M-word unlabeled datg,n gyer unlabeled data can effectively incorporate

size extracte_d from the Reuters corpus. In facl,a qapeled’ training data information via a ‘bias’
JESS-CM using 37M-words of unlabeled data progjnce x included inA(z, y) is estimated from la-
vided a comparable result. We observed that ASQya|eq training data.

semi prefers ‘nugget extraction’ tasks to ‘field seg-

mentation’ tasks (Grenager et al., 2005). We car6 Conclusion

not provide details here owing to the space limiye proposed a simple yet powerful semi-supervised
tation. Intuitively, their word prediction auxiliary -gnditional model. which we call JESS-CM. It is

problems can capture only a limited number of charzppiicable to large amounts of unlabeled data, for
acteristic behaviors because the auxiliary problemgample, at the giga-word level. Experimental re-
are constructed by a limited number of ‘binary’ clasyyts obtained by using JESS-CM incorporating 1G-
sifiers. Moreover, we should remember that ASOgyords of unlabeled data have provided the current
semi used the human knowledge that ‘named ejest performance as regards POS tagging, syntactic
tities mostly consist of nouns or adjectives’ during.hnking, and NER for widely used large test col-
the auxiliary problem construction in their NER eX-|actions such as PTB l1l, CONLL'00 and '03 shared
periments. In contrast, our results require no SUGRsk data, respectively. We also provided evidence
additional knowledge or limitation. In addition, thei,5t the use of more unlabeled data in SSL can lead
design and training of auxiliary problems as well agq fyrther improvements. Moreover, our experimen-
calculating SVD are too costly when the size of theg| analysis revealed that it may also induce an im-
unlabeled data increases. These facts imply that Ogfoyement in the expected performance for unseen
SSL framework is rather appropriate for handlingyata in terms of the unlabeled data coverage. Our re-
large scale unlabeled data. sults may encourage the adoption of the SSL method
On the other hand, ASO-semi and JESS-CM hawvier many other real world applications.
an important common feature. That is, both meth-
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